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Abstract

We present a novel approach to the detection of unknown
objects in the context of autonomous driving. The problem
is formulated as anomaly detection, since we assume that
the unknown stuff or object appearance cannot be learned.
To that end, we propose a reconstruction module that can be
used with many existing semantic segmentation networks,
and that is trained to recognize and reconstruct road (driv-
able) surface from a small bottleneck. We postulate that
poor reconstruction of the road surface is due to areas that
are outside of the training distribution, which is a strong in-
dicator of an anomaly. The road structural similarity error
is coupled with the semantic segmentation to incorporate
information from known classes and produce final per-pixel
anomaly scores. The proposed JSR-Net was evaluated on
four datasets, Lost-and-found, Road Anomaly, Road Obsta-
cles, and FishyScapes, achieving state-of-art performance
on all, reducing the false positives significantly, while typ-
ically having the highest average precision for wide range
of operation points.

1. Introduction
Autonomous vehicles have quickly become one of the

prime application areas of computer vision methods. The
range of research topics that have been influenced and stim-
ulated by this rapid development is broad: object detec-
tion [33], tracking [31, 52], optical flow estimation [51],
stereo [49], monocular depth [9] estimation, semantic seg-
mentation [53], lidar-camera fusion, 3D mapping and self-
localisation [50, 23], to name a few. For many of the prob-
lems, the best performing methods are, or include, deep
neural networks, which have a voracious appetite for train-
ing data; currently mainly labeled data. As a consequence,
a vast data acquisition and labeling effort has been tak-
ing place, together with research into the use of synthetic
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data [36, 18], virtual environments and simulators [16], and
unsupervised learning [2].

In this work, we present an approach to detect road
anomalies in a semantic segmentation setting, in the context
of spotting arbitrary “stuff” or objects on the road surface.
The detection of “stuff” on the road is currently formulated
as the detection of the known and “unknown unknown” (un-
expected and not considered types of “stuff”), which is typ-
ical for one-class classification [42] and outlier/anomaly de-
tection [6] problems. While the semantic segmentation ex-
plains the scene, as viewed in an image, decomposing it into
a set of known categories, modelling an appearance that is
outside the known classes, or is out of distribution, requires
additional consideration.

In the proposed approach, we tightly combine informa-
tion about the known class, “road” in our application, with a
strategy for estimating previously unseen objects and stuff.
The known class information is captured by a standard seg-
mentation deep neural network. The performance on data
close to the training distribution is excellent, but its be-
haviour on unseen data is variable, as experiments show.
We therefore add a reconstruction network module, arguing,
and experimentally verifying, that a failure to reconstruct
reliably and predictably is an indicator of an anomaly.

The main contributions of the paper are the following:
(i) a novel use of image reconstruction to distinguish one
known semantic class from anomalies and outliers, originat-
ing from unknown appearance distributions, by explicitly
requiring poor reconstruction outside of the known class,
(ii) a trainable coupling of information from reconstruction
and semantic segmentation that is able to exploit efficiently
the two sources of information, (iii) a plug-and-play module
that can be used with many segmentation networks without
the need of re-training the segmentation part, i.e., adding
novel functionality without any semantic segmentation per-
formance loss and with a minimal computational and mem-
ory overhead. (iv) Achieving state-of-the-art results and
better generalization to out-of-distribution data than com-
peting methods.

We show quantitative results on three standard
and one derivative datasets – Lost-and-found [34],
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Road Anomaly [28], Road Obstacles [27] and
FishyScapes:LaF [4] – where the proposed method,
JSR-Net, outperforms the current state-of-the-art methods
often by a large margin.

The rest of the paper is structured as follows: Section 2
discusses related work, Section 3 describes the proposed
JSR-Net method and its components, Section 4 provides
technical details for reproducibility purposes, Section 5 dis-
cusses the experimental results and finally Section 6 sum-
marizes the paper conclusions.

2. Related Work
Anomaly Detection, Out of Distribution detec-

tion (OOD) or Novelty Detection [6, 39, 21, 26, 22,
5, 38, 12, 28, 47, 46, 25] describes methods that try to
detect input data that is out of a given model task or
“knowledge” scope.

Out-of-Distribution (OOD). Recently, OOD detection
has gained increased interest, as it can provide deep neural
networks with the ability to reject input that does not cor-
respond to the “task” the given model has been trained for,
avoiding misleading predictions and their consequences.
Most methods, however, focus on the image classification
problem. While [21] utilizes the predicted class proba-
bility after a softmax layer as a score for in-distribution
samples, [26] increases the robustness of this approach
by adding a small perturbation to the input beforehand.
Le et al. [25] proposed a detection method based on the
Mahalanobis distance of an input sample features (from
different layers of a neural network) to the features of train-
ing data. These approaches assume one class per image
which limits their applicability to the image classification
scenario. Closest to our approach are [1, 3]. Cho [1]
employs a variational autoencoder trained on the raw
in-distribution data and uses the reconstruction probability
by the autoencoder as an “in” score. Bevandić et al. [3] uses
two heads, one for semantic segmentation and the other
to detect outliers for the segmentation head. In this work,
we deploy an autoencoder-like approach to localize novel
regions or anomalous regions by specifically modeling
the road appearance and a coupling module to train the
interaction between the semantic segmentation output and
the road reconstruction error jointly.

Road Anomaly Detection. There are several clusters of ap-
proaches to road anomaly detection if the type of input data
is considered. Approaches such as [34, 35] rely on stereo
cameras and use Stixel representation to detect the anoma-
lies. Other methods [24, 40, 45, 14] detect anomalies from
stereo input by analysing the UV-disparity maps. Recently,
methods [19, 41] requiring RGB-D data to localise anoma-
lies have been proposed. In this work, we focus on methods

that rely solely on monocular camera images. The most rel-
evant methods [12, 28, 47, 46, 27] are described in detail in
the sequel.

The RBM [12] method trains a small Restricted Boltz-
mann Machine on extracted patches of highways to learn an
autoencoding of the road patch through a low-dimensional
space. During the evaluation, the input image is split into
small patches and each patch is autoencoded through the
trained network. The absolute difference between the orig-
inal and the encoded-decoded image patch is used as an in-
dicator of the presence of an anomaly.

The method of Xue et al. [47] detects unknown ob-
jects on the road by classifying bounding box proposals
established from edge maps. In the first step, the im-
age edges on multiple scales are extracted and merged to
form super-pixels [15]. The super-pixel representation is
further reduced by detecting occluding edges [30], which
includes linking super-pixels in homogeneous areas and
adding edges at places with estimated depth discontinuity.
From these super-pixels, bounding box proposals are sam-
pled [29] and classified by a random forest [13] using 20
ad-hoc features (e.g., color, objectness, or pseudo-distance)
to three classes – road, obstacle, and non-road.

Recently, two studies [28, 32] proposed a neural network
method that operates on an RGB image and its semantic
segmentation. The neural network is trained to detect the
discrepancy of the input image and the image generated
by pix2pixHD [43] (or [8]) from the semantic segmenta-
tion. Wrongly labeled pixels in the semantic segmenta-
tion (e.g., ”random” labels on the part of the road) cause
the generator to create an image with large visual dissim-
ilarity, which can be identified as “anomalous”. Similarly,
Xia et al. [46] proposed a method for detecting anomalies in
semantic segmentation. Using an image synthesis module,
the input image is synthesized given the predicted segmen-
tation map. Then the synthesized image is compared with
the input image. Regions with large differences are con-
sidered as anomalies. The synthesized objects are assumed
to be similar to the presented objects in the image unless
anomalous. The realism of the generated objects in this ap-
proach depends on the quality of a GAN module.

An inpainting based method for detecting road anoma-
lies was proposed in [27]. Selected patches are inpainted
with a road-like structure and a discrepancy network is used
to detect possible anomalies on the road. In contrast, our ap-
proach relies on a pre-trained segmentation model and can
be plugged-in without the need to train the complete model.
Moreover, we do not rely on a generative model, like GANs,
to generate a complete image, but rather focus on learning
a more constrained appearance of the road. This way, we
avoid mode collapse and optimization stability issues. Since
the appearance of the road is modelled in a fully convolu-
tional manner, we avoid pitfalls such as missing a large ob-
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ject due to sub-optimal inpaint window size like [27]. Our
method is lightweight and easy to train in comparison to the
listed state-of-the-art methods.

3. Methods
The main idea behind the proposed method is to learn

a low-dimensional, yet robust, latent representation of road
surfaces that have relatively low appearance variation (as
opposed to anomalous objects) and there exists an abun-
dance of datasets with labeled roads [11, 17, 48] that can be
used for this purpose. The latent road representation is used
to perform road reconstruction that, when combined with
readily available semantic segmentation networks used in
e.g., autonomous vehicles, enables robust detection of ar-
bitrary road anomalies. The same principle can be used
in different scenarios e.g. in naval drones to detect anoma-
lies on the water surface. To this end, a deep neural net-
work model is proposed to learn jointly a road pixel-level
reconstruction and fusion with semantic segmentation. The
road reconstruction, trained on Cityscapes [11] dataset, cou-
pled with the semantic segmentation shows good general-
ization on multiple anomaly detection datasets (see results
in Section 5), which is especially important for the task of
anomaly detection where the lack of comprehensive train-
ing datasets is self-evident. The overall network architec-
ture is illustrated in Fig. 1. The two main modules – recon-
struction and segmentation coupling – and a simple, yet ef-
fective, data augmentation scheme are described in the fol-
lowing sections and the implementation details are provided
in Section 4.

3.1. Reconstruction Module

The goal of the reconstruction module is to learn the the
appearance of the road (drivable surfaces) in a discrimina-
tive way, meaning the road is to be reconstructed with min-
imal error while the other environment is required to have
a large reconstruction error. To that end, we proposed a
deep neural network in the form of a decoder that is con-
nected to the backbone of the fixed segmentation network,
which was trained independently beforehand. This formu-
lation of the discriminative reconstruction loss together with
a small bottleneck allows us to detect anomalies as poorly
reconstructed regions in the in the reconstructed error im-
age. By using the fixed backbone (encoder), it allows us
to plug the reconstruction module to any ”already in-use”
semantic segmentation network and train only the Recon-
struction Module and the segmentation coupling (described
in the following section).

The reconstruction module consists of three key parts:
(i) the backbone features dimensionality reduction for the
decoder bottleneck. This is achieved by processing the
backbone features by an atrous spatial pyramid pooling
(ASPP) [7] block. The ASPP block serves to exploit in-

formation from larger receptive fields and allows the bot-
tleneck to capture the appearance at different scales, which
contrasts with e.g., [27], where the fixed size in-painting
window limits the maximum area of the detectable anoma-
lous object. (ii) The decoder is used to progressively up-
sample the feature channels and learn how to reconstruct
the road from the bottleneck. It consist of four convolu-
tional blocks. Each block chains twice the following op-
erations: bilinear upsampling, 2D convolution, batchnorm,
and ReLU nonlinearity. The number of feature channels
is progressively reduced down to the final three channels
(RBG) in the last convolution layer. (iii) The reconstructed
RGB image Î is compared to the input image I using the
structural similarity index measure [44], denoted as SSIM,
following the Eq. 1:

SSIM(ux,y

Î
, vx,yI ) =

(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ2
u + σ2

v + c2)
(1)

where ux,y

Î
, vx,yI are two local windows of Î , I centered at

location (x, y) and µ, σ are the mean and variance of the lo-
cal window pixel values. The measure has added constants
c1, c2 for numerical stability and to set the range of the
SSIM output. The Eq. 1 is for single-channel input image,
while during evaluation each channel of the RGB image is
processed independently and the output is the per-channel
SSIM measure averaged over the channel dimension. The
SSIM incorporates not only the illumination and contrast
parts, but also models the structural dependencies of spa-
tially close pixels, as opposed to e.g., MSE, therefore being
more robust to imprecision in reconstructed illumination.
There exist an efficient implementation1, using convolution
operations, which was modified and used in this work. Note
that since the SSIM is a composite measure averaged over
a small neighbourhood, it does not necessarily produce an
accurate per-pixel image reconstruction as perceived by hu-
mans when used in back-propagation as a loss. The experi-
mental comparison with the standard, widely used, L2 norm
is provided in the ablation study in Section 5. The final aux-
iliary reconstruction loss LR used to train the reconstruction
module is defined as:

LR =
1

|Mr|
∑
x,y

max
[
0,SSIM

(
ux,y

Î
, vx,yI

)
− ξ

]
Mx,y

r

+
1

|Ma|
∑
x,y

max
[
0, 1− SSIM

(
ux,y

Î
, vx,yI

)
− ξ

]
Mx,y

a

(2)

where M is a binary mask for the road (r) and the anoma-
lies (a) (not road), |M | is the number of non-zero elements,
and the ξ is a slack variable to improve convergence. The

1https://github.com/Po-Hsun-Su/pytorch-ssim
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Figure 1. The JSR-Net architecture. The input image is processed by a fixed semantic segmentation network (depicted in gray). The
features (from the last layer of the semantic segmentation network backbone) are fed into the reconstruction network, the output of which
is a reconstructed version of the input image of the same resolution. The reconstructed image is then compared to the input image using
SSIM measure. The per-pixel errors are concatenated with the output logits of the semantic segmentation network and fused by two
convolutional blocks. The final output is two maps for the ”road” and ”anomaly” classes.

loss LR is scaled down by a factor of two to be in a normal-
ized range (0, 1). Intuitively, the auxiliary reconstruction
loss minimizes the reconstruction error on road pixels while
maximizing the reconstruction error elsewhere.

3.2. Segmentation Coupling Module

The segmentation coupling module is trained to com-
bine the information of “known classes” encoded in the
output logits of the fixed segmentation net with the “un-
known anomalies” discovered by the reconstruction module
as poorly reconstructed image regions. This trainable cou-
pling of the two sources of information is necessary, since
the segmentation networks are often overconfident in the es-
timation of class likelihood and therefore small anomalous
objects on the road are often misclassified (see the results of
using only the baseline segmentation networks for anomaly
detection in the experiments Section 5).

To learn how to combine the semantic segmentation and
reconstruction information, we propose to use a standard
convolution block, which is simple but effective for this
task. Firstly, the segmentation logits are channel-wise con-
catenated with the SSIM reconstruction error to form the
input to the two convolutional blocks. Each block consists
of a 2D convolution layer followed by batch normalization
and ReLU non-linearity. The output has two channels cor-
responding to the anomaly and road class and is normalized
by the softmax layer. To train the segmentation coupling, a
standard binary cross-entropy loss (Eq. 3) is applied to the

two-channel output.

Lxent = − 1

N

N∑
n=1

(1− cn) log(1− ĉn) + cn log(ĉn) (3)

where N in number of examples (in our case number of
pixels), the cn, ĉn ∈ {0, 1} are the true and estimated class
labels, respectively, for the nth training example. The final
loss is obtained as a sum of Lxent (Eq. 3) and the scaled
auxiliary reconstruction loss LR (Eq. 2):

L = Lxent + 0.5LR (4)

Note that we do not use explicit weighting of the two losses
(only the normalization for the auxiliary loss), since both
losses are of a similar scale in normal conditions.

3.3. Synthetic Anomaly Data Augmentation

To further increase the robustness and to alleviate the
network spatial bias (i.e., learning that the road label is more
likely in the lower part of image), a novel simple augmen-
tation scheme is proposed. The augmentation generates a
random number of polygons (up to ten in our case) for
a wider variety of possible anomaly shapes. These poly-
gons are then used to crop an image part that belongs to
the ”anomaly” label or are filled with a random color and
placed randomly inside the road regions. A polygon is cre-
ated as the convex hull of randomly sampled points inside
of a bounding box of random size, in our case the width
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Figure 2. Visualization of the augmentation process. First, N
points are randomly sampled inside a bounding box of random
size. The convex hull of these points is used as (i) a cropping mask
for copying a random part of the input image with the anomaly la-
bel to a random road location or (ii) it is filled with random color
with noise. The augmented images with an appropriately modified
ground-truth are used to train the proposed method as illustrated
by the intermediate results in the last row.

and height are in the range 32 to 256 pixels. This augmen-
tation helps significantly as it prevents the network from
overfitting the road regions and, consequently, improves the
anomaly detection performance as demonstrated in the ab-
lation study (Section 5). The augmentation process is illus-
trated in Figure 2.

4. Implementation Details
This section describes the technical details of the pro-

posed method with parameter settings relevant for the re-
producibility and clarity of method implementation. The
following sections describe in detail (i) the network archi-
tecture with parameters of individual layers, and (ii) the
training procedure of the proposed method.

4.1. Network Architecture

We based our method on DeepLabV3 [7] network archi-
tecture and used publicly available code2 which we modi-
fied for our purpose. The individual parts of the proposed
method consist of these blocks:

• ASPP block – use default parameters, as used in the
original implementation, for the dilation steps (i.e., [1,
6, 12, 18]). The number of output channels were set
to 4 (i.e., the size of the bottleneck in the reconstruc-
tion module).

• Decoder – consist of four blocks of UpScale 2x + Conv
+ Batch normalization + ReLU + Conv + Batch nor-
malization + ReLU with kernel size set to 3 and stride
to 1. The number of feature channels is progressively

2https://github.com/jfzhang95/pytorch-deeplab-xception

decreased by a factor of two starting from 128 chan-
nels (i.e., 128, 64, 32, 16). The reconstruction image
is produced by the final 1×1 convolutional layer that
that reduces the 16 channels to 3.

• Segmentation coupling – uses two blocks of Conv +
Batch normalization + ReLU. The first block takes as
the input concatenation of semantic segmentation log-
its (19 channels for Cityscapes classes) and the SSIM
reconstruction error image (1 channel) and reduces the
number of channels to 8 with the kernel size set to 3
and stride set to 1. The second block uses 1×1 con-
volution and outputs two channels, i.e., “road” and
“anomalies” classes.

For the SSIM measure, the default values were used. The
local window size was set to 11, meaning 11×11 local win-
dows centered around each pixel location are used to com-
pute the average and variance values. The constants c1, c2
were set to 0.012 and 0.032, i.e., the default values when
comparing images with pixel values normalized to (0, 1).

4.2. Training

The learning rate for training the semantic segmentation
network was set to 0.01 (the default value of the original
codebase). For all training of the proposed method, we
set the learning rate to 0.001. Since the proposed model
is much smaller, it achieves better performance and conver-
gence with a smaller learning rate. Note that the semantic
segmentation networks with different backbone variations
were trained separately and fixed for all experiments when
the proposed method is involved. The slack variable ξ for
the LR loss was set to 0.001. For training, the input image
size was set to 896 × 896, when possible (limited by the
GPU memory), otherwise 513× 513 were used (the default
value from the original code). The input image in full res-
olution was used during evaluation. The training was done
on a single NVIDIA RTX 2080 Ti GPU.

Furthermore, we fixed the random seeds (set to 42) for
PyTorch and NumPy libraries to limit the effect of random-
ness on the ablation studies, i.e., the data augmentation,
shuffling as well as network weight initialization were the
same. Note that, even though the network weight initial-
ization starts from the same random seed, if the network
architecture is changed, some of the parts of the initializa-
tion weights change as well since the number of calls to a
random number generator are different.

5. Experiments
There are two main experiments – ablation study and

comparison to state-of-the-art methods. The proposed
method (or its components) was trained using the same pa-
rameters, apart from cases where individual components
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Segm Recon Trained Aux. L Avg. AP ↑ Avg. FPR95 ↓
✓ 31.9 71.5

✓ 62.2 (30.3) 19.4 (52.1)
✓ ✓ ✓ 78.9 (16.7) 5.9 (13.5)
✓ ✓ ✓ 79.1 (0.2) 4.9 (1.0)
✓ ✓ ✓ ✓ 82.9 (3.8) 5.1 (-0.2)

Table 1. Ablation study: Components. Performance metrics
are averaged over all datasets. Numbers in brackets show im-
provements in percentage points w.r.t. the previous line. Segm de-
notes segmentation network only (using normalized output logits
of merged classes for road/sidewalk vs. the rest as output), Recon
uses the reconstruction module only (SSIM reconstruction error
is the output), the Trained denotes the use of trained segmenta-
tion coupling and the Aux. L adds loss on SSIM reconstruction.
Note that the simple combination Segm+Recon (multiplication of
the softmax segmentation merged classes and the reconstruction
error) explicitly trains the auxiliary reconstruction loss and there-
fore the Aux. L is checked. The Resnet-101 checkp1 segmentation
model was used in this experiment.

were turned on or off. The segmentation model with the
Resnet-101 [20] backbone, using the checkp1 variation (see
details in the ablation study section), was used in all exper-
iments unless stated otherwise. The used datasets, perfor-
mance measures, and the detailed experiments with results
discussion are described in the text below.

5.1. Datasets

Three standard datasets are used for the evaluation –
Lost-and-Found (LaF) [34], Road Anomaly (RA) [28] and
Road Obstacles (RO) [27]. The datasets contain 1203,
60 and 105 test images respectively. The LaF and RO
dataset are taken from a camera mounted in the car, whereas
RA combines car mounted camera images and artistic pic-
tures of road-like scenarios. Furthermore, Fishyscapes [4]
dataset, which is a subset of Lost-and-Found dataset, is used
for result compatibility with [27]. We extend the annotation
of the Road Anomaly dataset with a coarse road segmenta-
tion, to make available the same ground-truth layer which
is provided for the other datasets. Two sets of performance
measures are adopted from [34, 4, 27], i.e., True Positive
Rate (TPR) and False Positive Rate (FPR) and Precision
and Recall. These measures are summarised by FPR at 95%
TPR (FPR95) and average precision (AP), respectively. All
evaluation is computed using the road region only, similarly
to prior work [28, 27, 34].

5.2. Ablation Study

We show two experiments investigating different aspects
of the proposed method – contribution of the individual
components, backbone architecture, and design choices.
It is important to assess the influence of the backbone
architecture and the overall performance of the semantic
segmentation network because these components are fixed

Backbone Val. mIoU Avg. AP ↑ Avg. FPR95 ↓
Mobilenet v2 61.2 78.7 6.8
Xception 50.3 82.1 5.8
Resnet-101 checkp1 51.6 82.9 5.1
Resnet-101 checkp2 66.1 83.7 4.4

Table 2. Ablation study: Backbone architecture – influence of seg-
mentation backbones on performance measures. Results for the
ResNet backbone are included for two checkpoints. The metrics
are averaged over all datasets. The differences in performance are
mostly marginal (Avg. AP 81±3, Avg. FPR95 5.5±1.3), support-
ing the claim that the proposed method helps significantly regard-
less of the backbone architecture and. Furthermore, is shows the
ability of the segmentation coupling to exploit efficiently the given
segmentation model, regardless of its strength which is expressed
as mean IoU on Cityscape validation set (the Val. mIoU column).

(not trained) and therefore a different backbone could not
be able to capture a necessary features or context for the
reconstruction module. All variants of the segmentation
network (DeepLab V3 [7]) with different backbones
were trained on Cityscapes [11] dataset (evaluations of
segmentation networks trained on different datasets are left
for future work).

Individual Components. The results in Table 1 show the
performance of the method’s individual components turned
on or off. The tested components are: (i) the Segm –
segmentation network only using normalized output log-
its of merged classes for road/sidewalk vs. rest as the out-
put. The class merging use max operator over channels
for the merging classes. (ii) The Recon uses the recon-
struction module only with the SSIM reconstruction error
as its output, (iii) the Trained denotes the use of trained
segmentation coupling, i.e., the fusion of the reconstruction
error and the semantic segmentation logits is being trained
as described in Section 3 and (iv) the Aux. L is a meta-tag
signalizing the fact that there is some part of the training
loss directly applied on to the output of the reconstruc-
tion module (e.g. SSIM). For example, the loss for training
the Segm+Recon+Trained (row 4 in Table 1) is the cross-
entropy (Eq. 3) applied to the binary classification output of
the segmentation coupling layer – no direct loss on the out-
put of reconstruction module. The “all checked” use Eq. 4,
where the reconstruction loss (Eq. 2) is added to the cross-
entropy, hence, the Aux. L field is checked. Note that the
simple combination Segm+Recon uses multiplication of the
softmax of merged semantic segmentation logits with the
reconstruction error for the anomaly class, which explic-
itly trains the auxiliary reconstruction loss and therefore the
Aux. L is checked for this combination as well.

The results show clearly the significance of the recon-
struction module, that alone has an average performance
comparable to e.g., Resynthesis [28] method. By adding
the trainable coupling to the semantic segmentation, we
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Method
Lost and Found Road Anomaly Road Obstacles Fishyscapes:LaF Average
AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

SDC-Net softmax 14.0 58.8 54.6 76.8 3.8 99.3 2.6 92.7 18.8 81.9
logits 28.4 83.9 55.0 85.3 36.8 87.5 24.0 92.0 36.1 87.2

RBM 13.1 85.3 47.7 91.3 17.7 87.2 11.4 85.4 22.5 87.3
Resynthesis [28] BayseSegNet 61.9 46.6 70.6 65.8 39.3 16.7 63.8 31.7 58.9 40.2

PSPNet 62.9 43.1 76.4 48.1 59.2 5.5 66.7 2 3.1 66.3 24.9
Outlier Det. [3]∗ combined prob. – – – – 68.1 19.1 68.3 10.7 68.2 14.9

random sz. patches – – – – 70.6 2 1.0 60.9 27.0 65.8 14.0
fixed sz. patches – – – – 31.4 28.1 50.0 73.9 40.7 51.0

Erase [27]∗ – – – – 75.9 2 15.8 81.0 2 9.1 78.5 15.5
JSR-Net (Ours) Resnet-101 checkp1 79.4 1 1 3.6 92.7 2 2 12.6 73.9 1.7 85.5 1 1 2.7 82.9 2 2 5.1

Resnet-101 checkp2 78.0 2 2 4.1 94.4 1 1 9.2 84.0 1 1 0.4 78.3 4.0 83.7 1 1 4.4
Table 3. Performance comparison of the proposed and state-of-the-art methods on three standard datasets and on Fishyscapes:LaF, a subset
of Lost and Found. The last column block shows the results averaged over all datasets. The best and the second best results are marked by
the corresponding badges. Our method (with Resnet-101 checkp2) achieved best results on all but one datasets, in both average precision
(AP) and in the false positive rate at the operating point of 95% true positive rate (FPR95). In average performance, it is clearly superior to
all competitors. The incomplete results of methods marked by ∗ were taken from [27], see text for details.

can reduce the false positives by incorporating knowledge
about the known classes. The detection rate can be further
increased by 3.8%, by adding the auxiliary loss LR to the
reconstruction module with negligible increase of false
positives.

Different Backbone Architectures. The results in Ta-
ble 2 show the anomaly detection performance for differ-
ent segmentation network backbone architectures. Three
different types of backbones were used in the DeepLab-
v3 [7] segmentation network, namely, Mobilnet-v2 [37],
Xception [10] and Resnet-101 [20]. The results in Table 2
demonstrate the effectiveness of our method, regardless of
backbone architecture. Moreover, the effect of the semantic
segmentation performance was tested on Resnet-101 archi-
tecture using two checkpoints with different segmentation
performance, 51.6 vs. 66.1 mIoU. The semantic segmen-
tation performance was measured on the Cityscapes [11]
validation set. The setup of training the Resnet-101 back-
bone was intentionally changed to produce two different set
of weights to show that the proposed method adapts to the
different quality of the segmentation and extracted features
within the same backbone architecture. Specifically, the
size of training images and number of training epochs were
lowered.

All tested backbone architectures, when paired with our
proposed method, achieved very high anomaly detection
scores outperforming all competitors in average perfor-
mance over all datasets. The differences in performance
of the proposed JSR-Net w.r.t. the different backbones
are mostly marginal (in the range Avg. AP 81 ± 3 and
Avg. FPR95 5.5 ± 1.3), supporting the claim that the pro-
posed method helps significantly regardless of the back-
bone architecture. Moreover, the segmentation performance
seems not to be a crucial factor, but rather the capacity
of the backbone since it is fixed and not trained together

with the reconstruction module (see Mobilenet vs. Resnet-
101 checkp1). Conversely, a better semantic segmenta-
tion performance improves the anomaly detection by only
a small margin (resnet-101 checkp1 vs. checkp2, which
highlights the ability of the segmentation coupling to ex-
ploit efficiently the given segmentation model, regardless
of its strength, in our case expressed as the mean IoU on
Cityscape validation set.

Design choice Avg. AP ↑ Avg. FPR95 ↓
proposed 82.9 5.1
LR = L2 69.5 (-13.4) 10.2 (-5.1)
w/o augmentation 60.9 (-20.0) 11.5 (-6.4)

Table 4. Ablation study: Design choices – Two main design
choices are tested: (i) reconstruction error measure (SSIM vs. L2
distance measure), and (ii) proposed anomaly data augmentation.
The w/o augmentation row is the performance when excluding
the novel augmentation strategy (Section 3.3) of random anoma-
lies ”painted” on the road. The performance is averaged over all
datasets. The large performance gain supports the choice of SSIM
(over the L2 metric) and the validity of the augmentation strategy.

Design Choices. The results in Table 4 validate two impor-
tant design choices: (i) reconstruction error measure (SSIM
vs. baseline L2 distance measure), and (ii) the proposed
simple anomaly data augmentation during training. For the
evaluation, everything was kept the same except one as-
sessed design choice. Both the use of a more robust re-
construction measure and the anomaly data augmentation
strategy improves the anomaly detection performance sig-
nificantly, thus supporting the validity of our choices.

5.3. State-of-the-Art Comparison

This experiment compares the proposed JSR-Net to
recent state-of-the-art methods for road anomaly detec-
tion [28, 27, 12], out-of-distribution detection method [3]
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Figure 3. Performance comparison on all datasets in the form of Precision-Recall (top row) and ROC (bottom row) curves. In the legend,
the numbers next to each method show the average precision (AP) for the Precision-Recall curves and FPR95 for the ROC curves. For the
ROC curve we show only the most relevant part – up to 10% FPR – since methods with higher FPR are not usable in real-world application.

(for more details about its variations, readers are re-
ferred to [4]) and the baseline state-of-the-art segmentation
method [53]. The authors implementation was used for the
methods [28, 53] with the provided pre-trained models. The
implementation of [12] and the pre-trained model was pub-
lished in the codebase of [28].

There were several issues with obtaining results for the
methods in [27, 46, 3]. The code for the [27] was not pub-
lished at the time of publication. The method SynthCP [46]
was trained only on synthetic data and we did not manage to
get reasonable results (higher than SDC-Net baseline) when
trained on real data (Cityscapes, Lost and Found). A simi-
lar problem with training was encountered with the outlier
detection method [3]. For those reasons, we used results on
the overlapping datasets from [27], to at least provide par-
tial comparisons. Note that the datasets used in [27] are a
subset of datasets used in our evaluation.

The results are summarized in Table 3 and Figure 3,
which show the Precision-Recall and ROC curves. The pro-
posed method outperforms the state-of-the-art and signifi-
cantly improves anomaly detection performance, especially
in reducing the false positive rates across a wide range of
operation points. Note that our method performs consis-
tently across multiple different datasets as opposed to e.g.,
Resynthesis [28] method, which achieves very low FPR95

(< 5.6%) on two datasets but for other two it is almost ten
times larger (> 43.0%).

6. Conclusions

In this paper, we propose a novel method, JSR-Net, for
detecting unknown “stuff” (i.e., anomalies) on the road
and demonstrate its effectiveness in the context of au-
tonomous driving applications. We formulated the problem
as anomaly detection, since the unknown object’s appear-
ance cannot be learned directly. To that end, we proposed a
reconstruction module that can be used with many existing
semantic segmentation networks. The reconstruction mod-
ule is trained to recognize and reconstruct road surfaces and
its inability to reconstruct a part of the road is used as an in-
dicator of an anomaly. The reconstruction error is coupled
via a trainable coupling block with the semantic segmenta-
tion to incorporate the information from known classes and
to produce final per-pixel anomaly scores.

We evaluate our method on three standard datasets and
one derivative – Lost and Found, Road Anomaly, Road
Obstacles, and Fishyscapes:LaF – demonstrating signifi-
cant improvements in anomaly detection compared to other
state-of-the-art methods on all datasets, except one, where
it performed comparatively.

Despite excellent results and the ability to detected
anomalies of diverse sizes (e.g. from small bottles to a truck
tire), the method still produces false positives, especially on
thin structures e.g. long cracks or lane markings. We also
observed performance deterioration for lower image qual-
ity, e.g. due to strong JPEG artefacts or acquisition trough
dirty windows (see the supplementary material).
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