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Abstract

Deep metric learning has been effectively used to learn
distance metrics for different visual tasks like image re-
trieval, clustering, etc. In order to aid the training pro-
cess, existing methods either use a hard mining strategy
to extract the most informative samples or seek to gener-
ate hard synthetics using an additional network. Such ap-
proaches face different challenges and can lead to biased
embeddings in the former case, and (i) harder optimization
(ii) slower training speed (iii) higher model complexity in
the latter case. In order to overcome these challenges, we
propose a novel approach that looks for optimal hard nega-
tives (LoOp) in the embedding space, taking full advantage
of each tuple by calculating the minimum distance between
a pair of positives and a pair of negatives. Unlike mining-
based methods, our approach considers the entire space be-
tween pairs of embeddings to calculate the optimal hard
negatives. Extensive experiments combining our approach
and representative metric learning losses reveal a signifi-
cant boost in performance on three benchmark datasets1.

1. Introduction
Deep metric learning tries to learn an embedding space,

where closeness between embeddings encodes the level of
semantic similarities between the data samples. This is
done by leveraging deep neural networks to learn the map-
ping between the data samples and the embedding space
and enforcing the embeddings belonging to the same class
to lie close while pushing those belonging to different
classes further apart. Deep metric learning-based methods
have achieved state-of-the-art (SOTA) results for several
tasks, like face recognition [2, 24, 20, 8], re-identification
[35, 19, 41, 30], image retrieval [31, 7], etc.

To train the deep networks, several loss functions with
desirable properties have been formulated, which enable the

*Equal contribution
1Code available at https://github.com/puneesh00/LoOp

Figure 1: Illustration of the proposed approach. Given two
pairs of points in the embedding space, x1, x2 from class A,
and y1, y2 from class B, our method finds the optimal hard
negatives by calculating the minimum distance between the
curves joining these points.

neural network to learn the mapping from the data space to
the embedding space. Conventional methods, such as con-
trastive loss [2, 9] which takes tuples with two samples and
triplet loss [24, 33] which takes three sample tuples, con-
sider the similarity between few samples. In contrast, meth-
ods like lifted structure loss [25] aim to exploit all the sam-
ples present in a batch to learn more informative represen-
tations. Other methods [28, 21] that utilize several samples
in the loss have also been proposed.

However, even when considering the whole batch, not
all the samples are able to contribute to the loss term. This
is because many of them already satisfy the constraints
present in the loss. As a result, these samples are not suf-
ficiently informative and lead to low gradient values. To
overcome this problem, the idea of using hard samples has
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been considered, i.e. positive samples which lie far away
and negative samples which lie closer. Several works on
hard negative mining [21, 11, 13, 37, 24] have been pro-
posed. Mining-based strategies generally look for the most
informative samples in the dataset and are prone to learning
biased mappings, which do not generalize well to the entire
dataset. On the other hand, hard negative generation-based
methods [5, 40, 39] utilize an additional sub-network, ei-
ther an autoencoder or a generative adversarial network [6]
as the generator. This can result in harder optimization [1]
and an increase in training time and computation.

To address the limitations of existing hard negative min-
ing and generation methods, we propose a novel approach,
which looks for optimal hard negative samples (LoOp) in
the embedding space. This is done by finding points that
minimize the distance between the curves joining a pair of
positives and a pair of negatives, as shown in Fig 1. The
curve joining a pair of points belonging to the same class
lies in the region belonging to that class. Hence, finding
the minimum distance with another curve, which is rep-
resentative of some other class, allows us to consider the
most informative pair of samples for computing the loss,
as described in Section 3.1. Unlike mining-based meth-
ods, our approach does not neglect any samples, and unlike
generation-based methods, it does not increase the training
complexity or optimization difficulty. It can be easily in-
tegrated with various metric learning-based losses. We in-
clude several experimental results in Section 4 to demon-
strate the efficacy of our approach.

Contributions We propose a novel approach, LoOp,
which finds optimal hard negatives in the embedding space,
and maximizes the contribution of each tuple in computing
the pair-based metric learning loss. Our approach presents
the solution to a general problem, namely finding the min-
imum distance between two bounded curves, which can be
useful in other applications as well. Generating hard nega-
tives in the embedding space, our approach utilizes all train-
ing samples and does not rely on a subset of samples like
mining-based methods. It also avoids the computational
load and training complexity introduced by generation-
based methods. We also explore the optimality of LoOp
with a gradient-based theoretical analysis of the loss func-
tion. Our approach generalizes well to various metric learn-
ing losses, and it can be easily combined without any in-
crease in optimization difficulty or additional parameters.
It outperforms state-of-the-art mining and generation-based
methods on three benchmark datasets, Cars196 [17], CUB-
200-2011 [29], and Stanford Online Products [25].

2. Related Work

Hard Negative Mining The samples which satisfy the
criteria used for training do not contribute to the loss and
lead to smaller gradients and slower convergence. To

combat this issue, several sampling and mining strategies
[21, 11, 13, 37, 24] have been developed, which use hard
positives and negatives for training. Schroff et al. [24] pro-
pose ‘semi-hard’ triplet mining, where the negatives, which
lie close to the anchor but farther than the positives, are se-
lected. Harwood et al. [11] present a smart mining-based
method that adaptively selects the most informative sam-
ples. The drawback of such methods is that the trained mod-
els overfit on a subset of hard samples and underfit on the
‘easy’ samples. As they rely on a subset of training samples,
they fail to exploit the information other samples provide.

Hard Negative Generation In contrast to mining-based
methods, generation-based methods [5, 40, 39] try to exploit
all the training samples by extracting the semantic infor-
mation required to generate synthetic samples which act as
hard negatives. Deep adversarial metric learning (DAML)
[5] trains the embedding network and the hard negative gen-
erator network in an adversarial manner to generate hard
negatives. In hardness-aware deep metric learning (HDML)
[40], synthetic samples are created via interpolation in the
embedding space. This is followed by finding the corre-
sponding label-preserving mappings in the feature space us-
ing an autoencoder. They also control the level of hardness
while training. Although these methods utilize all the train-
ing samples, they require an additional network as the gen-
erator. This increases the training time and computational
load and can also lead to optimization difficulty [1].

Embedding Space Augmentation Some methods [36,
16] augment the embedding space directly to obtain useful
synthetic samples. Yin et al. [36] assume that all classes fol-
low a Gaussian distribution and translate samples from dif-
ferent classes about their means to generate new ones. Em-
bedding expansion (EE) [16] is a linear interpolation-based
method to generate synthetic samples and mine for hard
negatives by considering the pair-wise distances between
real and synthetic points of different classes. It exhibits a
trade-off between the quality of hard negatives and the com-
putational load of calculating the pair-wise distances.

Other works try to supplement the metric learning losses
by introducing a regularization to optimize the direction of
displacement of samples [23] or maximize the spread-out of
feature descriptors [38]. Another work introduced second-
order similarity [27] inspired by graph matching and clus-
tering as a regularizer for learning local feature descriptors.

3. Methodology
Let Z denote the set of data points, X denote the set

of embeddings, and h(·; θ) : Z −→ X denote the mapping
learnt by the neural network h with parameters θ. C denotes
the set of classes to which the data points belong. Let Z
denote the array of data points sampled for training. For
any index i, Z[i] denotes the data sample, X[i] denotes the
corresponding embedding, and c[i] denotes its class.
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3.1. Problem Formulation

Consider two pairs of points in the embedding space: x1,
x2 and y1, y2, belonging to two different classes. They are
l2-normalized, and lie on a hypersphere of unit radius. Most
pair-wise metric learning-based losses try to consider the
gap between d(x1,x2) and d(x1,y1) in some way, where
d denotes the Euclidean distance. To consider informative
samples which allow for larger values of the loss function,
we can try to increase this gap. As d(x1,x2) represents
the distance between two positives, it utilizes both the sam-
ples from that class available in the batch and although we
can try to generate x3 such that d(x1,x3) > d(x1,x2), it
would be mathematically difficult to ensure its class belong-
ingness without more information (or assumptions). On the
other hand, we can minimize the distance between the neg-
atives represented by d(x1,y1) by utilizing the remaining
samples (x2, y2). In other words, we can find two points,
p1 and p2, which lie on the geodesic curves joining x1 and
x2, and y1 and y2, respectively, such that

d(p1,p2) = ||p1 − p2||2 =
√

2(1− p1 · p2), (1)

is minimized. This is visualized in Fig. 1. A toy exam-
ple demonstrating the behavior of triplet loss using different
sets of p1, p2 and a gradient-based analysis is included in
the supplementary.

Assumption on Data Distribution We assume that data
distributions of different classes lying on the hypersphere
are spherical-homoscedastic [10], defined as follows.

Definition 1. Two distributions are said to be spherical-
homoscedastic if their covariances have identical eigenval-
ues, i.e. the distributions are identically shaped.

Proposition 1. If the pairs of points x1, x2 and y1,
y2 (from two different classes) belong to spherical-
homoscedastic distributions, then the points on the curves
>x1x2 and >y1y2 have a higher probability of belonging to
the same classes as x1, x2 and y1, y2, respectively, than
the other classes.

Experimental validation for the assumption on data dis-
tribution (Definition 1) in our pipeline and the proof of
Proposition 1 can be found in the supplementary material.

p1 is obtained by rotating x1 towards x2 along the
curve >x1x2 by angle α, which lies between 0 and α0 =
cos−1(x1 · x2). Similarly, p2 is obtained by rotating y1

towards y2 along >y1y2 by angle β, which lies between 0
and β0 = cos−1(y1 · y2). This is done in three steps. First,
the basis vectors for the space spanned by x1 and x2 are
calculated using Gram-Schmidt orthogonalization, i.e.

n1 = x1 ; n2 =
x2 − (x1 · x2)x1

||x2 − (x1 · x2)x1||2
. (2)

Second, the rotation matrix R is calculated using Ro-

driguez theorem, as follows:

R = I+ sinα(n2n1
T − n1n2

T )

− (1− cosα)(n1n1
T + n2n2

T ),

where I is the identity matrix and (·)T is the transpose op-
erator. Finally, we find p1 = Rx1. Simplifying, we get:

p1 = n1 cosα+ n2 sinα. (3)
Similarly, p2 is obtained as:

p2 = n3 cosβ + n4 sinβ, (4)
where n3 and n4 are the basis vectors obtained by Gram-
Schmidt orthogonalization for y1 and y2.

Incorporating these expressions for p1 and p2 in (1) and
simplifying, the objective f to be minimized, is given by:

f(α, β) = −p1 · p2 = a sinα sinβ

+ b cosα sinβ + c sinα cosβ + d cosα cosβ, (5)

where a = −n2 · n4, b = −n1 · n4, c = −n2 · n3, and
d = −n1 · n3.

Further, we need to consider two constraints on α, so that
p1 remains between x1 and x2. They are given as:

g1 = −α ≤ 0 ; g2 = α− α0 ≤ 0. (6)
Similarly, the constraints on β are given as:

g3 = −β ≤ 0 ; g4 = β − β0 ≤ 0. (7)

The Lagrangian function for the constrained optimization
problem is given by:

L(α, β, λ1, λ2, λ3, λ4) = f(α, β)−
4∑
i=1

λigi, (8)

where λi, i = 1, 2, 3, 4 are Karush-Kuhn-Tucker (KKT)
[14, 18] multipliers.

3.2. Finding Optimal Distance

As the constraints are differentiable without any critical
points, we consider the KKT conditions [14, 18] to obtain
the solution for this problem. They are listed as follows:

∂L

∂α
= a cosα sinβ − b sinα sinβ + c cosα cosβ

− d sinα cosβ + λ1 − λ2 = 0, (9)
∂L

∂β
= a sinα cosβ + b cosα cosβ − c sinα sinβ

− d cosα sinβ + λ3 − λ4 = 0, (10)

λigi = 0 ; i = 1, 2, 3, 4, (11)
λi ≤ 0 ; i = 1, 2, 3, 4, (12)
gi ≤ 0 ; i = 1, 2, 3, 4. (13)
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Case α β λ1 λ2 λ3 λ4

1 0 tan−1
(
b
d

)
− ∂f
∂α

∣∣
α=0,β=β̂

0 0 0

2 α0 tan−1
(
a sinα0+b cosα0

c sinα0+d cosα0

)
0 ∂f

∂α

∣∣
α=α0,β=β̂

0 0

3 tan−1
(
c
d

)
0 0 0 −∂f

∂β

∣∣
α=α̂,β=0

0

4 tan−1
(
a sinβ0+c cosβ0
b sinβ0+d cosβ0

)
β0 0 0 0 ∂f

∂β

∣∣
α=α̂,β=β0

5 0 0 − ∂f
∂α

∣∣
α=0,β=0

0 −∂f
∂β

∣∣
α=0,β=0

0

6 0 β0 − ∂f
∂α

∣∣
α=0,β=β0

0 0 ∂f
∂β

∣∣
α=0,β=β0

7 α0 0 0 ∂f
∂α

∣∣
α=α0,β=0

−∂f
∂β

∣∣
α=α0,β=0

0

8 α0 β0 0 ∂f
∂α

∣∣
α=α0,β=β0

0 ∂f
∂β

∣∣
α=α0,β=β0

Table 1: Expressions for α, β, and the KKT multipliers for 8 cases of complementary slackness.

Figure 2: Illustrations of the 9 cases in which the KKT
conditions for minimizing the distance between >x1x2 and
>y1y2 can be satisfied. In case 0, p1 and p2 lie between the
end points of the respective curves. In cases 1-4, only one
of them is an end point of the respective curve. In cases 5-8,
both of them are end points of the respective curves.

There are 16 possible ways to satisfy (11). However,
some constraints cannot be binding simultaneously (e.g. if
g1 = 0, g2 6= 0), which leaves 9 cases to consider, which are
shown in Fig. 2. The solutions are discussed below in brief.
The proofs can be found in the supplementary material.

We first consider the case where none of the constraints
is binding (Case 0). In order to satisfy (11), λi = 0 for i =
1, 2, 3, 4. In this case, (12) is also satisfied. Leveraging (9)
and (10), we get a quadratic equation in tanα. On solving
it and finding the corresponding value of β using (9) or (10),
we get two sets of solutions:

α̂ = tan−1

(
A±

√
A2 + 4(ab+ cd)2

2(ab+ cd)

)
,

β̂ = tan−1

(
B ∓

√
B2 + 4(ac+ bd)2

2(ac+ bd)

)
,

where A = a2 − b2 + c2 − d2 and B = a2 + b2 − c2 − d2.
The obtained α̂ and β̂ are used to verify the validity of (13).

Similarly, the KKT conditions are checked for the re-
maining 8 cases as well. The expressions for α, β, and the
KKT multipliers for various cases are listed in Table 1. The
first 4 rows of the table cover the cases where one of the
optimal points is an end point of a curve, while the other
can be any point on the other curve. The next 4 rows of the
table cover the cases where both the optimal points are one
of the two end points. The values obtained using these ex-
pressions are used to verify the conditions in (12) and (13).
In case any condition is violated, the solution is discarded.

Once α̂ and β̂ are obtained, they are substituted in (3)
and (4) to obtain p1 and p2. Finally, d is calculated us-
ing (1), which is used in different metric learning losses, as
discussed below.

3.3. Optimal Hard Negative Embeddings for Deep
Metric Learning

Let di,j denote the distance between X[i] and X[j] and

si,j denote the similarity, given by si,j = 1 − d2i,j
2 . Let

di,j,k,l denote the optimal distance between the curves join-
ing X[i] and X[j], and X[k] and X[l], such that c[i] =
c[j] 6= c[k] = c[l]. We evaluate our method for the fol-
lowing metric learning losses:

3.3.1 Triplet Loss

One of the earliest metric learning losses, triplet loss [24,
33] tries to pull a positive sample belonging to the same
class as the anchor, close to the anchor, and push a negative
sample belonging to a different class away from the anchor,
by a margin m. It is formulated as follows:

LTri =
1

|P|
∑

(i,j)∈P
k:c[i]6=c[k]

[di,j − di,k +m]+ , (14)

where [·]+ denotes the hinge function, andP denotes the set
of classes in the batch. The modified triplet loss, obtained
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by incorporating LoOp, is given by:

L′Tri =
1

|P|
∑

(i,j)∈P
k,l:c[i] 6=c[k]=c[l]

[di,j − di,j,k,l +m]+ . (15)

3.3.2 HPHN Triplet Loss

In order to better utilize the samples present in a batch,
hard positive and hard negative (HPHN) mining [34, 12]
has been proposed. The expression for HPHN-triplet loss is
given by:

LHPHNtri =
1

|P|
∑

(i,j)∈P

[
max

(
max

c[i]=c[k]
di,k, max

c[j]=c[l]
dj,l

)

+m−min

(
min

c[i]6=c[k]
di,k, min

c[j]6=c[l]
dj,l

)]
+

.

The modified HPHN-triplet loss, obtained by incorporating
LoOp, is given by:

L′HPHNtri =
1

|P|
∑

(i,j)∈P

[
max

(
max

c[i]=c[k]
di,k, max

c[j]=c[l]
dj,l

)

+m− min
c[i] 6=c[k]=c[l]

di,j,k,l

]
+

.

3.3.3 Lifted Structure Loss

The lifted structure (LS) loss [25] tries to push a pair of
samples belonging to ane class away from all the samples
belonging to some different class. It is formulated as:

LLS =
1

|P|
∑

(i,j)∈P

[
di,j +m−

min

(
min

c[i] 6=c[k]
di,k, min

c[j]6=c[l]
dj,l

)]
+

. (16)

When only 2 samples of each class are present in the
batch, the HPHN-triplet loss becomes the same as LS loss.
The modified LS loss, obtained by incorporating LoOp, is
given by:

L′LS =
1

|P|
∑

(i,j)∈P

[
di,j +m− min

c[i] 6=c[k]=c[l]
di,j,k,l

]
+

.

3.3.4 Multi-Similarity Loss

The multi-similarity (MS) loss [32] considers self-similarity
and relative similarities between positive as well as negative
pairs to learn the embedding space. It involves mining for

hard negative and positive pairs, where a pair of negatives
(X[i],X[j]) (for c[i] 6= c[j]) is selected when:

s−i,j > min
c[i]=c[k]

si,k − ε.

Similarly, a pair of positives is selected, when:

s+i,j < max
c[i]6=c[k]

si,k + ε.

In both the conditions, ε is a hyperparameter. The second
step is general pair weighting, and the final expression for
MS loss is given by:

LMS =
1

|P|
∑
i∈P

[
1

αm
log
(
1 +

∑
c[i]=c[j]

e−αm(si,j−λ)
)

+
1

βm
log
(
1 +

∑
c[i]6=c[j]

eβm(si,j−λ)
)]
,

where αm and βm are hyperparameters, and λ denotes the
margin. For the modified version of MS loss, obtained by
incorporating LoOp, the criteria for selecting hard negatives
is given as follows:

s−i,k,j,l > min
c[i]=c[k]

si,k − ε.

The expressions for selecting hard positives as well as for
general pair weighting remain unchanged.

3.4. Implementation

Algorithm 1 presents the steps involved in the proposed
approach. In order to make the implementation efficient, the
calculations for all possible combinations are carried out in
parallel. Given a batch size BS and number of samples per
class N , the number of such combinations C is given as:

C =
BS

2 (BS

2 − 1)

2
− BS

N
×

N
2 (

N
2 − 1)

2
=
BS(BS −N)

8
.

The runtime of our method is documented in Section 4.3.
4. Experiments

We conduct numerous experiments to evaluate the ef-
fectiveness of LoOp for both image clustering and retrieval
tasks [25]. We report the standardized metrics F1 score and
normalized mutual information (NMI) for image clustering
[22], and Recall@K values for image retrieval.

Datasets We evaluate our method on three widely used
benchmark datasets described below. We use the conven-
tional zero-shot setting [25, 5], i.e. no intersection in train
and test classes. Results for train-validate-test split are in-
cluded in the supplementary.

• The CUB-200-2011 dataset [29] comprises 11,788 im-
ages of 200 bird species. We use the first 100 species
(5864 images) for training and the remaining 100
(5924 images) for testing.
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Algorithm 1: Training with optimal hard negatives
input : Set of training images and labels, ensuring

number of samples of each class is even;
hyperparamters depending on the loss
function; number of iterations T

output: Trained network parameters θ

1 Initialize θ
2 for iteration=1,2,...,T do
3 Extract embeddings of the images in the training

batch and perform l2-normalization
4 Create pairs of embeddings (by choosing

alternate elements from X) to get the sets X1

and X2, with the corresponding classes
cX1 = cX2

5 Create 4 arrays: X1, X2, Y1, Y2, containing
the possible combinations of the
aforementioned pairs, ensuring that
cX1 6= cY1

6 Calculate the optimal distance between each
combination of pairs, i.e. between the
corresponding elements of the arrays X1, X2,
Y1, Y2 in parallel

7 Find the minimum distance for each unique pair
in X1, X2

8 Calculate the metric learning-based loss using
the set of optimal distances

9 Update network parameters

10 return θ

• The Cars196 dataset [17] consists of 16,185 images of
196 classes of cars. We use the first 98 car classes
(8054 images) as the training data and the remaining
98 classes (8131 images) as testing data.

• The Stanford Online Products (SOP) dataset [25] con-
tains 120,053 images of 22,634 online products listed
on eBay.com. The train set consists of 59,551 images
of first 11,318 product classes, while the test set uses
the remaining 60,502 images of 11,316 classes.

Settings We use the MXNet package for implementing
our proposed approach. All the experiments were con-
ducted using one NVIDIA GeForce RTX 2080 Ti, 11 GB
memory. For pre-processing input images, we resize them
to 256×256, randomly crop them to size 227×227, horizon-
tally flip them left or right. We use an ImageNet ILSVRC
[3] pre-trained GoogLeNet [26] with a fully connected ran-
domly initialized layer as our feature extracting network.
For a fair comparison, we compare with methods that use
the same network. Results and comparisons on other net-
work architectures have been included in the supplemen-
tary. Throughout the experiments, we use 512-dimensional

feature embedding vectors. We use the Adam optimizer
[15] for training our models, with β1 = 0.9, β2 = 0.999,
learning rate of 10−4. The hyperparameters αm and βm
are set as 2 and 50, respectively. For Cars196, CUB-200-
2011 datasets, we use a batch size of 32, and for the SOP
dataset, we set the batch size to 128. The SOTA methods
use a larger batch size of 120 or 128 for the Cars196, CUB-
200-2011 dataset as well. As shown in Section 4.1, larger
batch size provides a boost in performance metrics. t-SNE
visualizations at different epochs demonstrating the training
process can be found in the supplementary.

4.1. Effect of Hyperparameters

In this section, we study the effects of changing the val-
ues of various hyperparameters on the Recall@1 (%) per-
formance.

(a) Effect of BS . (b) Effect of m.

(c) Effect of ε. (d) Effect of λ.

Figure 3: Variation in Recall@1 (%) values with various
hyperparameters.

Effect of Batch Size Fig. 3a shows the effect of varying
BS (log scale is used for x-axis) for Cars196 dataset us-
ing HPHN-triplet loss. The number of unique classes in the
batch is 4. It is observed that asBS increases, there is an in-
crease in the Recall@1 value. However, the rate of increase
is lower for higher BS .

Effect of Margin Fig. 3b shows the effect of varying
m, which is used in triplet, HPHN-triplet, and LS losses.
These values are for CUB-200-2011 dataset for LS loss,
with BS = 32. It is observed that as m increases, the per-
formance initially increases, and then drops. This shows
that for smaller values of m, the embeddings of dissimi-
lar classes are not sufficiently separated, whereas for higher
values of m, they are forced to form more compact and dis-
tant clusters. This might lead to overfitting resulting in sub-
sequent drop in performance.

Effect of ε and λ Next, we consider the effect of vary-
ing two hyperparameters of the MS loss. In both cases, the
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results are reported for the Cars196 dataset, with BS = 8
and N = 4. Fig. 3c presents the results of varying ε, for
λ = 0.5. From the range of the y-axis, it can be observed
that the performance of MS loss is quite sensitive to this pa-
rameter. It is noteworthy that since our approach finds the
hardest negatives for each pair in a batch, the role of ε (to
make the criteria for selection of hard positives more strict)
is diminished, and we get performance gains for lower val-
ues of ε. Fig. 3d presents the results of varying λ, for
ε = −0.02. As the value of similarity lies between −1 and
1, embeddings belonging to the same class are constrained
to have similarity more than λ, while those belonging to
dissimilar classes should have a smaller similarity than λ.
Varying λ for MS loss has a similar effect as varying m for
LS loss.

4.2. Effect of l2-normalization

Most of the metric learning losses considered in this
work perform l2-normalization on the embeddings before
computing the loss. In order to observe the effect of l2-
normalization, we consider the case where the optimal
points lie on the line segments x1x2 and y1y2 rather than
the curves joining these points. In other words, the optimal
points are not constrained to lie on the hypersphere. The
optimization problem is then formulated differently. A brief
discussion is presented here, and the details can be found in
the supplementary material.

The optimal points p1 and p2 can be obtained as:

p1 = (1− k1)x1 + k1x2,

p2 = (1− k2)y1 + k2y2, (17)

where k1 and k2 are the parameters to be optimized. f can
be obtained by incorporating these expressions in (1). The
constraints in this case are given as:

g1 = −k1 ≤ 0 ; g2 = k1 − 1 ≤ 0,

g3 = −k2 ≤ 0 ; g4 = k2 − 1 ≤ 0. (18)

The Lagrangian function can be obtained using (8). The
partial derivatives are given as:

∂L

∂k1
=(x2 − x1) · (k1(x2 − x1)− k2(y2 − y1)

+x1 − y1) + λ1 − λ2 = 0, (19)
∂L

∂k2
=(y2 − y1) · (−k1(x2 − x1) + k2(y2 − y1)

−x1 + y1) + λ3 − λ4 = 0. (20)

Considering KKT conditions, the solution when all the
multipliers are 0 is obtained as follows:

k̂1 =
u · v v ·w − ||v||22 u ·w
(u · v)2 − ||u||22||v||22

,

k̂2 =
−u · v u ·w + ||u||22 v ·w

(u · v)2 − ||u||22||v||22
, (21)

where u = x1 − x2, v = y1 − y2, and w = x1 − y1. The
solutions to the remaining cases can be obtained by follow-
ing a similar approach as presented in Section 3.2.

(a) Clustering (b) Retrieval

Figure 4: Performance (%) comparison of triplet, Ours
(Triplet) without l2-normalization and Ours (Triplet) with
l2-normalization for clustering and retrieval tasks.

The results of our approach for triplet loss with and with-
out l2-normalization as well as comparison with triplet loss
(baseline) for Cars196 dataset are shown in Fig. 4. It is
observed that our approach performs better when the opti-
mal distance is calculated between the curves rather than the
line segments. This is because the points are l2-normalized
in the former case. Nevertheless, the latter case without l2-
normalization performs better than the baseline. This shows
that the proposed approach to consider the minimum dis-
tance between two pairs of samples from different classes,
greatly benefits the deep metric learning framework.

4.3. Time and Memory Requirement

Incorporating LoOp into metric learning losses leads to
a minimal overhead in computation and time. For MS loss,
the time per iteration changes from 0.071s to 0.121s. For
HPHN-triplet loss, the time per iteration for LoOp is 0.058s.
Thus, the time taken by LoOp remains in milliseconds for
various metric learning losses.

In terms of computation and memory requirement,
HPHN-triplet loss requires O(B2

S) combinations to com-
pute the loss, which is same as the requirement of our ap-
proach. In contrast, the memory requirement of EE [16]
depends on the number of interpolated points n. It needs to
considerO(n2B2

S) combinations to compute the loss. Thus,
our method is both time and memory efficient.

4.4. Comparison with State-of-the-art

The results of our proposed approach and comparison
with the baseline metric learning losses as well as SOTA
methods for hard negative generation and sampling are
shown in Tables 2 and 3, respectively. In Table 2, it can
be observed that for CUB-200-2011, LoOp outperforms the
baseline metric learning losses in all cases. With the ex-
ception of EE for LS loss, our approach also shows better
performance than the SOTA hard negative generation meth-
ods. The improvements with respect to previous best values
range from 0.1% to 6% in Recall@1 and 0.7% to 2.2% in
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CUB-200-2011 Cars196 SOP

Method NMI F1 R@1 R@2 R@4 R@8 NMI F1 R@1 R@2 R@4 R@8 NMI F1 R@1 R@10 R@100

Triplet 49.8 15.0 35.9 47.7 59.1 70.0 52.9 17.9 45.1 57.4 69.7 79.2 86.3 20.2 53.9 72.1 85.7
DAML (Triplet) 51.3 17.6 37.6 49.3 61.3 74.4 56.5 22.9 60.6 72.5 82.5 89.9 87.1 22.3 58.1 75.0 88.0
HDML (Triplet) 55.1 21.9 43.6 55.8 67.7 78.3 59.4 27.2 61.0 72.6 80.7 88.5 87.2 22.5 58.5 75.5 88.3
EE (Triplet) 55.7 22.4 44.3 57.0 68.1 78.9 60.3 25.1 57.2 70.5 81.3 88.2 87.4 24.8 62.4 79.0 91.0
LoOp (Triplet) 59.9 26.5 50.3 63.1 74.4 82.7 60.2 28.0 61.7 72.9 82.1 88.7 88.7 30.6 69.6 84.9 93.7

HPHNtri 58.1 24.2 48.3 61.9 73.0 82.3 57.4 22.6 60.3 73.4 83.5 90.5 91.4 43.3 75.5 88.8 95.4
EE (HPHNtri) 60.5 27.0 51.7 63.5 74.5 82.5 63.1 32.0 71.6 80.7 87.5 92.2 91.5 43.6 77.2 89.6 95.5
LoOp (HPHNtri) 61.2 27.5 51.8 63.6 74.9 83.9 64.8 34.1 74.5 83.3 89.4 93.6 90.8 36.9 77.6 90.2 96.1

LS 56.4 22.6 46.9 59.8 71.2 81.5 57.8 25.1 59.9 70.4 79.6 87.0 87.2 25.3 62.6 80.9 91.2
DAML (LS) 59.5 26.6 49.0 62.2 73.7 83.3 63.1 31.9 72.5 82.1 88.5 92.9 89.1 31.7 66.3 82.8 92.5
EE (LS) 61.2 28.2 54.2 66.6 76.7 85.2 59.1 27.2 65.2 76.4 85.6 89.5 89.6 35.3 70.6 85.5 93.6
LoOp (LS) 60.3 27.4 52.8 65.0 76.2 84.5 57.4 25.9 66.2 76.8 84.7 89.8 89.8 35.9 77.1 89.7 95.6

MS 59.3 26.0 50.9 63.0 74.1 83.3 63.3 31.7 71.0 80.8 87.5 92.6 89.3 33.7 75.0 88.7 95.7
LoOp (MS) 61.1 28.4 52.0 64.3 75.0 84.1 63.0 30.6 72.6 81.5 88.4 92.8 89.4 34.2 76.6 89.8 95.8

Table 2: Clustering and retrieval performance of generation-based methods for CUB-200-2011, Cars196 and SOP datasets.
Bold numbers indicate the best values within each metric learning loss. Blue numbers indicate cases where the combination
of the proposed approach with a metric learning loss outperforms the baseline metric learning loss.

Method NMI F1 R@1 R@2 R@4 R@8

Rand-disjoint 49.8 15.0 35.9 47.7 59.1 70.0
Semi-hard 53.4 17.9 40.6 52.3 64.2 75.0
DE-DSP 53.7 19.8 41.0 53.2 64.8 -
Dis-weighted 56.3 25.4 44.1 57.5 70.1 80.5
Smart mining 58.1 - 45.9 57.7 69.6 79.8
LoOp 59.9 26.5 50.3 63.1 74.4 82.7

(a) CUB-200-2011 dataset

Method NMI F1 R@1 R@2 R@4 R@8

Rand-disjoint 52.9 17.9 45.1 57.4 69.7 79.2
Semi-hard 55.7 22.4 53.2 65.4 74.3 83.6
DE-DSP 55.0 22.3 59.3 71.3 81.3 -
Dis-weighted 58.3 25.4 59.4 72.3 81.6 87.2
Smart mining 58.2 - 56.1 68.3 78.0 85.9
LoOp 60.2 28.0 61.7 72.9 82.1 88.7

(b) Cars196 dataset

Method NMI F1 R@1 R@10 R@100

Rand-disjoint 86.3 20.2 53.9 72.1 85.7
Semi-hard 86.7 22.1 57.8 75.3 88.1
DE-DSP 87.4 22.7 58.2 75.8 88.4
Dis-weighted 87.9 23.4 58.9 77.2 89.6
LoOp 88.7 30.6 69.6 84.9 93.7

(c) SOP dataset

Table 3: Comparison with clustering and retrieval perfor-
mance of sampling-based methods for (a) CUB-200-2011,
(b) Cars196 and (c) SOP datasets using triplet loss. Bold
numbers indicate the best values. Blue numbers indicate
cases where the combination of LoOp and triplet loss out-
performs the baseline. - indicates not reported.

NMI. For Cars196 dataset, our approach provides a boost in
performance for most of the baseline losses. The improve-
ments with respect to previous best values range from 0.7%
to 2.9% in Recall@1. For SOP dataset, it can be seen that

for all cases, LoOp improves over the baseline losses. In
terms of comparison with SOTA methods, there is an in-
crease of upto 7.2% in Recall@1, while NMI shows an in-
crease of 0.1% to 1.3%.

It is noteworthy that although HPHN-triplet and MS loss
look for hard positive and negative samples as part of their
formulation, LoOp further improves the results obtained by
these methods. The maximum increase in Recall@1 value
is 14.2% for HPHN-triplet and 1.6% for MS loss for the
Cars196 dataset, as compared to the respective baselines.
MS loss has a strict criterion that selects only the most in-
formative samples, and hence the increase in performance
is not very significant.

Table 3 presents the comparison with sampling meth-
ods, like random sampling of disjoint tuples (rand-disjoint),
semi-hard negative mining [24], DE-DSP [4], distance-
weighted sampling [21], and smart mining [11]. It can
be seen that LoOp outperforms all methods for all three
datasets for both image clustering and retrieval tasks.

5. Conclusion

We propose an approach to find optimal hard negative
embeddings for deep metric learning. This is done by cal-
culating the points which minimize the distance between
two curves, each representative of a different class. Our ap-
proach can be easily integrated with representative metric
learning losses, avoids the computational cost of generating
hard data samples, and utilizes the training set effectively
unlike hard negative mining-based methods. We demon-
strated that our approach boosts the performance of existing
metric learning losses and outperforms state-of-the-art hard
negative sampling and generation-based methods.
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