






used to encode point features. To get volumetric features,
a voxel grid is constructed and voxel features are computed
by (average) pooling features for the points that correspond
to the voxel under consideration. This is followed by a 3D
U-Net which produces the final encoding of the feature vol-
ume, resulting in a feature of dimension F for each voxel.

Shape Decoder. The feature corresponding to the input
query point p is sampled from the 3D feature volume using
trilinear interpolation, and passed into the shape decoder φ
along with query point p. The shape decoder φ uses the fea-
tures encoding the shape to predict the surface point closest
to p. Here on, we will use fθ and gθ to denote the DNN
approximations to the CSP and the UDF functions respec-
tively, where θ denotes the union of parameters of both en-
coder and decoder. Note that the output of CSPNet, fθ,
directly provides an estimate for CSP while the estimate for
the UDF, gθ, is obtained as ‖p− fθ(p)‖2 using (2).

3.2. Differential Surface Geometry

For any query point p, CSPNet directly provides us with
an estimate of both the closest point on the surface fθ(p) as
well as the unsigned distance to it, gθ(p). However, in addi-
tion, a variety of downstream applications in vision [22, 34],
robotics [14, 30], graphics [12], and animation [40] need es-
timates of local differential properties of the surface like the
tangent plane and normal at any surface point. We show
below how we can easily estimate these properties.

3.2.1 Using the Jacobian

Let p be any query point and p̃ ∈ S be its closest point on
the surface S. Further, let Jfθ (p̃) denote the Jacobian of
fθ at p̃. Let δ be the unsigned distance from p to p̃ and
d be the surface normal at p̃. Then, we get the following
approximation using the first-order Taylor series expansion:

p = p̃+ δ · d
fθ(p) = fθ(p̃+ δ · d)
p̃ ≈ p̃+ δ · Jfθ (p̃) · d
0 ≈ δ · Jfθ (p̃) · d

(3)

The last equation shows that (to a first order approxi-
mation of the surface), the surface normal d lies in the null
space of the Jacobian Jfθ (p̃) while the span of the Jacobian
provides the tangent space of the surface. This is illustrated
in the Fig. 2b and is intuitively clear since along the direc-
tion perpendicular to the surface, the CSP function does not
change, giving the same closest surface point. The tangent
space and the normal to the surface both can be estimated
using singular value decomposition (SVD).

However, computation of Jacobian requires a backward
pass through CSPNet. Prior works which differentiate the
distance function on the zero level-set (i.e the surface) [32]

Surface

Surface

Figure 3: Left: An illustration of the Sphere Tracing pro-
cedure described in Section. 3.3.1. Right: Leveraging the
NVF for obtaining more accurate ray-scene intersections.

also need a backward pass. Even so, since the derivative
of UDFs vanish at the surface, NDF estimates the normals
close to the surface [9] leading to some loss in fidelity.

3.2.2 Forward Mode Normal Estimation

In certain applications like rendering, sphere tracing is used
to obtain a point on the surface and it is needed to quickly
and efficiently estimate the normal at the point of intersec-
tion [12]. We can use the Jacobian approach presented in
the previous section but it requires a backward pass.

An alternate approach for obtaining a fast approximation
for the surface normal, using a forward pass from a query
point p close to but not on the surface is by using the Normal
Vector Field (NVF) defined as follows:

NVF(p) =
p− p̃

UDF(p) + ε
(4)

where ε is a small value to avoid division by 0 when p is
on the surface. We represent the corresponding estimate for
NVF by hθ as (p − fθ(p))/(gθ(p) + ε). We refer to this
method of estimating normals as forward-mode normal es-
timation. Since there is no backward pass involved, it is
faster than the previous methods. We demonstrate the util-
ity of this approach in Sec. 4.2 and validate its performance
both in terms of accuracy and speed via extensive experi-
mental evaluation. More generally, fast estimation of the
NVF at off-surface locations is vital to robotics applications
such as path planning in distance fields [14, 30] and hand
tracking [39].

3.3. Rendering and Meshing

In this section, we describe techniques for rendering sur-
faces and extracting topologically consistent meshes from
the the learnt representation. Note that this process is im-
portant for many downstream vision applications such as
shape analysis [24] and graphics applications such as ren-
dering novel scenes under changed illumination, texture, or
camera viewpoints [35].

3.3.1 Sphere Tracing CSP

Sphere tracing [20] is a standard technique to render images
from a distance field that represents the shape. To create an
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image, rays are cast from the focal point of the camera, and
their intersection with the scene is computed using sphere
tracing. Roughly speaking, irradiance/radiance computa-
tions are performed at the point of intersection to obtain the
color of the pixel for that ray.

The sphere tracing process can be described as follows:
given a ray, r, originating at point, p0, iterative marching
along the ray is performed to obtain its intersection with the
surface. In the first iteration, this translates to taking a step
along the ray with a step size of UDF(p0) to obtain the next
point p1 = p0 + r · gθ(p0). Since gθ(p0) is the smallest
distance to the surface, the line segment [p0,p1] of the ray
is guaranteed not to intersect the surface (p1 can touch but
not transcend the surface). The above step is iterated i times
till pi is ε close to the surface. The i-th iteration is given by
pi = pi−1+gθ(pi−1) and the stopping criteria gθ(pi) ≤ ε.

Note that the above procedure can be used to get close
to the surface but does not obtain a point on the surface.
Once we are close enough to the surface, we can use a local
planarity assumption (without loss of generality) to obtain
the intersection estimate. This is illustrated in Figure 3 and
is obtained in the following manner: if we stop the sphere
tracing of the CSP at a point pi, we evaluate the NVF at that
point as n̂ = hθ(pi), and compute the cosine of the angle
between the NVF and the ray direction. The estimate is then
obtained as pproj = pi + r · gθ(pi)

rT n̂
.

3.3.2 From CSP to Meshes

Sphere tracing CSP, described in the previous section, can
only be used to render a view of the shape. Thus, the ex-
tracted surface is immutable and cannot be used for applica-
tions such as 3D shape modeling, analysis and modification
[24]. Explicit 3D mesh representations are more amenable
for such applications. In this section, we propose an ap-
proach to extract a 3D mesh out of the learnt CSP.

A straightforward way to extract a mesh from an implicit
representation is to create a high-resolution 3D distance grid
and using the marching cubes algorithm [26] on this grid.
However, as discussed in [29] this process is computation-
ally expensive at high-resolutions, as we need to densely
evaluate the grid. In [29] a method for multi-resolution sur-
face extraction technique is proposed by hierarchically cre-
ating a binary occupancy grid by conducting inside/outside
tests for a binary classifier based implicit representation.

However, CSPs cannot perform inside/outside tests.
Hence we propose a novel technique to hierarchically di-
vide the distance grid using edge lengths of the voxel grid
cubes. We illustrate the procedure in Fig. 4. Starting with
a voxel grid at some initial resolution, we obtain a high res-
olution distance grid and perform marching cubes on the
grid using a small positive threshold to get the final mesh.
A voxel is chosen for subdivision if any of its eight corners
have the predicted UDF value gθ(x) < hi, where hi is the

✓χ ✓

✓ ✓ ✓

✓

✓✓✓

✓ ✓

✓✓ ✓ X  X

 X

 X

 X

 X

✓

✓

 X

 X  X  X  X

✓

 X  X
 X  X

 X  X
 X  X

 X  X
 X  X
 X  X
 X  X

 X
 X X X X X X

 X

 X X  X
 X  X
 X  X
 X  X

✓ ✓ ✓

✓✓✓✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓

✓ ✓

✓ ✓ ✓ ✓

MC

Figure 4: Multi-Resolution surface extraction for CSP (de-
scribed in Section. 3.3.2). At each level of hierarchy, we
show the voxels selected for subdivision. Note that there
are some false positive voxels selected close to the shape
which get eliminated in the next hierarchical level (Step 2 to
Step 3), and are pruned out by using a small positive thresh-
old while meshing the distance-grid in the Marching cubes
(MC) step.

edge length of the voxel grid at the i′th level. The voxels
that are not chosen for subdivision are simply discarded in
the next level. Using this procedure, we quickly obtain a
high-resolution distance grid, which is converted to a mesh
using marching cubes. We find that our algorithm selects
a few false positive voxels in the final resolution, but these
are effectively pruned out in the final mesh by using a small
positive threshold in the marching cubes [26] step.

Note that marching cubes on an unsigned distance grid
leads to the creation of a mesh with a double/crusted sur-
face, given that there are two isosurfaces satisfying the
small positive threshold. Such a representation is desir-
able for many applications [6, 10] as even the thinnest real
world objects have surfaces with some infinitesimal thick-
ness. On the other hand, extracting a mesh that represents
a single (true) isosurface is desirable from a compactness
standpoint, and is an interesting avenue for future work.

4. Experiments

In this section, we validate the different parts of our pro-
posed system outlined in Fig. 2 against a selection of prior
art. First we demonstrate the superiority of the proposed
implicit shape representation (CSP: Sec. 3.1) on the task of
surface reconstruction from point clouds. Next, we validate
the proposed methods for extracting local surface proper-
ties such as surface normals (described in Sec. 3.2). Finally,
we test the novel sphere-tracing algorithm for CSPs and the
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coarse to fine meshing algorithm (described in Sec. 3.3).
Baselines. Most existing methods such as Occupancy Net-
works [29], DeepSDF [32], Deep Marching Cubes [25] and
IF-Net [8] only work on watertight (i.e. closed) shapes. We
compare against these methods to verify that our method
retains performance on closed shapes, in addition to being
able to model open shapes. On the other hand, for com-
paring performance on raw/unprocessed shapes, we choose
SAL [2] and NDF [9]. While these methods can work
with non-watertight (i.e. unprocessed) ground truth, they
still require a backward pass to estimate surface normals,
which leads to an added computational and memory foot-
print. Additionally, while NDF can reconstruct both open
as well as closed shapes, it is unable to guarantee plane re-
production and accurate normal estimates on the surface of
the shape. In the following sections, we show empirically
that our method addresses these challenges.

4.1. Shape Representation

In this section, we demonstrate the representational
power of our model on ShapeNet dataset [5]. We con-
sider the task of surface reconstruction from point clouds,
and first evaluate on closed shapes to verify that our pro-
posed generic shape representation yields comparable per-
formance to state-of-the art methods which are solely meant
to work on watertight shapes [32, 29, 15]. Second, we eval-
uate our method against NDF and SAL on raw, unprocessed
shapes. Before describing the results, we present the evalu-
ation metrics that we consider.

4.1.1 Evaluation metrics

A common practice for evaluating 3D reconstruction
pipelines is the chamfer distance metric [32, 2, 9]. How-
ever, as discussed in some prior work [42], this metric does
not reflect the perceptual quality of the rendered image.
Moreover, for applications such as relighting [27] it is de-
sirable to obtain surface normal maps by directly rendering
the isosurface using sphere-tracing, as opposed to extract-
ing a mesh. Clearly, there is a need to evaluate implicit
shape representations on the perceptual quality of their iso-
surfaces rendered via sphere-tracing. Therefore, in addition
to the chamfer distance we propose new metrics (outlined
below) which are designed to capture these properties.
Depth Error (DE). First we evaluate the mean absolute er-
ror (MAE) between the ground truth and the estimated depth
map obtained by sphere-tracing the learnt representation.
This error is evaluated only on the “valid” pixels, which we
define as the pixels having non-infinite depth (foreground)
in both the ground truth and estimated depth map. This met-
ric captures the accuracy of ray-surface intersection.
Normal Cosine Similarity (NCS). We also evaluate the co-
sine similarity between the sphere-traced normal map and
the ground truth normal map for the valid pixels. Since the

surface normals play a vital role in rendering, this metric is
informative of the fidelity of the rendered surface.
Pixel-Space IOU. Finally, since both Depth Error and NCS
are evaluated only on the valid pixels, they do not quantify
whether the geometry of the final shape is correct. There-
fore, we also evaluate Pixel-Space IOU,

IOU =
#Valid Pixels

#Invalid Pixels +#Valid Pixels
(5)

Here the invalid pixels are those which have non-infinite
depth (foreground) in either the ground truth depth map or
the estimated depth map but not both. Note that for the pro-
posed metrics, we render the shape from 6 views (uniformly
sampled on sphere) to capture all the regions of the surface.

4.1.2 Data creation

We first normalize each mesh in the ShapeNet dataset to
[−0.5, 0.5] using the steps followed in ONet [29]. For each
shape, we densely sample a set of 0.25M points, denoted
by the set V , to represent the set of surface points. Simi-
lar to the startegy used in DeepSDF [32], training points P
are obtained for each shape by uniformly sampling 0.025M
points as well as perturbing the set V with a gaussian noise
of 2.5e−4 and 2.5e−3. Finally, the ground truth for each
trainin points p ∈ P is computed by finding its nearest sur-
face point p̃ ∈ V to construct the training pair (p, p̃).

4.1.3 Training

Note that, we only train fθ, and gθ and hθ can be derived
from it in the same way UDF and NVF can be derived from
CSP in eq. 2 and eq. 4 respectively. Given fθ(p|X) =
φ(ψ(X),p), as the training objective, we simply use the
squared L2 loss between the estimated closest surface-point
fθ(p|X) and the ground-truth p̃(= CSP(p|X))

LCSP =
1

|P|
∑
p∈P
||fθ(p|X)− p̃||22 (6)

4.1.4 Evaluation on closed shapes

We convert all the ShapeNet 3D models to closed shapes by
following the steps in [37]. Following this, we run our data
creation process (outlined in Sec. 4.1.2).

Method Chamfer-L2 (×104)

PSGN [15] 4.0
ONet [29] 4.0
DMC [25] 1.0
CON [33] 0.95
IF-Net [8] 0.2
NDF [9] 0.05
CSP (Ours) 0.1

Table 2: Results: closed shapes.

After training our
proposed surface re-
construction pipeline,
we compare to the
selected prior art
outlined earlier and
report the results in
Table. 2. We find that
our class agnostic
model performs on
par with NDF.
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4.1.5 Evaluation on unprocessed shapes

In addition to closed shapes, CSP can also represent shapes
of arbitrary topology. Therefore, we also train on unpro-
cessed ShapeNet 3D models and evaluate performance us-
ing the metrics defined in Sec. 4.1.1. We compare against
SAL and NDF, which are methods that can learn represen-
tations from raw/unprocessed ground truth. 1 This compar-
ison is reported in Table 3. We find that CSP marginally
outperforms NDF on chamfer, depth and IOU metrics, but
yields a significant improvement on the surface normals
metric owing to the useful plane reproduction property of
CSP. Additionally, SAL clearly suffers on all metrics, given
that it learns a signed distance function (closed shape) even
for surfaces that are open. This behavior can also be con-
firmed in the qualitative results shown in row 2 of Fig. 1.

Method Chamfer-L2 ×104 ↓ Depth ↓ Normal ↑ IOU ↑
SAL [2] 2.25 0.025 0.84 0.96
NDF [9] 1.73 0.018 0.86 0.97

CSP (Ours) 1.28 0.014 0.92 0.98

Table 3: Results on unprocessed shapes. We evaluate both
on chamfer distance metric as well as the three additional
metrics defined in Sec. 4.1.1. For all methods, we obtained
normals by leveraging first order information. We use the
protocol followed in NDF for computing chamfer distance.

4.2. Local Surface Properties

In Sec. 3.2, we described various strategies to estimate
surface normals using the learnt implicit representation. We
refer to the strategy using the Jacobian as CSP (jac.) and the
one using the forward pass (eqn. 4) as CSP (fwd.).

Similar to NDF, this latter approach approximates sur-
face normals using off-surface points close to the surface
(where p ≈ p̃) by stepping back along the ray at its point
of intersection with the surface. More concretely, given
a ray r which intersects with the surface at pint (at the
end of sphere-tracing), the normal is computed by step-
ping back along the ray by some scalar value α. Thus,
n̂pint = ∇pintgθ(pint − α · r). Note here that α is a hy-
perparameter which is sensitive to the curvature of the sur-
face, and NDF chooses a constant α = 0.005. However,
we observe that choosing a single α for all shapes is sub-
optimal given that surfaces can have varying curvatures.

To investigate the sensitivity of the system to varying α,
we record normal cosine similarity vs different values of
α in Table 4. It can be clearly seen that CSP (jac.) has
higher quality normal estimates for points on the surface
(i.e. α = 0), given its tangent plane reproduction property,

1Since both SAL and NDF do not provide a release of pretrained class-
agnostic models, we retrain them. Further, as CSP uses a more powerful
backbone (CON [33]) than the one originally proposed in SAL, we train
SAL with the CON backbone, to ensure a fair comparison.

as opposed to NDF and CSP (fwd.) which do not. It is in-
teresting to note that although SAL learns a signed distance
function that is differentiable on the surface of the shape, it
still performs poorly on this metric, owing to the instability
of their unsigned similarity loss, and poor geometric recon-
struction on open shapes. However, we find that both NDF
and CSP (fwd.) yield comparable performance to CSP (jac.)
if allowed to step back along the ray (α = 0.005). How-
ever, the normal cosine similarity is lower than CSP (jac.)
at α = 0, which is a definite drawback. Moreover, we find
that at α = 0.005, CSP (fwd.) yields similar performance
compared to NDF, even though it does not use a backward
pass. We report rendering speeds and memory footprint for
CSP (fwd.) and NDF in Table 5, and we immediately find
that CSP is superior on both fronts.

Additionally, in Table 4 we find that although α = 0.005
yields reasonably good normals, the standard deviation is
higher than those obtained by the tangent plane approxima-
tion. This clearly shows that choosing a single threshold
for all shapes [9] is sub-optimal. Finally, we qualitatively
compare various normal estimation strategies in Fig. 6. We
find here too that CSP (fwd.) performs reasonably well for
α = 0.005, with CSP (jac.) yielding the best performance
at α = 0. Both visually and quantitatively, we find that our
normal estimation strategies outperform NDF. Additionally,
forward-mode surface normal estimates, Ours (fwd.) are
faster than that of NDF while Ours (jac.) is comparable in
speed (more analysis in supplementary).

Method Normal Map Similarity

α = 0 α = 0.002 α = 0.005 α = 0.05

SAL [2] 0.84 ± 0.017 0.851 ± 0.014 0.871 ± 0.009 0.861 ± 0.01
NDF [9] 0.863 ± 0.01 0.882 ± 0.008 0.903 ± 0.006 0.891 ± 0.008

CSP (fwd.) 0.620 ± 0.12 0.873 ± 0.018 0.912 ± 0.006 0.91 ± 0.007
CSP (jac.) 0.913 ± 0.003 0.915 ± 0.003 0.920 ± 0.003 0.871 ± 0.01

Table 4: Normal estimation accuracy of various methods
described in Sec. 3.2. Here α refers to the step-back dis-
tance along the ray.

4.3. Rendering and Meshing

In this section, we validate our sphere-tracing strategy
and meshing algorithm (Sec. 3.3) against various baselines.

Sphere Tracing CSP. We compare the sphere tracing
strategy described in Sec. 3.3.1 to a baseline strategy when
the projection step is excluded from the algorithm. Our pro-
posed strategy yields better depth maps (MAE = 0.014) than
the Vanilla Sphere tracing (MAE = 0.016) owing to more ac-
curate ray-scene intersection. As expected, the qualitative
results (depth error maps) shown in Fig. 5 also indicate the
benefit of using projection step as a part of sphere tracing
CSP. Refer supplementary material for more visualizations.
Speed & memory footprint of rendering. In Table 5,
we report the average time taken to render a 512×512 im-
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