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Abstract

Being able to learn dense semantic representations of
images without supervision is an important problem in com-
puter vision. However, despite its significance, this problem
remains rather unexplored, with a few exceptions that con-
sidered unsupervised semantic segmentation on small-scale
datasets with a narrow visual domain. In this paper, we
make a first attempt to tackle the problem on datasets that
have been traditionally utilized for the supervised case. To
achieve this, we introduce a two-step framework that adopts
a predetermined mid-level prior in a contrastive optimiza-
tion objective to learn pixel embeddings. This marks a large
deviation from existing works that relied on proxy tasks or
end-to-end clustering. Additionally, we argue about the im-
portance of having a prior that contains information about
objects, or their parts, and discuss several possibilities to
obtain such a prior in an unsupervised manner.

Experimental evaluation shows that our method comes
with key advantages over existing works. First, the learned
pixel embeddings can be directly clustered in semantic
groups using K-Means on PASCAL. Under the fully unsu-
pervised setting, there is no precedent in solving the se-
mantic segmentation task on such a challenging benchmark.
Second, our representations can improve over strong base-
lines when transferred to new datasets, e.g. COCO and
DAVIS. The code is available1.

1. Introduction
The problem of assigning dense semantic labels to im-

ages, formally known as semantic segmentation, is of great
importance in computer vision as it finds many applications,
including autonomous driving, augmented reality, human-
computer interaction, etc. To achieve state-of-the-art per-
formance in this task, fully convolutional networks [45]
are typically trained on datasets [15, 20, 44] that contain a
large number of fully-annotated images. However, obtain-
ing accurate, pixel-wise semantic labels for every image in
a dataset is a labor-intensive process that costs significant
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Figure 1. We learn pixel embeddings for semantic segmentation
in an unsupervised way. First, we predict object mask proposals
using unsupervised saliency. Second, we use the obtained masks
as a prior in a self-supervised optimization objective. Finally, the
pixel embeddings can be clustered or fine-tuned to a semantic seg-
mentation of the image.

amounts of time and money [4]. To remedy this situation,
weakly-supervised methods leveraged weaker forms of su-
pervision, such as scribbles [43, 65, 66, 72, 80], bounding
boxes [16, 37, 56, 80], clicks [5], and image-level tags [56,
66, 80], while semi-supervised methods [16, 26, 28, 56, 57]
used only a fraction of the dataset as labeled examples, both
of which require substantially less human annotation effort.
Despite the continued progress, the vast majority of seman-
tic segmentation works still rely on some form of annota-
tions to train the neural network models.

In this paper, we look at the problem from a different
perspective, namely self-supervised representation learn-
ing. More concretely, we aim to learn pixel-level repre-
sentations or embeddings for semantic segmentation with-
out using ground-truth. If we obtain a good pixel embed-
ding that is discriminative w.r.t. the semantic classes, we
can directly cluster the pixels into semantic groups using
K-Means. This tackles the semantic segmentation problem
under the fully unsupervised setup. Alternatively, if a lim-
ited number of annotated examples are available, the repre-
sentations can be further fine-tuned under a semi-supervised
or transfer learning setup. In this paper, we primarily focus
on the fully unsupervised setup, but include additional fine-
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tuning experiments for the sake of completeness.
Unsupervised or self-supervised techniques [36] were

recently being employed to learn rich and effective visual
representations without external supervision. The obtained
representations can subsequently be used for a variety of
purposes, including task transfer learning [24], image clus-
tering [2, 3, 71], semi-supervised classification [12], etc.
Popular representation learning techniques used an instance
discrimination task [78], that is treating every image as a
separate class, to generate representations in an unsuper-
vised way. Images and their augmentations are considered
as positive examples of the class, while all other images are
treated as negatives. In practical terms, the instance dis-
crimination task is formulated as a non-parametric classi-
fication problem, and a contrastive loss [23, 54] is used to
model the distribution of negative instance classes.

Purushwalkam and Gupta [61] showed that contrastive
self-supervised methods learn to encode semantic informa-
tion, since two views of the same image will always show
a part of the same object, and no objects from other cate-
gories. However, under this setup, there is no guarantee that
the representations also learn to differentiate between pixels
belonging to different semantic classes. For example, when
foreground-background pairs frequently co-occur, e.g. cat-
tle grazing on farmland, pixels belonging to the two classes
can share their representation. This renders existing works
based on instance discrimination less appropriate w.r.t. our
goal of learning semantic pixel embeddings. To address
these limitations, we propose to learn pixel-level, rather
than image-level representations, in a self-supervised way.

The proposed method consists of two steps. First, we
leverage an unsupervised saliency estimator to mine object
mask proposals from the dataset. This mid-level visual prior
transfers well across different datasets. In the second step,
we use a contrastive framework to learn pixel embeddings.
The object mask proposals are employed as a prior - we pull
embeddings from pixels belonging to the same object to-
gether, and contrast them against pixels from other objects.
The generated representations are evaluated on the semantic
segmentation task following standard protocols. The frame-
work is illustrated in Figure 1.

Our contributions are: (1) We propose a two-step frame-
work for unsupervised semantic segmentation, which marks
a large deviation from recent works that relied on proxy
tasks or end-to-end clustering. Additionally, we argue about
the importance of having a mid-level visual prior which
incorporates object-level information. This contrasts with
earlier works that grouped pixels together based upon low-
level vision tasks like boundary detection. (2) The proposed
method is the first able to tackle the semantic segmentation
task on a challenging dataset like PASCAL under the fully
unsupervised setting. (3) Finally, we report promising re-
sults when transferring our representations to other datasets.

This shows that adopting a mid-level visual prior can be
useful for self-supervised representation learning.

2. Related Work
As our method is mostly related to unsupervised seman-

tic segmentation and representation learning, in what fol-
lows we discuss representative works from each topic.

Unsupervised semantic segmentation. There have only
been a few attempts in the literature to tackle semantic
image segmentation under the fully unsupervised setting.
Some works [34, 55] followed an end-to-end approach -
maximizing the discrete mutual information between aug-
mented views to learn a clustering function. However, these
methods were only applied to small-scale datasets, covering
a narrow visual domain, e.g. separating sky from vegeta-
tion, using satellite imagery, etc. In contrast, our method
applies to more challenging scenarios, and decouples fea-
ture learning from clustering.

A few works [29, 95] used segments obtained from
boundaries to learn pixel embeddings in a self-supervised
way. However, it is unclear whether the representations
could be post-processed with an off-line clustering crite-
rion to obtain discrete labels. In particular, the evaluation
only considered semantic segment retrieval which requires
an annotated train set. Furthermore, Hwang et al. [29] still
relied on additional supervision sources like ImageNet pre-
training and boundary annotations [1, 79].

Representation learning. These methods aim at learning
visual representations by solving pre-designed pretext tasks,
which do not require manual annotations. Examples of such
pretext tasks include colorizing images [30, 40, 94], predict-
ing context [17, 49], solving jigsaw puzzles [51, 53], gener-
ating images [63], clustering [2, 8, 82], predicting noise [6],
spotting artifacts [33], using adversarial training [18, 19],
predicting optical flow [47, 88], counting [52], inpaint-
ing [58], predicting transformation parameters [21, 92], us-
ing predictive coding [54], performing instance discrimina-
tion [9, 11, 22, 24, 41, 48, 68, 69, 78, 85], and so on. The
learned representations can subsequently be transferred to
learn a separate down-stream task, e.g. object detection.

In a similar vein, some works tried to learn pixel-
level representations for semantic segmentation by solv-
ing proxy tasks, e.g. colorization [30, 40, 87, 94], optical
flow [47, 88], using co-occurences [31], etc. Differently, in
this paper, we avoid the use of a proxy task.

3. Method
In this paper, we aim to learn a pixel embedding function

for semantic segmentation from an unlabeled dataset of im-
ages. Since the goal of semantic segmentation is to assign a
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Figure 2. MaskContrast learns pixel embeddings for unsuper-
vised semantic segmentation in the following way. We use a
saliency estimator to generate positive pairs of object-centric crops
(X,X+) and negative pairs X−k . The model Φθ is trained to max-
imize the agreement between embeddings of pixels belonging to
the objects in X,X+, while minimizing the agreement with pixels
from objects in X−k .

class label to every pixel of an image, a good pixel embed-
ding should be discriminative w.r.t. the semantic classes. If
the latter holds true, the embedding function can be directly
used to cluster the pixels into semantic groups, or be further
fine-tuned under a semi-supervised setup.

To tackle the aforementioned problem, we follow a
divide-and-conquer strategy. We argue that it is more dif-
ficult to directly cluster the pixels into semantic groups fol-
lowing an end-to-end pipeline, while it is easier to first
look for image regions where pixels are likely to belong
together. Although this information does not directly re-
sult in a semantic segmentation of the scene, it gives us a
useful starting point to learn the pixel embeddings. In par-
ticular, we can leverage the obtained regions as a prior by
grouping their pixels together. Since the prior is determined
before the feature learning step, we reduce the dependence
on the network initialization. This is an intentional diver-
gence from existing end-to-end learning pipelines [34, 55],
which are prone to latch onto low-level image cues - like
color, contrast, etc. - as shown in [71].

The proposed method named MaskContrast consists of
two steps. In a first step, we determine a prior by identify-
ing objects in the images for which pixels can be grouped
together. Mid-level visual groups, like objects, transfer well
across datasets, since they do not depend on any pre-defined
ground-truth classes. In the second step, we employ the ob-
tained prior in a contrastive loss [23, 54] to generate pixel
embeddings. More specifically, we pull pixels belonging to
the same object together, and contrast them against pixels
from other objects, as shown in Figure 2. This forces the
model to map pixels from visually similar objects closer to-

gether, while pushing pixels from dissimilar objects further
apart. In this way, the model discovers a pixel embedding
space that can serve as a dense semantic representation of
the scene.

The method section is further organized as follows. Sec-
tion 3.1 motivates the use of object mask proposals as a
prior for semantic segmentation. Section 3.2 analyzes the
use of an unsupervised saliency estimator to mine the ob-
ject masks from unlabeled datasets. Section 3.3 integrates
the prior in a contrastive loss to learn pixel embeddings.

3.1. A Mid-Level Visual Prior for Grouping Pixels

As a starting point for unsupervised semantic segmenta-
tion, we try to define an appropriate prior. Several works
have emerged in the literature that tried to group pixels
by solving a proxy task. Examples include colorizing im-
ages [30, 40, 94], predicting optical flow [47, 88], using
co-occurences [31], etc. Unfortunately, there is no guar-
antee that the generated representations will align with the
semantic classes, as the latter are co-variant to the proxy
task’s output. For example, a colorization network will be
sensitive to color changes, even though these do not nec-
essarily alter the semantics of the scene. This behavior is
unwanted for the objective of semantic segmentation.

To overcome these limitations, we follow an alternative
route that avoids the use of a proxy task. In particular, we
mine object mask proposals which cover patches that are
likely to contain an object. A prior can then be defined
from the masks based upon shared pixel ownership, i.e. if
a pair of pixels belongs to the same mask, we assume that
they should be grouped together, and maximize the agree-
ment between their pixel embeddings. We hypothesize that
this is a more reliable pixel grouping strategy compared to
the use of proxy tasks. In particular, our approach builds a
high-level image segmentation by first identifying mid-level
visual groups, instead of directly producing a complete seg-
mentation by solving a proxy task. A motivation for this
bottom-up approach is also provided in [64].

At the same time, the proposed prior can be seen as
an object-centric approach to unsupervised semantic seg-
mentation, which brings several advantages to the table.
First, using mid-level visual cues, like object information,
regularizes the feature representations. In particular, the
model can not simply rely on low-level information like
color to group the pixels together, but needs to learn more
semantically meaningful image characteristics. This dif-
fers from competing works [29, 95] that used superpix-
els or image boundaries as a prior. Second, object cues
can be highly informative of the semantic segmentation
task. Evidence for the latter has been provided in the lit-
erature for weakly-supervised methods that utilized annota-
tions containing object information. As an example, several
works [16, 37, 56, 80] reported strong results on the seg-
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Figure 3. Mask Proposals. We train a supervised (middle) and un-
supervised (bottom) saliency estimator on the DUTS and MSRA
datasets respectively. We make predictions on PASCAL.

mentation task by employing object bounding boxes.
Next, we show how an unsupervised saliency estimator

can be used to generate the object mask proposals.

3.2. Mining Object Mask Proposals

We need to retrieve a set of object mask proposals for the
images in our dataset. The literature [1, 50, 60, 70] offers a
multitude of ways to do this. We prefer to use a simple strat-
egy to verify whether unsupervised semantic segmentation
benefits from adopting a mid-level visual prior. Moreover,
we would like to use a method that does not rely on ex-
ternal supervision, or can be trained with a limited amount
of annotations. In the latter case, the object mask proposal
mechanism should generalize well to new scenes.

Based upon our requirements, we propose the use of
saliency estimation [7, 77] to generate object masks propos-
als. Most importantly, various unsupervised methods can be
used for this purpose. Several of these works [50, 89, 91]
used predictions obtained with hand-crafted priors [35, 42,
96, 98] as pseudo-labels to train a deep neural network. Oth-
ers [83, 84] relied on videos to learn a salient object detec-
tor. Furthermore, on a variety of datasets [14, 73, 81] un-
supervised saliency methods have shown to perform on par
with their supervised counterparts [27, 46, 62, 75, 90, 93].
Finally, the model predictions transfer well to novel unseen
datasets as shown by [50].

For completeness, in Section 4 we explore both unsuper-
vised [50] and supervised [62] saliency estimation methods
to predict the object masks, and showcase the potential of
our method. Figure 3 shows some examples.

3.3. MaskContrast: Learning Pixel Embeddings by
Contrasting Salient Objects

Consider a dataset of images X with associated non-
overlapping object mask proposals {M0,M1, . . . ,MN}
obtained using a saliency estimator. Our goal is to learn
a pixel embedding function Φθ : X → Z parameterized

by a neural network with weights θ, that maps each pixel i
in an image to a point zi on a D-dimensional normalized
hyper-sphere. We chose a normalized embedding space, so
that the output of Φθ is bounded. Note that, the use of such
scale-invariant embeddings decouples the loss from other
design choices that could implicitly limit the range of dis-
tances, e.g. weight decay, as shown in [39].

We construct an optimization objective to learn the em-
bedding function Φθ as follows. First, we describe how to
learn semantically meaningful image feature using a con-
trastive learning objective. Second, we modify the criterion
to learn pixel embeddings.

Learning Image-Level Representations. Existing con-
trastive self-supervised methods (e.g. [11, 24, 78]) learn vi-
sual representations through an instance discrimination task
defined at the image-level. Positive views (X,X+) of the
same image are acquired for which it is guaranteed that both
images contain a part of the same object. Similarly, exam-
ples of negative pairs

{
(X,X−0 ), (X,X−1 ), . . . , (X,X−K)

}
can be found that never contain the same object. In practice,
we impose additional invariances by applying augmenta-
tions. The positives and negatives can now be used in a
contrastive framework to learn image representations that
encode semantic information about the objects.

We realize this concept by training an image embedding
function Ψη to maximize the agreement between positive
pairs (X,X+), while minimizing the agreement between
negative pairs

{
(X,X−0 ), (X,X−1 ), . . . , (X,X−K)

}
. If we

measure the similarity between pairs using a dot product,
the contrastive loss [23, 54] is defined as

L = − log
exp(Ψη(X)T ·Ψη(X+)/τ)∑K
k=0 exp(Ψη(X)T ·Ψη(X−k )/τ)

, (1)

where the temperature τ relaxes the dot product. As shown
by [61], the model learns to encode object information be-
cause the positive examples always preserve a part of the
same object. Moreover, since the representational capac-
ity of the network is intentionally limited, visually simi-
lar objects will tend to be mapped closer together by Ψη .
The combination of these two properties results in image
representations that can be directly clustered into semantic
groups (see also [71] for a more detailed explanation).

The above observations showed how to train a model that
encodes semantic object information. Next, we modify the
contrastive loss from Equation 1 to learn representations at
the pixel level.

Learning Pixel-Level Representations. We adopt the
following notation. Let i be a pixel with zi its pixel embed-
ding. Let m(i) be the index of the object mask that pixel
i belongs to, i.e. i ∈ Mm(i). Finally, let the mean pixel
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embedding zMn of an object maskMn be defined as

zMn =
1

|Mn|
∑
i∈Mn

zi. (2)

The optimization objective is derived from a pull- and
push-force in the pixel embedding space.

Pull-force. In Section 3.1, we motivated the use of a
prior based upon shared pixel ownership to pull pixels to-
gether in the embedding space. More concretely, if two pix-
els i, j belong to the same object, i.e. m(i) = m(j), we
maximize the agreement between their pixel embeddings
zi, zj . In practice, the agreement is maximized between
pixels and the mean embedding of their object mask in or-
der to obtain a criterion that scales linearly with the number
of pixels, rather than quadratically.

Push-force. Additionally, we require a push-force to
avoid mode collapse in the embedding space. Moreover, the
push-force should drive pixels from visually similar objects
to lie close together in the embedding space, while pixels
from dissimilar objects to be mapped further apart. As mo-
tivated in the previous paragraph, this can be achieved by
adopting a contrastive loss that takes augmented views of
objects as positive pairs, and views of other objects as nega-
tives. In this case, the push-force is found between different
objects. We represent the objects by their mean pixel em-
bedding.

Optimization objective. We modify the contrastive
loss from Equation 1 to include the proposed pull-
and push-forces. Positive pairs of object-centric crops
(Ψη(X),Ψη(X+)) are replaced with positive pairs of pixel
embeddings: (zi, zMX+ ) for i ∈ MX . In a similar way,
the negative pairs (Ψη(X),Ψη(X−k )) are replaced with
(zi, zM

X
−
k

). We obtain the following optimization criterion

for a pixel i ∈MX

Li = − log
exp

(
zi · zMX+/τ

)
∑K
k=0 exp

(
zi · zM

X
−
k

/τ

) . (3)

The pixel embedding function Φθ maximizes the agreement
between pixels and an augmented view of the object they
belong to, while minimizing the agreement with other ob-
jects. We apply the pixel-wise loss Li to all foreground pix-
els. The background pixels are not contrasted, since there
could be multiple background objects on which we have no
conclusive information. In this case, however, the network
does not need to discriminate between pixels that fall inside
or outside the object masks. As a consequence, the pixel
embeddings can collapse to a single vector across an image.
To prevent this, we regularize the feature space by including
a separate linear head that predicts the saliency masks.

The supplementary materials provide pseudo-code of
MaskContrast.

Interestingly, the proposed objective can also be viewed
in an alternative way. Wang and Isola [76] showed that a
contrastive loss optimizes two properties: (1) alignment of
features from positive pairs and (2) uniformity of the feature
distribution on a normalized hyper-sphere. From this view-
point, our optimization objective can also be interpreted as
optimizing the alignment of pixel embeddings based upon
shared pixel ownership, while spreading pixel embeddings
uniformly across the hyper-sphere Z .

4. Experiments
4.1. Experimental Setup

Datasets. We conduct the bulk of our experimental anal-
ysis on the PASCAL [20] dataset following prior work [29,
95]. The train aug and val splits are used during train-
ing and evaluation respectively. We perform additional ex-
periments on the COCO [44] and DAVIS-2016 [59] datasets
to verify if the pixel embeddings transfer to novel scenes.
We use the annotations from Kirillov et al. [38] for the se-
mantic segmentation task on COCO and evaluate on the
PASCAL classes. On DAVIS-2016, the representations are
used to compute correspondences for propagating object
masks in videos. Only the first frame is annotated and we
evaluate the propagated masks on the rest of the frames. We
adopt the evaluation protocol from [32], and report the re-
gion similarity J and contour-based accuracy F scores.

Training setup. We use a DeepLab-v3 [10] model with
dilated [86] ResNet-50 backbone [25]. The backbone is ini-
tialized from MoCo v2 [13] pre-trained on ImageNet, un-
less defined otherwise. We train the model for 60 epochs
using batches of size 64. The model weights are updated
through SGD with momentum 0.9 and weight decay 1e−4.
The initial learning is set to 0.004 and decayed with a poly
learning rate scheme. We use the same set of augmenta-
tions as SimCLR [11] to generate positive pairs (X,X+),
while making sure that each image contains at least a part of
the salient object (area > 10%). The features of negatives{
zM

X
−
0

, . . . , zM
X

−
K

}
are saved in a memory bank, with

K set to 128. The negatives are encoded with a momentum-
updated version of the network following [24]. We use di-
mension D = 32 and temperature τ = 0.5.

Saliency estimation. We test both unsupervised and su-
pervised saliency estimators to mine the object mask pro-
posals. We adopt the BAS-Net [62] architecture. The super-
vised saliency model is trained on DUTS [74]. Differently,
the unsupervised saliency model is trained on MSRA [14]
using the approach from DeepUSPS [50]. MSRA consid-
ers less complex scenes from which the unsupervised train-
ing benefits. However, directly transferring the predictions
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Method LC (MIoU)
Supervised Saliency Model 6.5
MoCo v2 [13] (Unsupervised) 45.0
ImageNet (IN) Classifier (Supervised) 53.1
MaskContrast (MoCo v2 Init. - Unsup. Sal. Model) 58.4
MaskContrast (MoCo v2 Init. - Sup. Sal. Model) 62.2
MaskContrast (IN Classifier Init. - Unsup. Sal. Model) 61.0
MaskContrast (IN Classifier Init. - Sup. Sal. Model) 63.9

Table 1. Baseline comparison under the linear evaluation protocol
on PASCAL.

to our target datasets, e.g. PASCAL, results in low-quality
mask proposals when using the unsupervised model. We
employ a simple bootstrapping procedure to improve the
predictions on the target datasets. In particular, we ob-
tain our final saliency estimator from training BAS-Net on
pseudo-labels generated with the unsupervised DeepUSPS
model on MSRA.

Implementation. We provide the implementation details
of every method in the supplementary materials. The code
and pre-computed saliency masks will be made available.

Scope. We adopt standard evaluation protocols [34, 95]
for unsupervised semantic segmentation to benchmark our
method. More specifically, we use linear probes (Sec. 4.3),
direct clustering (Sec. 4.4) and a segment retrieval approach
(Sec. 4.5) to quantify if the pixel embeddings are disen-
tangled according to the semantic classes. This experi-
mental setup differs from the typical setting used in self-
supervised representation learning, where the evaluation fo-
cuses on fine-tuning the feature representations to various
down-stream tasks. For completeness, we include addi-
tional fine-tuning experiments in Sections 4.6 - 4.7.

4.2. Ablation Studies

We examine the influence of the different components of
our framework under the linear evaluation protocol follow-
ing existing work [95]. The network weights are kept fixed
and we train a 1 x 1 convolutional layer on top to predict
the class assignments. Since the discriminative power of a
linear classifier is low, the pixel embeddings need to be in-
formative of the semantic class to solve the task in this way.

Baseline comparison. Table 1 compares several base-
lines. Applying a linear classifier on top of the saliency
features results in the lowest performance (6.5%). This is
to be expected since the saliency estimator only discrimi-
nates between two groups of pixels, i.e. the salient object
vs. background. Differently, our method discovers a se-
mantically structured embedding space, where pixels from
visually similar objects lie close together, while pixels from
dissimilar objects end up far apart. This allows a linear clas-
sifier to correctly group the pixels (> 58.4%). Importantly,

the results improve over the models from which the back-
bone weights were initialized (45.0% to 58.4% for MoCo
and 53.1% to 61.0% for supervised pre-training). We con-
clude that the performance of our method can not be at-
tributed to the use of a specific initialization. Also, it is
beneficial to learn representations at pixel-, rather than at
image-level, for the segmentation task. Finally, we observe
further performance gains when including additional super-
vision, e.g. supervised pre-training on ImageNet (58.4% to
61.0%), or a supervised saliency estimator (58.4% to 62.2%
and 61.0% to 63.9%).

Mask proposals. Table 2a compares three mask proposal
strategies. Better numbers are reported when using salient
object masks. We found that the regions extracted with the
hierarchical segmentation algorithm were often too small to
be representative of an object or part. In this way, the model
does not learn useful information for the segmentation task.
This confirms the hypothesis from Section 3.1, i.e. a good
prior expresses object information.

Training mechanisms. Table 2b ablates some of the in-
cluded training mechanisms. First, using augmented views
to sample positive pairs improves the results, as we learn
additional invariances. Second, including a memory bank
results in further performance gains, because we can better
estimate the distribution of negatives. Third, it is helpful to
encode the negatives with a momentum-updated version of
the network Φθ, as this enforces consistency in the mem-
ory bank (see also [24]). In summary, all three mechanisms
positively contribute to the results.

Hyperparameter study. Table 2c studies the influence of
the used temperature τ and number of negativesK. We con-
clude that the proposed algorithm is not very hyperparame-
ter sensitive based upon the reported standard deviations.

4.3. Linear Classifier

Table 3a compares our method against competing works
under the linear evaluation protocol on PASCAL.

MaskContrast vs. proxy tasks. The method substan-
tially outperforms works based on proxy tasks. It is unlikely
that a proxy task aligns the embeddings with the semantic
groups in the dataset. In contrast, combining our proposed
prior, i.e. shared pixel ownership, with a contrastive loss
results in more semantically meaningful pixel embeddings.

MaskContrast vs. clustering. We outperform IIC [34]
which used a clustering objective. As discussed earlier,
the clusters strongly depend on the network initialization,
which negatively impacts the learned features as the net-
work can latch onto low-level information, like color, tex-
ture, contrast, etc. Differently, we suppress these problems
by decoupling the prior from the network initialization.
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Mask Proposals LC
(MIoU)

Hierarchical Seg. [1, 79] 30.5
Unsupervised Sal. Model 58.4
Supervised Sal. Model 62.2

(a) Comparison of three mask proposal
mechanisms.

Augmented Memory Momentum LC
Views Encoder (MIoU)

7 7 7 52.4
X 7 7 54.0
X X 7 55.0
X X X 58.4

(b) Analysis of the used training mechanisms.

Hyperparameter Range LC
(MIoU)

Temperature τ [0.1-1] 56.2± 1.4
Negatives K [64-1024] 57.0± 0.6

(c) Hyperparameter study. We report the mean
and standard deviation.

Table 2. Ablation studies of our method under the linear evaluation protocol on PASCAL. Tables 2b- 2c report results with masks from
the unsupervised saliency estimator. We use MoCo v2 initial weights.

MaskContrast vs. contrastive learning. The method
reports higher accuracy compared to existing contrastive
self-supervised approaches. This group of works defined
the contrastive loss at the global image- or patch-level. Nat-
urally, our pixel embeddings are more predictive of the se-
mantic segmentation task as we defined a contrastive learn-
ing objective at the pixel-level.

MaskContrast vs. boundary based. Finally, we out-
perform methods that relied on boundary detectors to group
pixels together. We argue that the employed saliency masks
incorporate higher level visual information compared to the
regions obtained from boundary detectors.

4.4. Clustering

We verify whether the feature representations can be di-
rectly clustered in semantically meaningful groups using an
off-line clustering criterion like K-Means. The number of
clusters equals the number of ground-truth classes. The
Hungarian matching algorithm is used to match the pre-
dicted clusters with the ground-truth classes and the results
are averaged across five runs. Table 3b shows the results.
Our learned pixel embeddings can be successfully clustered
using K-Means on PASCAL. In contrast, the features rep-
resentations obtained in prior works do not exhibit this be-
havior. We include additional results in the suppl. materials
when applying overclustering.

4.5. Semantic Segment Retrieval

Next, we adopt a retrieval approach to examine our rep-
resentations on PASCAL. First, we compute a feature vector
for every salient object by averaging the pixel embeddings
within the predicted mask. Next, we retrieve the nearest
neighbors of the val set objects from the train aug set.
Table 4 shows a quantitative comparison with the state-of-
the-art for the following 7 classes: bus, airplane, car, per-
son, cat, cow and bottle. As before, we outperform prior
works by significant margins. To facilitate future compari-
son, we also include results when evaluating on all 21 PAS-
CAL classes. Figure 4 shows some qualitative results.

Method LC
Proxy task based:
Co-Occurence [31] 13.5
CMP [88] 16.5
Colorization [94] 25.5
Clustering based:
IIC [34] 28.0
Contrastive learning based:
Inst. Discr. [78] 26.8
MoCo v2 [24] 45.0
InfoMin [69] 45.2
SWAV [9] 50.7
Boundary based:
SegSort [29]† 36.2
Hierarch. Group. [95]† 48.8
ImageNet (IN) Classifier (Supervised) 53.1
MaskContrast (MoCo Init. + Unsup. Sal.) 58.4
MaskContrast (MoCo Init. + Sup. Sal.) 62.2
MaskContrast (IN Sup. Init. + Unsup. Sal.) 61.0
MaskContrast (IN Sup. Init. + Sup. Sal.) 63.9

(a) Linear classifier.

K-Means

4.0
4.3
4.9

9.8

4.4
4.3
3.7
4.4

-
-

4.7
35.0
38.9
41.6
44.2

(b) K-Means.

Table 3. State-of-the-art comparison on PASCAL val (MIoU).
(†) Indicates results taken from [95]. Note that the authors use a
slightly different evaluation protocol, i.e. without ImageNet pre-
training, but with finetuning of the complete ASPP decoder.

Method MIoU (7 classes) MIoU (21 classes)
SegSort [29] 10.2 -
Hierarch. Group. [95] 24.6 -
MoCo v2 [13] 48.0 39.0
MaskContrast (Unsup. Sal.) 53.4 43.3
MaskContrast (Sup. Sal. ) 62.3 49.6

Table 4. State-of-the-art comparison for semantic segment re-
trieval on the PASCAL val set. We use MoCo v2 initial weights.

4.6. Transfer Learning

We study the transferability of our pixel embeddings.
Table 5 shows the results when pretraining on ImageNet
and evaluating the generated pixel embeddings on a differ-
ent target dataset. Interestingly, our representations transfer
well across various datasets. Training a linear classifier to
solve the segmentation task on PASCAL improves over the
MoCo v2 baseline (55.4% for MaskContrast vs. 45.0% for
MoCo when using an unsupervised saliency model). A sim-
ilar effect can be observed on COCO (45.0% for MaskCon-
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Figure 4. Nearest neighbors for queries (1st col.) on PASCAL.

Model PASCAL COCO DAVIS ’16
(MIoU)↑ (MIoU)↑ Jm ↑ Fm ↑

MoCo v2 45.0 35.2 77.1 77.2
MaskContrast (Unsup. Sal.) 55.4 45.0 78.0 77.8
MaskContrast (Sup. Sal.) 57.2 47.2 82.0 80.9

Table 5. Transfer learning setup. All models were pre-trained
on ImageNet. We use MoCo v2 initial weights. Results on PAS-
CAL and COCO are reported for a linear classifier. On DAVIS,
we freeze the representations and adopt the protocol from [32].

trast vs. 35.2% for MoCo). Finally, our representations also
transfer well to the semantic object segmentation task on
DAVIS-2016. This dataset covers a rich set of natural im-
age augmentations like viewpoint changes, occlusions, etc.,
for which our pixel embeddings have learned invariances.

The gains observed across all three benchmarks show
that the learned representations are not limited to a specific
dataset. We conclude that the use of a mid-level visual prior
can be useful for self-supervised representation learning.

4.7. Semi-Supervised Learning

The proposed method can alternatively be used as a pre-
training strategy for semantic segmentation. That is, the
model is fine-tuned in a semi-supervised way on PASCAL.
We use 1%, 2%, 5%, 12.5% and 100% of the train aug
split as labeled examples. We initialize our model from su-
pervised pre-training on ImageNet. This weight initializa-
tion is commonly used in semantic segmentation. Further-
more, directly fine-tuning a model initialized in the same
way serves as a strong baseline. Table 6 shows the results.

The representations generated with our method yield
higher performance after fine-tuning, compared to super-
vised pre-training on ImageNet. This holds true when using
both an unsupervised and supervised saliency estimator to
predict the object mask proposals. Predictably, the gains
become smaller when more labeled examples are available
(see also [97]). In conclusion, unsupervised learning of
pixel embeddings can complement a pre-training strategy
based on an image-level optimization criterion.
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Figure 5. Qualitative comparison after fine-tuning on PASCAL
using 1 % of labeled data. We use supervised pre-training on Im-
ageNet (middle) or our method (bottom) to initialize the weights.

Label Fraction 1% 2% 5% 12.5% 100%
ImageNet Classifier Init. 43.4 55.2 62.7 68.4 78.0
+ MaskContrast (Unsup. Sal.) 50.5 57.2 64.5 69.0 78.4
+ MaskContrast (Sup. Sal.) 51.5 59.6 65.3 69.4 78.6

Table 6. Semi-supervised fine-tuning on PASCAL (MIoU).

5. Discussion and Limitations

This work presented a general two-step framework based
upon a mid-level visual prior for tackling unsupervised se-
mantic segmentation. The proposed setup prevents the
model from latching onto low-level image features, a prob-
lem present in prior works that relied on end-to-end clus-
tering, proxy tasks or low-level visual cues. Instead,
MaskContrast learns pixel embeddings which incorporate
more semantically meaningful information (see Figure 4).
As a result, we were able to tackle the semantic seg-
mentation task under a fully unsupervised setup on a di-
verse dataset like PASCAL. Further, experimental evalua-
tion showed that our pixel embeddings have several other
interesting properties: the ability for semantic segment re-
trieval, transfer learning and semi-supervised fine-tuning.

Still, there are some limitations to our method. The ob-
ject mask proposals were obtained using a salient object es-
timator - which can retrieve only a limited number of ob-
jects per image. Alternative ways to mine the object mask
proposals can be explored for tackling even more challeng-
ing datasets where many objects can exist per image. In par-
ticular, we could see additional sensory data [67] or other
techniques [60] being used that are better suited for this
type of images. The optimization criterion from Equation 3
could then be extended accordingly. Given the viability of
our framework, we believe these are interesting research di-
rections.
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