
10529



stand-alone method for ImageNet-C in 9 of 15 categories,

while producing the lowest clean error on ImageNet, and

achieves SoTA among approaches that learn on all training

sources on Meta-Dataset.

2. Spectral Aliasing in Convolutional Networks

Aliasing is a well known phenomenon that may occur

when subsampling any signal. It occurs when the sampling

rate is too low for the signal’s bandwidth and does not sat-

isfy the Nyquist rate [18]. Any subsampling that violates

this condition causes the high frequency components to ad-

ditively spill into the signal’s low frequency band. This type

of distortion can result in noticeable artifacts . In classical

image/signal processing, aliasing is prevented by applying a

low-pass filter before subsampling. Theoretical fundamen-

tals are presented in Appendix A, where Figure 7 illustrates

the frequency leakage caused by aliasing.

In CNNs, any operation that spatially subsamples its

input can potentially cause aliasing, if sampling at a rate

lower than twice the highest frequency contained in the in-

put (Nyquist rate). Figure 1 illustrates aliasing distortions

in CNN’s activation maps. It shows the pre-activations and

resulting features from a ResNet-50’s second subsampling

layer, with and without anti-aliasing.

We now detail the questions addressed in this work.

• Are anti-aliasing filters necessary, or do convolutional

networks implicitly learn to prevent aliasing?

It is plausible that anti-aliasing filters can be learned by ex-

isting, trainable filters of convolutional networks if provided

with sufficient spatial support. In Section 4, we review the

relation between the bandwidth of well known low-pass fil-

ters and their spatial support size, and establish a relation

between CNN filter sizes and their intrinsic capacity to learn

low-pass filters directly from data. In Section 4.2 we use

these principles to identify “aliasing critical paths” in two

modern architectures (ResNet [8, 9] and EfficientNet [25])

and identify their architectural components which are par-

ticularly prone to cause aliasing. We point to key represen-

tation bottlenecks that lack the minimum filter size to repre-

sent low-pass filters that prevent these models from learning

to prevent aliasing in an end-to-end fashion. We introduce

architectural modifications at these bottlenecks which are

able to reduce aliasing through low-pass filtering. To prove

the contrapositive, we show that introducing these architec-

tural changes where they are not required in theory actually

reduces performance in practice. Finally, we experimen-

tally validate the performance improvement of these archi-

tectures via ablation studies.

• Can we separate anti-aliasing from other confounding

effects?

Introducing anti-aliasing filters can affect both prediction

and training. Confounding effects with direct influence on

performance include: interaction of the anti-aliasing filter

with backpropagation dynamics; potential increase in re-

ceptive field size and indirect smoothing of non-linearities.

In Section 4.1 we formulate a criterion for optimal place-

ment of low-pass filters and a set of anti-aliasing compo-

sitions to isolate the effect of anti-aliasing from these other

confounding effects. We perform a number of ablation stud-

ies that confirm their differences across a variety of experi-

mental settings.

• Can standard architectures learn anti-aliasing filters

via data-augmentation?

Although rich data augmentation can provide an incentive

to learn anti-aliasing filters, we show that the performance

improvements occur mainly in the low-frequency bands.

In contrast, the improvements obtained by our anti-aliased

model are shown to benefit features across all spectral

bands. We also show that when combined, our model boosts

the benefits of data-augmentation to be sustained across the

spectrum. Those results confirm our hypotheses that data-

augmentation alone cannot prevent anti-aliasing without ad-

ditional architectural modifications. Finally, we show that

combining our model with data augmentation consistently

leads to the best results in all of our experiments. In Section

5.2 we show that this combination extends the invariances

induced by data-augmentation across the entire spectrum.

• Does frequency aliasing impact the generalization per-

formance of convolutional networks?

Although input and/or feature map aliasing may occur in

deep networks, it is not clear a priori if this phenomenon

affects their performance on highly abstract, semantic

tasks. Arguably, models can learn to ignore aliased features

if in practice they do not correlate with training labels.

Contradicting this argument, however, we investigate the

impact of aliasing on generalization under two hypotheses.

First, we claim that a model whose features are susceptible

to aliasing may learn brittle correlations that rely on the

presence (or absence) of aliasing artifacts in order to

generalize. Under this assumption, aliasing impacts out

of distribution generalization in settings where test images

have different spectral properties, for example, images of

varying spatial resolution, compression format, or those

affected by natural corruptions. The second, equally impor-

tant hypothesis, is that aliasing may prevent models from

learning useful correlations between features that were cor-

rupted during subsampling. Under this second assumption,

we claim that because aliasing can leak frequencies across

the entire spectrum, an anti-aliased model has the potential

to improve the network’s ability to learn useful features
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that use the entire spectrum. In Section 5.2 we analyse the

performance gains across different spectral bands, when

our anti-aliased model is compared to a baseline, and

show that it boosts data-augmentation results, as claimed

by our second hypothesis. Finally, our ablation studies

(Section 5) evaluate the impact of our proposed model

across a large number of datasets (ImageNet, ImageNet-C,

ImageNet-R, ImageNet-Vid, ImageNet-V2, ObjectNet,

Stylized-ImageNet and another 13 datasets on few-shot-

learning) to demonstrate the impact on generalization

across a diverse and extremely challenging set of tasks.

3. Related Work

Most relevant to our work is the reformulation of a sub-

sampling layer proposed by Zhang [30]. They suggest the

use of a low-pass filter after a strided-layer’s non-linearity,

that is a strided-convolution followed by ReLU activation

is redefined as non-strided convolution followed by ReLU

activation, followed by a strided low-pass filter (Figure 2).

We point out that this formulation does not fully isolate

the aliasing problem from the non-linearity smoothing side-

effects, as the filtering operation also smooths the output

of the non-linearity. In contrast, our formulation intro-

duces the filters at the location predicted by aliasing theory.

Our model delays the removal of high frequencies emerg-

ing from non-linear operations until the subsequent sub-

sampling operation. Consequently, our formulation main-

tains high-frequencies throughout the trainable filters that

may exist in between the non-linearity and the next sub-

sampling, but filters them only at the exact point where they

may cause aliasing distortion. Zhang’s formulation also ig-

nores the network’s existing capacity to learn anti-aliasing

filters, and because of that, makes use of low-pass filters in

layers with sufficient spatial support for learning such fil-

ters implicitly end-to-end. A direct comparison to Zhang’s

formulation (Appendix E) shows that our model surpasses

their results in both i.i.d. and o.o.d. conditions using fewer,

and smaller low pass-filters.

Zou et al. [31] propose the use of trainable low-pass

filtering layers that operate on feature channel groups and

adapt to spatial locations. Their anti-aliasing module aug-

ments the model with new trainable and non-linear compo-

nents, increasing the capacity of the network, thus making

it unsuitable for isolating the effects of aliasing from other

confounding effects, by the addition of extra convolutional,

batch norm, and softmax layers.

Azulay and Weiss [2] show that CNNs are not as robust

to small image transformations as commonly assumed. The

paper points out that CNN-based models typically ignore

the sampling theorem and show large changes in a predic-

tion under small, mostly imperceptible, perturbations of the

input. They observe that the improvement in generaliza-

tion obtained by data augmentation is limited to images that

are similar to those seen during training. Complementary

to their findings, we measure the impact of data augmenta-

tion in different spectral bands and show that improvements

in robustness are concentrated in the low frequencies, but

at the cost of reducing the model’s robustness to changes in

mid and high frequency bands. We also show that our model

is able to boost the gain associated with data-augmentation

to extend its beneficial effects across the entire spectrum.

Sophisticated augmentation strategies are currently the

state-of-the-art approach to o.o.d. classification under nat-

ural corruptions [4, 11, 12, 23]. Rusak et al. [23] currently

lead the “standalone leaderboard” on ImageNet-C with a

two pass approach. First, they train a generative model to

produce additive noise. Next, the classifier and the gen-

erative network are jointly trained in an adversarial fash-

ion. Recently, [29] pointed out that their improvements are

mainly on corruptions that affect high frequencies, while re-

ducing robustness to corruptions that affect low frequencies

and also in detriment of “clean” (uncorrupted) test accuracy.

While [29] pointed out that robustness gains are typi-

cally non-uniform across corruption types and that increas-

ing performance in the presence of random noise is of-

ten met with reduced performance in corruptions concen-

trated in different bands, our method overcomes this trade-

off (subsection 5.3). Note that severe aliasing corrupts the

entire spectrum, and not only high frequencies.

Our results, obtained by combining architectural modifi-

cations with off-the-shelf data augmentation (Ekin et al. [5])

show improvements in all of the 15 corruption categories

and outperforms [23] in 9 of them (including fog and con-

trast, that are concentrated in low frequencies according

to [29]) while obtaining the highest clean accuracy of the

benchmark: 78.8% for ImageNet versus 76.1% for [23]. At

time of writing, we are not aware of better performing stan-

dalone methods on ImageNet-C using a ResNet-50 trained

on 224×224 ImageNet examples only.

In contrast to the above methods that settle for a trade-

off between clean and corrupted accuracy, our method im-

proves both i.i.d. and o.o.d. accuracy simultaneously.

4. Methods

This section briefly reviews relevant frequency analysis

theory, and outlines its implications on CNN architectures.

Additional details can be found in Appendix A.

An ideal low-pass filter completely eliminates all fre-

quencies above the cutoff frequency, while allowing those

below it to pass without attenuation. It is represented as

a rectangular function in the frequency domain and corre-

sponds to the “sinc” function in the discrete spatial-domain

with support size equal to the number of elements on the in-

put itself. The spatial support size is defined by the interval

with minimum length containing all nonzero filter weights.

Learning a good approximation of the ideal low-pass filter
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Pre-filter (filter size k) Post-filter (filter size k) Pre-post-filter (filter size k) Enlarge receptive field (filter size k)

Location k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 k = 3 k = 5 k = 7

all layers 74.20 71.06 68.74 73.91 70.71 68.00 70.92 65.80 61.52 73.06 71.09 68.67

conv1 76.18 75.81 75.45 76.10 75.72 75.47 75.76 75.07 74.63 75.27 75.12 75.03

max pool 76.00 75.75 75.40 76.56 76.43 76.35 76.03 75.54 75.24 74.88 74.87 74.60

block-conv 76.87 76.74 76.83 76.88 76.83 76.74 76.87 76.73 76.63 76.64 76.71 76.61

strided-skip 77.05 77.14 77.07 77.15 77.12 76.83 77.02 76.90 76.62 - - -

Table 1: Imagenet results: rows demonstrate the impact of anti-aliasing the model’s components from Figure 3 individu-

ally while columns show blur variations from Figure 2. Results show a significant accuracy increase when anti-aliasing the

strided-skip connections of a Resnet-50 and the negative impact of information loss when blur is applied to all layers indis-

tinctly and also to the first convolutional layer that contain large trainable kernels, capable of learning anti-aliasing filters.

Note that baseline accuracy is 76.49%. The values correspond to the mean accuracy over 3 runs with different seeds.

els on the ImageNet benchmark in Sections 5.1-5.2. The

experiments in subsection 5.1 are designed to validate the

hypotheses presented in section 4 such as the optimal place-

ment of low-pass filters. These experiments are also de-

signed to disambiguate the improvements obtained by anti-

aliasing from other confounding effects.

Next, the experiments in subsection 5.2 show that anti-

aliasing improves the results obtained by data-augmentation

by extending its effects across a larger range of frequencies.

Finally, we evaluate our models on challenging o.o.d.

benchmarks and show that our proposed modifications lead

to even more striking performance improvement – achiev-

ing state-of-the art performance without any additional

hyper-parameter sweeps. The detailed description of these

datasets is presented in the appendices (see Appendix D

for ImageNet-C, Appendix F for Meta-Dataset, and Ap-

pendix E for extra results on other datasets used in robust-

ness analysis). Our experiments use TensorFlow’s official

ResNet-50 and EfficientNet-B0 models2. The o.o.d. ex-

periments on the Meta-Dataset benchmark use the publicly

available SUR codebase [6] – a recent few-shot classifica-

tion model. On the following tables, results on bold implies

“better” with statistical significance.

5.1. ImageNet

To investigate the effects of aliasing in the ResNet fam-

ily of architectures we initially evaluate their performance

on ImageNet [24]. Our results show that ResNets are most

severely impacted by aliasing in their strided skip connec-

tions (which are preceded by 1× 1 convolutions).

We used the official TensorFlow [1] public code for train-

ing a ResNet-50 architecture, yielding a top-1 accuracy of

76.49%. The codebase reproduces the training pipeline and

hyper-parameters from [7], in which models are trained for

90 epochs. Table 1 shows the effect on top-1 accuracy of

adding anti-aliasing filters before (pre), after (post), and

before-and-after (pre-post), various operations in the net-

2https://github.com/tensorflow/models/tree/master/

official/vision/image_classification/resnet

work. Recall that adding these fixed filters may also affect

the back-propagation of gradients, as well as increase the

receptive field size. Our ablation studies are designed to

disambiguate these effects from anti-aliasing. Table 1 re-

ports accuracies as a result of adding a pre-filter (77.14%)

or post-filter (77.15%) to the skip connections that include

subsampling, and are immediately preceded by a trainable

1×1 convolutional layer. Note that inserting low-pass filters

into all convolutional layers (“all” row) degrades the perfor-

mance to as low as 61.00% accuracy. The second row shows

that anti-aliasing the “conv1” layer degrades performance

because it already has the capacity to learn a low-pass filter

in its 7×7 kernel. The last column, ERF (enlarged receptive

field), is aimed to disambiguate whether the improved per-

formance is truly due to anti-aliasing or merely the enlarged

receptive field caused as a side-effect.

Finally, by combining anti-aliasing with post-filter vari-

ants at all strided layers except the first strided-convolution

which has large filter size (Figure 3), we are able to re-

port a top-1 accuracy of (77.47%). These results support

our hypothesis that anti-aliasing in networks must trade-off

between mitigating the effects of aliasing while preserving

high-frequency information as much as possible. This is

achieved by adding anti-aliasing filters only to those critical

paths that lack the capacity to learn them.

Finally we note that analogous improvements were also

obtained with EfficientNets using the same design princi-

ples. These results can be found in Appendix C.

5.2. DataAugmentation

The ablation studies presented in this section are de-

signed to differentiate between performance gains obtained

by data-augmentation from those obtained from our anti-

aliased model. The four models evaluated in this sec-

tion and their respective accuracies on ImageNet are: (i)

“Baseline”-baseline model (77.36%), (ii) “Anti-Aliasing”-

our proposed model containing non-trainable anti-aliasing

filters (77.76%), (iii) “Rand Augmentation”- model trained

with random data augmentation [5] (77.32%), (iv) “Rand
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Noise Blur Weather Digital mCE Clean err.

Method Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 Published [11] 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77 76.7 23.9

BlurPool [30] 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4 23.0

Ours (90 epochs) 68 70 70 72 85 82 75 72 62 50 52 66 81 81 66 70.0 22.5

AutoAugment**[4] 69 68 72 77 83 80 81 79 75 64 56 70 88 57 71 72.7 22.8

Rand AutoAugm.**[12] 70 71 72 80 86 82 81 81 77 72 61 75 88 73 72 76.1 23.6

AUGMIX [12] 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69 68.4 22.4

ANT (3x3) [23] 39 40 39 68 78 73 77 71 66 68 55 69 79 63 64 63.0 23.9

RandAugment** [5] 60 58 60 70 90 76 80 70 67 44 50 57 80 86 64 67.4 22.8

Ours + RandAugm.** 59 58 61 70 84 75 76 69 65 41 48 55 80 82 61 65.5 21.6

Swish 71 72 74 69 88 80 76 74 69 51 54 68 81 80 67 71.6 22.4

Swish + Rand Augm.** 61 61 62 69 88 73 78 69 67 42 49 55 81 87 63 66.9 21.9

Ours + Swish + Rand Augm. 60 59 61 69 85 71 75 68 64 41 47 55 78 81 61 64.9 21.2

Table 2: Corruption Error (CE), mCE, and Clean Error values when including our anti-aliasing variations on top of ResNet-

50. Adding anti-aliasing leads to a lower error (mCE) than all existing models with the exception of ANT. ANT uses

adversarial training and has an extra generative network, is significantly more expensive to train, has a higher clean error and

only performs better than ours in 6 of the 15 corruptions. Our model uses fewer and smaller filters than [30] but at precise

locations. Models with data augmentation were trained for longer. For all columns, lower is better.

Method Average rank

RelationNet [26] 9.80

k-NN [26] 8.95

MatchingNet [26] 8.60

fo-MAML [26] 8.15

Finetune [26] 7.10

ProtoNet [26] 6.70

fo-Proto-MAML [26] 4.80

CNAPs [22] 4.45

SUR [6] 3.40

URT [17] 2.40

SUR + Anti-aliased + GELU (ours) 1.65

Table 3: Average rank over all Meta-Dataset test sources

for approaches that learn on all Meta-Dataset training

sources. We recompute ranks after including our proposed

approach into Meta-Dataset’s public leaderboard.

ment over the results reported in [30]. Also note that our

model uses fewer and smaller filters than [30] but at key

positions discussed in section 4. Zhang’s best model uses

7x7 filters at every sub-sampling operation. Appendix E

presents a direct comparison to [30].

Next we show that performance can be further improved

by the use of data-augmentation and smooth activation

functions (Swish [20]). These models were trained for

longer (180 epochs) in order to replicate training conditions

of the remaining references mentioned in the table. Sim-

ilar to [12], our data-augmented models do not use aug-

mentations such as contrast, color, brightness, sharpness,

as they overlap with the ImageNet-C test set corruptions.

We achieve a “Clean” top-1 error of 21.2% and an mCE of

64.9%. Note that unlike [23] we demonstrate that mCE can

be improved without sacrificing clean error.

5.4. MetaDataset with SUR

Meta-Dataset is a challenging few-shot image classifi-

cation benchmark which samples heterogeneous learning

episodes from a diverse collection of datasets, two of which

(Traffic Signs, MSCOCO) are used exclusively for evalu-

ation and are therefore considered out-of-domain. We ap-

ply anti-aliasing and smooth-activation (GELU) to SUR [6],

which is a competitive few-shot classification approach

that trains one feature extractor per training domain and

combines their representations during inference. We ob-

tain SoTA average rank across all test datasets among ap-

proaches which learn from all available training classes (Ta-

ble 3). Additional experimental details and accuracy break-

downs are presented in Appendix F.

6. Conclusion

Drawing from the classical sampling theorem from sig-

nal processing, we proposed simple architectural improve-

ments to convolutional architectures to counter aliasing oc-

curring at various stages. These changes lead to substan-

tial performance gains on both i.i.d. and o.o.d. generaliza-

tion, and were shown to boost the impact of data augmen-

tation and smooth activation functions by extending their

effect across the spectrum. Compared to other performance

enhancement techniques, anti-aliasing is simple to imple-

ment, computationally inexpensive, and does not require

additional trainable parameters. In all our experiments, we

could not find a setting where it degraded the performance

which leads us to recommend their use as a standard com-

ponent of convolutional architectures.
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