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Figure 1: Detecting boundaries at short exposure (1/5000s). The field of junctions extracts boundary structure at noise levels
where other methods fail, even when the others are preceded by denoising and are optimally tuned for the image. Additionally,
our model interprets its boundaries into component contours, corners, junctions, and regional colors (see Figure 2).

Abstract

We introduce a bottom-up model for simultaneously find-
ing many boundary elements in an image, including con-
tours, corners and junctions. The model explains boundary
shape in each small patch using a ‘generalized M -junction’
comprising M angles and a freely-moving vertex. Images
are analyzed using non-convex optimization to coopera-
tively find M + 2 junction values at every location, with
spatial consistency being enforced by a novel regularizer
that reduces curvature while preserving corners and junc-
tions. The resulting ‘field of junctions’ is simultaneously a
contour detector, corner/junction detector, and boundary-
aware smoothing of regional appearance. Notably, its uni-
fied analysis of contours, corners, junctions and uniform re-
gions allows it to succeed at high noise levels, where other
methods for segmentation and boundary detection fail.

1. Introduction

Identifying boundaries is fundamental to vision, and be-
ing able to do it from the bottom up is helpful because vision
systems are not always familiar with the objects and scenes

they encounter. The essence of boundaries is easy to articu-
late: They are predominantly smooth and curvilinear; they
include a small but important set of zero-dimensional events
like corners and junctions; and in between boundaries, re-
gional appearance is homogeneous in some sense.

Yet, despite this succinct description, extracting bound-
aries that include all of these elements and exploit their in-
terdependence has proven difficult. After decades of work
on various subsets of contour detection, corner detection,
junction detection, and segmentation, the community is still
searching for comprehensive and reliable solutions. Even
deep encoder-decoder CNNs, which can be tuned to ex-
ploit many kinds of local and non-local patterns in a dataset,
struggle to localize boundaries with precision, motivating
an ongoing search for architectural innovations like skip
connections, gated convolutions, bilateral regularization,
multi-scale supervision, kernel predictors, and so on.

We introduce a bottom-up model that precisely dis-
cerns complete boundary structure—contours, corners, and
junctions—all at the same time (see Figures 1 & 2). It does
this by fitting a non-linear representation to each small im-
age patch, with M + 2 values that explain the patch as
being uniform or containing an edge, thin bar, corner, or
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Figure 2: Interpreting boundary structure at high and low SNR (top and bottom). The field of junctions identifies contours
(column 6), corners/junctions (circles, column 7) and smooth colors (column 7). It is more resilient to noise than previous
methods that are specific to contours, junctions or smoothing, even when they are preceded by optimally-tuned denoising.

junction of any degree up to M (see Figure 3). The model
encourages consistency between overlapping patches using
a new form of spatial regularization that, instead of penal-
izing overall curve length or elastica, expresses preference
for global boundary maps comprising isolated corners and
junctions that are connected by contours with small curva-
ture. As far as we know, this is the first time such regular-
ization has been achieved in the presence of junctions.

An image is analyzed by solving a non-convex optimiza-
tion problem that cooperatively determines M + 2 junction
values at every location. This produces a field of junctions:
a distilled representation of the contours, corners, junctions
and homogeneous regions of an image. It is an intermedi-
ate representation that is useful for a variety of tasks, in-
cluding contour detection, junction/keypoint detection, and
boundary-aware smoothing.

Experimentally, the field of junctions provides unprece-
dented resilience to noise. It is repeatable over a wide range
of noise levels, including very high noise regimes where
other approaches—whether based on denoising, segmenta-
tion, contour detection, or junction detection—all tend to
fail (see Figures 1 & 2). We attribute this to the form of its
regularization and to its unified representation of contours,
corners, junctions and uniformity, which allows all of these
signals to mutually excite and inhibit during analysis.

We introduce the field of junctions model in Section 3,
where we formulate analysis as a non-convex optimization
problem. We describe how the model can be used for both
single-channel and multi-channel images, and how it in-
cludes a parameter controlling the scale of its output. The
following Section 4 is the heart of the paper: It introduces
the optimization techniques that allow analysis to succeed.
In particular, we present a greedy algorithm for initializ-
ing each patch’s junction parameters that has convergence
guarantees under certain conditions, and is very effective

in practice even when they do not hold. In Section 5 we
apply the field of junctions to contour, corner, and junc-
tion detection, showing that it provides novel regularization
capabilities and repeatable performance across many noise
levels. Extended versions of our figures, generalizations of
the model, additional results, and a video summary of our
paper, are all available in the supplement.

2. Related Work

Contour, corner and junction detection. These have been
studied for decades, often separately, using halved receptive
fields to localize contours [6, 16, 21] and wedges or other
patch-based models for corners and junctions [12, 26, 10,
20, 7, 32, 36]. The drawback of separating these processes
is that, unlike our model, it does not exploit concurrency
between contours, corners and junctions at detection time.

Contour detection at low SNR. The naive way to detect
contours at low SNR is to precede a contour detector by a
strong generic denoiser. Ofir et al. [24, 23] were perhaps the
first to convincingly show that better results can be achieved
by designing optimization strategies that specifically exploit
the regularity of contours (also see Figure 1). We build
on this idea by developing different optimization schemes
that handle a broader set of boundary structures and that
improve upon [24, 23] in both accuracy and scalability.

Curvature regularization. Boundaries extracted at low
SNR are strongly influenced by the choice of regularization.
Prior work has shown that minimizing curvature—either
alone or in combination with length (Euler’s elastica)—
generally does better at preserving elongated structures and
fine details than minimizing length alone; and there have
been many attempts to invent good numerical schemes for
minimizing boundary curvature [28, 22, 39, 37, 30, 13]. All
of these methods lead to rounded corners, and more criti-
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cally, they only apply to boundaries between two regions so
provide no means for preserving junctions (see Figure 4).
In contrast, our model preserves sharp corners and junctions
while also reducing curvature along contours.

Segmentation. Our patch model is inspired by the level-set
method of Chan and Vese [8] and in particular its multi-
phase generalizations [31, 14]. In fact, our descent strat-
egy in Section 4.2 can be interpreted as pursuing optimal
level-set functions in each patch, with each patch’s func-
tions constrained to a continuous (M + 2)-parameter fam-
ily. Our experiments show that our regularized patch-wise
approach obviates the needs for manual initialization and
re-initializing during optimization, both of which have been
frequent requirements in practice [8, 31, 14, 19].

Boundary-aware smoothing. When locating boundaries,
our model infers the regional colors adjacent to each bound-
ary point and so provides boundary-aware smoothing as a
by-product. It is not competitive with the efficiency of ded-
icated smoothers [34, 25, 11] but is more resilient to noise.

Deep encoder/decoder networks. Our approach is very
different from relying on deep CNNs to infer the locations
of boundaries (e.g., [33, 29]) or lines and junctions [15, 38,
35]. CNNs have an advantage of being trainable over large
datasets, allowing both local and non-local patterns to be
internalized and exploited for prediction; but there are on-
going challenges related to overcoming their internal spatial
subsampling (which makes boundaries hard to localize) and
their limited interpretability (which makes it hard to adapt
to radically new situations). Unlike CNNs, the field of junc-
tions model does not have capacity to maximally exploit the
intricacies of a particular dataset or imaging modality. But
it has the advantages of: not being subsampled; interpreting
boundary structure into component contours, corners and
junctions; applying to many noise levels and many single-
channel or multi-channel 2D imaging modalities; and being
controlled by just a few intuitive parameters.

3. Field of Junctions
From a K-channel image I : Ω → RK with 2D support

Ω, we extract dense, overlapping R × R spatial patches,
denoted IR = {Ii(x)}Ni=1. We also define a continuous
family of patch-types, PR = {uθ(x)}, parametrized by θ,
describing the boundary structure in an R×R patch. ForPR

we use the family of generalized M -junctions, comprising
M angular wedges around a vertex. The parameters θ =
(ϕ,x(0)) ∈ RM+2 are M angles ϕ = (ϕ(1), ..., ϕ(M)) and
vertex position x(0) = (x(0), y(0)). Importantly, the vertex
can be inside or outside of the patch, and wedges may have
size 0. Figure 3 shows examples for M = 3.

Assume all image patches IR are described by patches
from PR with additive white Gaussian noise. This means
that for every i ∈ {1, ..., N} there exist parameters θi, and

Figure 3: A generalized M -junction comprises a vertex and
M angles, partitioning each patch into at most M uniform
regions (here, M = 3). By freeing the vertex to be vari-
ously inside or outside of patches as needed, the model si-
multaneously accommodates contours, lines, corners, junc-
tions, and uniform regions, thereby allowing concurrencies
between all of them to be exploited during analysis.

M color functions c(1)i , ..., c
(M)
i : Ωi → RK (to be defined

momentarily), such that for all x ∈ Ωi:

Ii(x) =

M∑
j=1

u
(j)
θi

(x)c
(j)
i (x) + ni(x), (1)

where ni(x) ∼ N (0, σ2) is noise, and u
(j)
θi

: Ωi → {0, 1}
is an indicator function that returns 1 if x is inside the jth
wedge defined by θi and 0 otherwise.

Each color function c
(j)
i is defined over the support of the

ith patch Ωi and explains the continuous field of K-channel
values within the jth wedge of that patch. These functions
are constrained to a pre-chosen family of functions C, such
as constant functions C = {c(x) ≡ c : c ∈ RK} or linear
functions C = {c(x) = Ax+ b : A ∈ RK×2, b ∈ RK}.

We write the process of analyzing an image into its field
of junctions as solving the optimization problem:

max
Θ,C

log p(Θ) + log p(C) +
N∑
i=1

log p(Ii|θi, ci), (2)

where p(Θ) and p(C) are spatial consistency terms over all
junction parameters Θ = (θ1, ...,θN ) and color functions
C = (c1, ..., cN ) respectively, and p(Ii|θi, ci) is the like-
lihood of a patch Ii given the junction parameters θi and
color functions ci = (c

(1)
i , ..., c

(M)
i ). If the consistency

terms p(Θ) and p(C) are 0 whenever overlapping patches
disagree within their overlap, this objective is precisely the
MAP estimate of the field of junctions, where the consis-
tency terms are interpreted as priors over junction parame-
ters and color functions, which we model as independent.

In the remainder of this section we provide more infor-
mation about the three terms in Equation 2. For simplicity
we use M = 3 and a constant color model c(j)i (x) ≡ c

(j)
i ,

but expansions to higher-order color models and to M > 3
are trivial and described in the supplement. The supple-
ment also shows how the model performs when noise is not
spatially-independent as is assumed in Equation 1.
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Figure 4: Our boundary consistency term, governed by λB ,
favors isolated corners and junctions connected by contours
with low curvature. Unlike other regularizers, it: is agnostic
to contour length and convexity; preserves sharp corners;
and preserves junctions between three or more regions.

3.1. Patch Likelihood

For a single patch, Equation 1 directly shows that the
log-likelihood term is negatively proportional to the mean
squared error in that patch:

log p(Ii|θi, ci) = −α
M∑
j=1

∫
u
(j)
θi

(x)
∥∥∥c(j)i − Ii(x)

∥∥∥2 dx, (3)

where α > 0 is a constant determined by the noise level σ.
The likelihood term in Equation 3 can be treated as a

function of the junction parameters at a single location, θi,
because finding the optimal colors ci is trivial for a given
θi (see Equation 10 in Section 3.2). However, despite the
low dimensionality of the problem, which requires estimat-
ing an (M + 2)-dimensional junction parameter per patch,
solving it efficiently is a substantial challenge. We present
an efficient solution to this problem in Section 4.1.

3.2. Spatial Consistency

Our spatial consistency terms p(Θ) and p(C) require that
all junction models agree within their overlap. The bound-
ary consistency can be succinctly written as a constraint on
the boundaries defined by each junction:

log p(Θ) =

{
0 if Bi(x) = B̂(x) for all i
−∞ otherwise

, (4)

where Bi(x) is the boundary map at the ith patch that re-
turns 1 if x is a boundary location according to θi and 0
otherwise, and B̂(x) = maxi∈{1,...,N} Bi(x) is the global
boundary map defined by the field of junctions.

The boundary consistency term in Equation 4 provides a
hard constraint on the junction parameters, which is difficult
to use in practice. We instead replace it with a relaxed, finite

version having width δ and strength βB :

log p(Θ) = −βB

N∑
i=1

∫ [
B

(δ)
i (x)− B̂

(δ)
i (x)

]2
dx, (5)

where B
(δ)
i (x) is a smooth boundary map with dropoff

width δ from the exact boundary position, to be defined
precisely in Section 4.2. The relaxed global boundary map
B̂(δ)(x) is now computed by taking the mean (rather than
maximum) of the smooth local boundary map at each posi-
tion x over all patches containing it:

B̂(δ)(x) =
1

|Nx|
∑
i∈Nx

B
(δ)
i (x), (6)

where Nx = {i : x ∈ Ωi} is the set of indices of patches
that contain x. We denote by B̂

(δ)
i (x) the ith patch of the

relaxed global boundary map in Equation 6. Note that the
relaxed consistency in Equation 5 approaches the strict one
from Equation 4 when δ → 0 and βB →∞.

Similar to the boundary spatial consistency term, we de-
fine the color spatial consistency term as:

log p(C) = −βC

N∑
i=1

M∑
j=1

∫
u
(j)
θi

(x)
∥∥∥c(j)i − Îi(x)

∥∥∥2 dx,
(7)

where Îi(x) is the ith patch of the global color map:

Î(x) =
1

|Nx|
∑
i∈Nx

M∑
j=1

u
(j)
θi

(x)c
(j)
i . (8)

Using the expressions for the log-likelihood and the re-
laxed consistency in Equations 3, 5, and 7, analyzing an
image into its field of junctions can now be written as the
solution to the following minimization problem:

min
Θ,C

N∑
i=1

M∑
j=1

∫
u
(j)
θi

(x)
∥∥∥c(j)i − Ii(x)

∥∥∥2 dx
+ λB

N∑
i=1

∫ [
B

(δ)
i (x)− B̂

(δ)
i (x)

]2
dx, (9)

+ λC

N∑
i=1

M∑
j=1

∫
u
(j)
θi

(x)
∥∥∥c(j)i − Îi(x)

∥∥∥2 dx,
where λB = βB/α and λC = βC/α are parameters con-
trolling the strength of the boundary and color consistency.

We solve Problem (9) by alternation, updating junction
parameters and colors (Θ,C) while global maps (B̂(δ), Î)
are fixed, and then updating the global maps. This takes ad-
vantage of closed-form expressions for the optimal colors.
For the constant color model the expression is

c
(j)
i =

∫
u
(j)
θi

(x)
[
Ii(x) + λC Îi(x)

]
dx

(1 + λC)
∫
u
(j)
θi

(x)dx
, (10)
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Figure 5: Output of Algorithm 2 for a patch in SIDD [2]
captured at decreasing light levels. Algorithm convergence
is only guaranteed when noise is absent, but output is quite
accurate in practice even when noise is high.

and for piecewise-linear colors, i.e., c(j)i (x) = A
(j)
i x+b

(j)
i ,

there is a similar expression that replaces each of the K
divisions with a 3× 3 matrix inversion and multiplication.

Our formulation of boundary consistency encourages
each patch i to agree with its overlapping neighbors, by in-
hibiting its own boundariness B

(δ)
i (x) at pixels x that are

assigned a low score by their neighbors (as quantified by
B̂(δ)(x)) and exciting its boundariness at pixels assigned a
high score. This means only salient junctions, corners, and
contours end up contributing to the final global boundary
map B̂(δ)(x). Junction values in uniform patches and other
less salient patches tend to disagree with other patches, so
spurious boundaries within them are suppressed.

At the same time, our use of a smoothed version of con-
sistency instead of a strict one allows for contours having
nonzero curvature to be well approximated by local collec-
tions of corners that have slightly different vertices, while
incurring a penalty. This has the effect of a curvature regu-
larizer, because the only way for all junctions in the field to
exactly agree is when the global boundary has zero curva-
ture everywhere except at a finite number of vertices spaced
at least ℓ∞-distance R apart (e.g. a polygon).

The color consistency term of our objective promotes
agreement on color between overlapping patches. It im-
proves the results of the field of junctions under high noise
by enforcing long-range consistency between the colors of
sets of pixels not separated by a boundary.

4. Analysis
Analyzing an image into its field of junctions is a chal-

lenge, with Problem (9) consisting of N junction-fitting
problems that are coupled by spatial consistency terms.
Even without consistency, finding the optimal junction for
a single patch i requires minimizing a non-smooth and non-
convex function in θi.

We solve the problem in two parts: initialization and re-
finement. Both of these are key to our model’s robustness to
noise. The initialization procedure independently optimizes
each patch, using a handful of coordinate updates to find

discrete values for its angles and vertex location. Then, the
refinement procedure performs gradient descent on a relax-
ation of Problem (9), cooperatively adjusting all junction
parameters to find continuous angles and sub-pixel vertex
locations that improve spatial consistency while maintain-
ing fidelity to local appearance. We next describe each step.

4.1. Initialization

Many previous methods for junction estimation, such
as [10, 7], use gradient descent to optimize the vertex and
angles of a single wedge model. These methods rely on
having a good initialization from a human or a corner detec-
tor, and they fail when such initializations are unavailable.
Indeed, even in the noiseless case, there always exists an
initialization of a patch’s junction parameters around which
the negative log-likelihood is locally constant.

In the present case, we need an initialization strategy that
is automatic and reliable for every patch, or at least the vast
majority of them. We first describe an initialization algo-
rithm for the simpler problem in which the vertex of a patch
is known, where our algorithm guarantees optimality in the
absence of noise; and then we expand it to solve for the
vertex and angles together.

When the vertex is known, optimizing the parameters
of one patch reduces to finding a piecewise-constant, one-
dimensional angular function. There are algorithms for this
based on dynamic programming [4, 17] and heuristic par-
ticle swarm optimization [5]. We instead propose Algo-
rithm 1, which is guaranteed to find the true junction an-
gles ϕ = (ϕ(1), ..., ϕ(M)) that minimize the negative log-
likelihood ℓ(ϕ,x(0)) = − log p(Ii|θ, ci) in the noiseless
case. The algorithm consists of a single coordinate-descent
update over the M junction angles, that is, it minimizes
ℓj(ϕ)

∆
= ℓ(ϕ(1), ..., ϕ(j−1), ϕ, ϕ(j+1), ..., ϕ(M), x(0), y(0))

for j = 1, ...,M .

Algorithm 1: Optimization of angles

Initialize ϕ(1), ..., ϕ(M) ← 0.
for j = 1, ...,M do

ϕ(j) ← argmin
ϕ

ℓj(ϕ)

end

Theorem 1. For a junction image Ii(x) with no noise (i.e.,
ni ≡ 0 in Eq. 1) and with vertex x(0) known, Algorithm 1 is
guaranteed to find the globally optimal angles ϕ.

Proof Sketch. (See full proof in supplement.) First, note
that ℓj(ϕ) is continuous and smooth for all ϕ other than
possibly a discontinuity in the derivative at any of the true
junction angles. If the optimal ϕ is not one of the true junc-
tion angles then it must lie in the open interval between two
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Figure 6: Field of junctions from a photograph. It can extract boundary-aware smoothing and boundary structure from
natural images because it is robust to texture and other natural deviations from the ideal generalized M -junction model.

such angles, i.e. ϕ ∈ (ϕ−, ϕ+). It can be shown that ℓj(ϕ)
does not have any local minima in (ϕ−, ϕ+), and therefore
for each angular interval between two true junction angles
the cost function must be minimized at one of the endpoints.
Therefore repeatedly minimizing ℓj(ϕ) for j = 1, ...,M is
guaranteed to provide a globally optimal set of angles.

In practice, we find that Algorithm 1 provides an excel-
lent estimate of the true junction angles even when the input
patch is noisy. It also has a significant efficiency advantage.
Each coordinate update can be done to an arbitrarily small
error ε with complexity O(1/ε), by exhaustively searching
over all angles in increments of ε. The complexity for a
single junction is therefore O(M/ε), in contrast with the
O(1/ε2) dynamic programming solution of [17] and the
O(1/εM ) of naive exhaustive search over all possible M -
angle sets. Moreover, each step of the algorithm can be run
in parallel over all angles (and over all patches) by comput-
ing the value of ℓj(ϕ(j)) for each of the O(1/ε) values and
choosing the minimizing angle. Thus, runtime can be ac-
celerated significantly using a GPU or multiple processors.

These efficiency advantages become especially impor-
tant when we expand the problem to optimize the vertex in
addition to the angles. We simply do this by initializing the
vertex at the center of the patch and updating it along with
the angles using a coordinate descent procedure. See Algo-
rithm 2. Figure 5 shows a typical example, where the algo-
rithm results in a good estimate of the true vertex position
and angles despite a substantial amount of noise.

4.2. Refinement

After initializing each patch separately, we refine the
field of junctions using continuous, gradient-based opti-
mization. In order to compute the gradient of the objec-
tive in Problem (9) with respect to Θ we relax the indica-

Algorithm 2: Optimization of angles and vertex

Initialize x(0), y(0) at the center of the patch.
for i = 1, ..., Ninit do

Find angles ϕ using Algorithm 1.
x(0) ← argmin

x
ℓ(ϕ, x, y(0))

y(0) ← argmin
y

ℓ(ϕ, x(0), y)

end

tor functions {uθ(x)}, making them smooth in x and in θ,
similar to level-set methods [8, 31]. We do this by describ-
ing each 3-junction using two distance functions (a simi-
lar parametrization exists using M − 1 functions for M -
junctions). Given the vertex position (x(0), y(0)) and angles
ϕ(1), ϕ(2), ϕ(3), and assuming without loss of generality that
0 ≤ ϕ(1) ≤ ϕ(2) ≤ ϕ(3) < 2π, we define a junction using
two signed distance functions d12 and d13 defined by:

dkl(x) =

{
min{dk(x),−dl(x)} if ϕ(l) − ϕ(k) < π

max{dk(x),−dl(x)} otherwise
(11)

where dl(x, y) = −(x−x(0)) sin(ϕ(l))+(y−y(0)) cos(ϕ(l))
is the signed distance function from a line with angle ϕ(l)

passing through (x(0), y(0)).
Our relaxed indicator functions are defined as:

u
(1)
θ (x) = 1−Hη(d13(x)),

u
(2)
θ (x) = Hη(d13(x)) [1−Hη(d12(x))] , (12)

u
(3)
θ (x) = Hη(d13(x))Hη(d12(x)),

where Hη is the regularized Heaviside function, as in [8]:

Hη(d) =
1

2

[
1 +

2

π
arctan

(
d

η

)]
. (13)
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Figure 7: Vertex and boundary detection F-score for in-
creasing noise on our dataset. At low noise our model is
comparable to existing edge and junction detectors and a
baseline CNN, but it significantly outperforms them at high
noise, even when preprocessed by BM3D. Insets: sample
patch at different noise levels.

The smooth boundary maps for the consistency term are:

B
(δ)
i (x) = πδ ·H ′

δ (min{|d12(x)|, |d13(x)|}) , (14)

where H ′
δ(d) is the derivative of Hδ(d) with respect to d,

and the scaling factor ensures that 0 ≤ B
(δ)
i (x) ≤ 1.

Our experiments use η = 0.01 and δ = 0.1. We find that
the algorithm is fairly insensitive to these values, and that
varying them does not provide useful control of the model’s
behavior. This is in contrast to the other parameters—patch
size R and consistency weights λB , λC—that control scale
and level of boundary and color detail.

4.3. Optimization Details

We analyze an image into its field of junctions by first
initializing with Algorithm 2 for Ninit = 30 iterations, fol-
lowed by refinement to minimize Problem (9) using the
Adam optimizer [18] for Niter = 1000 iterations. Initializa-
tion is performed by evaluating the restricted negative log-
likelihood functions in Algorithms 1 and 2 at 100 evenly-
spaced values. Because the vertex of a junction can be out-
side its patch (see Figure 3), each of its two coordinates is
searched over an interval of length 3R around the center of
each patch. The accuracy of our initialization is thus 3.6◦ in
the junction angles, and 0.03R in the vertex position.

For the refinement step we use a learning rate of 0.03 for
the vertex positions and 0.003 for the junction angles, and
the global maps B̂(δ)(x) and Î(x) are treated as constants
computed using the values of the previous iteration when

computing gradients. In order to allow the parameters to
first improve their estimates locally and only then use the
consistency term to improve the field of junctions, we lin-
early increase the consistency weights from 0 to their final
values λB and λC over the 1000 refinement iterations. We
additionally apply Algorithm 2 (without reinitializing the
junction parameters) once every 50 refinement iterations,
which we find helps our method avoid getting trapped in lo-
cal minima. The runtime of our algorithm on an NVIDIA
Tesla V100 GPU is 110 seconds for a 192×192 image with
patch size R = 21, but both runtime and space usage can be
significantly reduced by only considering every sth patch in
both spatial dimensions for some constant stride s (see sup-
plement for the effect of s on runtime and performance).
We implemented our algorithm in PyTorch, and our code
and datasets are available on our project page [1].

5. Experiments

Once an image is analyzed, its field of junctions pro-
vides a distributional representation of boundary structure
and smooth regional appearance. Each pixel in the field
provides a “vote” for a nearby (sub-pixel) vertex location
with associated wedge angles and color values around that
location. Simple pixel-wise averages derived from the field
are useful for extracting contours, corners and junctions,
and boundary-aware smoothing. We demonstrate these uses
here, and we compare our model’s regularization to previ-
ous methods for curvature minimization.

We evaluate performance using three types of data. First,
we show qualitative results on captured photographs. Sec-
ond, we quantify repeatability using the Smartphone Image
Denoising Dataset (SIDD) [2], evaluating the consistency of
extracted boundaries when the same scene is photographed
at decreasing light levels (and thus increasing noise levels).
Finally, to precisely quantify the accuracy of extracted con-
tours, corners and junctions, we generate a dataset of 300
synthetic grayscale images (shown in the supplement) with
boundary elements known to sub-pixel precision, and with
carefully controlled noise levels. In this section we provide
results using uncorrelated noise, and our supplement con-
tains results on images corrupted by other noise models.

Boundary-aware smoothing. A field of junctions read-
ily provides a boundary-aware smoothing using Equation 8.
An example for a photograph is shown in Figure 6, and
a comparison of its resilience to noise with that of [34] is
shown in Figure 2.

Boundary Detection. A field of junctions also immediately
provides a boundary map via Equation 6. Figure 6 shows
the resulting boundaries extracted from a photograph, and
Figure 1 shows a qualitative comparison of our boundaries
to previous edge detection and segmentation methods on a
patch extracted from a noisy short-exposure photograph.
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Figure 8: Vertex detection repeatability over increasing
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Figure 9: Error of angles (in degrees) at detected junctions
on our dataset, for our method and ASJ preprocessed by
BM3D. Our method degrades slowly. We reported accuracy
for ASJ on correctly-detected junctions only. See Figure 7
for sample patches.

We quantitatively compare our results to existing contour
and boundary detection methods: gPb [3], HED [33], Ofir
et al. [24], and gPb and HED when denoised by BM3D [9]
supplied with true noise level σ. (Since [24] is designed for
low SNR, so we do not combine it with BM3D.) In Figure 7
we show the F-scores of results obtained by each method on
our synthetic dataset. The F-score is computed by matching
the boundaries output by each detector with the ground truth
and taking the harmonic mean of its precision and recall.

Curvature Regularization. Figure 4 compares our bound-
ary regularization to ℓ1-elastica [13] with optimally-tuned
parameters. This represents the strongest possible compar-
ison across a large family of existing regularizers, because
elastica includes pure-length and pure-curvature minimiza-
tion as special cases, and because minimizing the ℓ1-norm
outperforms the ℓ2-norm in these images. Unlike exist-
ing regularizers, the field of junctions preserves sharp cor-
ners; favors linear contours over curved ones; is agnostic
to length and convexity of boundaries; and is, as far as we
know, the first to do all of this while preserving junctions.

Vertex Detection. A field of junctions also provides a map
of vertex locations that can be used like a traditional corner,
junction, or interest point detector. To create a vertex map,
we use weighted voting from each junction in the field. The

likelihood that a vertex exists at location x is:

V (x) ∝
N∑
i=1

wiκ
(
x− x

(0)
i

)
, (15)

with Gaussian kernel κ(∆x) = exp
(
−∥∆x∥2

2γ2

)
of width

γ, and weights wi that suppress votes from patches having
wedge-angles close to 0◦ or 180◦ (i.e. with no unique ver-
tex) and from patches with vertex x(0) very far from the
patch center. (See supplement for full expression.)

Figure 2 shows the qualitative results of our vertex de-
tector in the low- and high-noise regime, compared with
ASJ [36]. A quantitative study of the robustness of our de-
tector to noise on our synthetic dataset is shown in Figure 7.
We again use F-score to compare to ASJ [36] and to BM3D
followed by ASJ, and to baseline CNNs that we trained on
our dataset specifically for vertex detection. In this experi-
ment, a separate CNN was trained for each PSNR. Figure 8
shows the repeatability of our vertex detector over different
noise levels using patches extracted from SIDD, compared
to ASJ [36], Harris [12], and ORB [27]. The repeatability
F-scores are computed by comparing the points obtained
by each method on the noisy images with its output on the
noiseless ground truth images. In all cases we find that our
model provides superior resilience to noise. Our detector
also provides repeatability over change in viewpoint angle
similar to other interest point detectors (see supplement).

In addition to the vertex locations, a field of junctions
provides an estimate of the angles of each detected vertex.
We treat ϕi as an estimate for the angles at a pixel i. Fig-
ure 9 shows a comparison of this angle estimation accuracy
over multiple noise levels with ASJ preprocessed by BM3D.
Because ASJ alone fails at moderate noise levels (see Fig-
ure 7), we only plot the results of BM3D followed by ASJ.

6. Limitations
The field of junctions is governed by just a few param-

eters, so compared to deep CNNs it has much less capac-
ity to specialize to non-local patterns of boundary shape
and appearance that exist in a particular dataset or imaging
modality. Also, as currently designed, it analyzes images
at only one scale at a time, with R determining the mini-
mum separation between vertices in the output at that scale.
Finally, while the analysis algorithm scales well with im-
age size (O(N), compared to the O(N1.5) and O(N logN)
algorithms of [24, 23]) and has runtime comparable to
some other analyzers like gPb, it is slower than feedforward
CNNs and dedicated smoothers and contour/corner detec-
tors that are engineered for speed on high-SNR images.
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