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Abstract

Recent progress in multi-object tracking (MOT) has
shown great significance of a robust scoring mechanism
for potential tracks. However, the lack of available data
in MOT makes it difficult to learn a general scoring mech-
anism. Multiple cues including appearance, motion and
etc., are limitedly utilized in current manual scoring func-
tions. In this paper, we propose a Multiple Nodes Track-
ing ( MNT) framework that adapts to most trackers. Based
on this framework, a Recurrent Tracking Unit (RTU) is de-
signed to score potential tracks through long-term informa-
tion. In addition, we present a method of generating simu-
lated tracking data without real data to overcome the defect
of limited available data in MOT. The experiments demon-
strate that our simulated tracking data is effective for train-
ing RTU and achieves state-of-the-art performance on both
MOT17 and MOT16 benchmarks. Meanwhile, RTU can be
flexibly plugged into classic trackers such as DeepSORT
and MHT, and makes remarkable improvements as well.

1. Introduction
Multi-object tracking (MOT) has attracted a lot of at-

tention for its wide application such as surveillance, cell
analysis and autonomous driving. Tracking-by-detection
has emerged as the preferred paradigm to solve MOT for
its simple pipeline: (i) detecting object locations, (ii) form
tracks by linking corresponding detections across time [2].
In particular, the performance of the linking step, or the data
association highly depends on a robust scoring mechanism.

Currently, the scoring mechanisms in most approaches
only take account of the appearance feature extracted from
the cropped object patches [29]. The tracking accuracy
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Figure 1. The processing procedure of our methods. RTU is
trained on simulated data first. After building the track tree, each
possible association is evaluated by RTU to get the score. Then
the tracker selects the best one.

of these methods is limited due to the following reasons.
Firstly, objects across frames suffer from frequent occlu-
sions and pose variation, which leads to much noise in the
appearance features. Secondly, much long-term informa-
tion is lost since they can not consider the temporal relation-
ship. Even some works [10, 18, 32, 27] utilize multiple cues
such as appearance and motion, the manual scoring func-
tion is unsatisfactory when the objects are missing or oc-
cluded. Moreover, the parameters of these methods should
be adjusted for new scenes. A general scoring mechanism is
urgently needed to adapt to various scenarios and tracking
frameworks.

To solve this, neural network based scoring methods
have attracted many researchers. For example, Kim et .al
[11] use a specialized gating mechanism in RNN to aggre-

13219



gate information and score tracks over time. Sheng et al.
[19] present the STCCNet based on spatial-temporal atten-
tion to restrain the occlusion in tracklets. They indicate that
their method is able to get more accurate scores. However,
these methods suffer from the lack of available data. Be-
cause of the diversity of the datasets (MOT15˜20), these
methods should be retrained for each dataset. Even when
using another feature extractor, they have to train the model
again for adapting new types of features.

To solve the problems mentioned above, a general track-
ing framework is presented by introducing three types of
basic nodes to reconstruct the data association, as shown in
Fig. 1. Based on this, a transplantable Recurrent Tracking
Unit (RTU) is proposed to score tracks by utilizing multiple
long-term cues. In addition, we explore the distribution of
real data and generate simulated tracking data to train RTU
avoiding the lack of real data. Experimental results indi-
cate that our method achieves state-of-the-art performance
on both MOT17 and MOT16 benchmarks, and our RTU
trained by simulated tracking data improves the other track-
ers significantly.

This paper presents three main contributions:

• Construct a general Multiple Nodes Tracking frame-
work, which can be extended to most trackers and
adapts to various scenarios.

• Propose RTU to solve the scoring problem of tracks,
which integrates multiple cues in a simple but efficient
way. RTU is also flexibly plugged into other trackers
to bring improvement.

• Present a method for generating simulated tracking
data to replace real data. Based on MNT and RTU,
it is easy to fuse kinds of cues in this simulated data.

2. Related Work
Tracking-by-Detection. Most famous MOT methods

[9, 5, 30, 17, 24] belong to the tracking-by-detection
paradigm, which heavily depends on the performance of the
underlying detector. The progress of detector have greatly
boosted researches in MOT, but it still remains a challenging
task, especially in crowded scenarios. Generally, previous
works are classified into online methods and batch methods.

Online methods only utilize past information in data as-
sociation, and usually reach real-time performance. For ex-
ample, SORT [4] creates Kalman filter for each past track
to estimate their state, and then associations new detections
with tracks by motion metric. Further, DeepSORT [27] in-
troduces a ReID network for measuring appearance similar-
ity, while motion information is used to gate. Both these two
methods solve the data association by the bipartite graph.
Currently, new online methods such as JDE [26] and Fair
[31] achieve SOTA performance on the benchmark, but they

still adopt a similar association scheme as DeepSORT. Their
improvement benefits from their powerful detectors more.
Our method also follows tracking-by-detection but mainly
focuses on the data association scheme.

Batch methods can refer both past and future information
to associate detections. Because they take account of more
cues, their permformance is better than online methods. Mi-
lan et al. [15] combine multiple cues by a conditional ran-
dom field method. Kim et al. [10] revise MHT in object
tracking with a powerful appearance model. Sheng et al.
[18] extend MHT to an iterative paradigm by tracklet-level
association. In order to utilize the long-term information,
Zhang et al. [34] design an LSTM-based appearance model
and indicate that the training data is important.

Scoring Mechanism. It is common to formulate track-
ing as a graph, where each detection corresponds to a node
and each edge indicates a possible link [2]. The data asso-
ciation can then be formulated as maximum flow [1], maxi-
mum weight independent set, or bipartite graph with either
fixed costs (scores) based on similarity or combinational
costs (scores) including appearance, motion, and etc.

Online methods prefer the bipartite graph because of its
efficiency. Typically, the appearance similarity is regarded
as the score of each edge in the bipartite graph based on
methods [4, 27, 26]. Then this graph is solved by the
Hungarian algorithm with motion gating. Because the ex-
ploitation of appearance and motion cues is too simple,
these methods perform worse in long-term tracking. Batch
methods consider various cues more richly. For instance,
MHT DAM [10] takes a manual scoring function to com-
bine appearance and motion information. eHAF [20] intro-
duces the interaction cues to solve the identity switch prob-
lem in crowded scenes.

Nerual network based methods [23, 37, 8] have shown
their competitive results recently. TLMHT [34] trains an
LSTM to score possible tracks and the result indicates that
their model performs better in long-term tracking. Xv et al.
[29] design a new feature representation to score the associ-
ation. Kim et al. [11] investigate what is stored in RNN dur-
ing scoring and introduce a specialized gating mechanism in
RNN. Although these methods have shown their potential,
they are bound by the available data, i.e., the training data is
limited in current datasets. And it is inconvenient to apply
them in other methods, because they are trained on the data
with different distribution.

Our approach is motivated by these works. In order to
design a general scoring mechanism that can utilize mul-
tiple long-term cues, we present a general tracking frame-
work that can be extended to most trackers. Then we pro-
pose the transplantable RTU to integrate kinds of informa-
tion for scoring tracks. Finally, we present a method to gen-
erate simulated tracking data, which can be used to train
RTU or similar networks.
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3. Method

3.1. The Multiple Nodes Tracking Framework

Popular tracking methods such as MHT DAM [10],
DeepSORT [27] and Fair [31] follow the tracking-by-
detection paradigm, which regards the tracking problem as
the association between detections. Different detections are
linked to build track proposals and the trackers finally select
the best proposals to represent objects.
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Figure 2. The processing steps of the Multiple Nodes Tracking
framework (MNT).

In this paper, we propose the Multiple Nodes Tracking
framework (MNT), which follows the tracking-by-detecting
paradigm as well. Different from the aforementioned
works, MNT links three types of basic nodes to build tra-
jectories instead of detections. The correct nodes and false
nodes represent the correctly and falsely linked detections
respectively. We also design the dummy nodes to represent
the missing detections in case of heavy occlusion.

As shown in Fig. 2, each object is represented by a track
tree that contains various nodes. Let Ft denotes the tth

frame in a video. Assuming that there is one non-associated
detection dit−2 in frame Ft−2, it will be initialized as the
root node n1

t−2 for target Oi. For the new frame, the track
tree is extended by linking new basic nodes to existing
nodes to build new branches. Each branch represents a po-
tential track proposal. The nodes are classified by RTU (dis-
cussed in Section.3.2). Specifically, the correct node cor-
responds to the correct association between detection and
target Oi while the false nodes correspond to the false asso-
ciation (only one false node is drawn in Fig. 2). In addition,
a dummy noded is created to denote missing detection. The
target is regarded as lost once it has Nmax = 10 consec-
utive dummy nodes. Repeating this progress, a track tree
is constructed. In order to solve the exponential growth of
the track tree, we adopt the pruning strategy in [10]. Firstly,
each branch is scored by RTU. Then the tree can be solved
by graph theory. The tree is pruned when the optimal solu-
tion is found.

This is a universal tracking framework that adapts to
most tracking methods such as MHT DAM and DeepSORT.

3.2. Recurrent Tracking Unit

In MNT, each branch represents a potential track pro-
posal. It is a core for tracking to score the proposals and
select the best one. Previous works [10, 18, 6, 20, 34, 15]
design manual scoring function via appearance and motion
information, or directly use the appearance similarity as the
score. These manual functions can only use short-term in-
formation, but trajectories are long-term sequences contain-
ing rich temporal information. Motivated by the progress of
the Recurrent Neural Network in sequence data, we pro-
pose the Recurrent Tracking Unit (RTU) in order to solve
such problems.

The track proposal is represented by a node sequence in
unfixed size. Each track proposal is updated recurrently in
each time step. So the procedure of track proposal genera-
tion can be defined as follows:

node ⇒ track

track ∪ node ⇒ new track

⇒ track

(1)

As shown in Eq. 1, one node can be defined as a track,
because sometimes a target only appears once. The union
of an old track and a new node is defined as a new track. So
the node can be the basic recurrent unit of a track.

To record information of each node, we introduce the
state feature into MNT. According to previous works [10,
11], appearance and motion information is essential for
scoring track proposal. Instead of the appearance feature,
this paper sets the appearance similarity between parent
node and new detection as the first dimension of state fea-
ture. The influence of different feature distributions can be
decreased by utilizing similarity, since different types of ap-
pearance features still ensure the high similarity of the same
target. In addition, it can decrease the potential distribution
of the state feature due to its concise representation. The
second dimension is the motion consistency which reflects
the space distance or motion relationship between the par-
ent node and new node. Both appearance similarity and
motion consistency are normalized to [0, 1]. Considering
that detection missing is another important factor, a dummy
indicator is introduced to the third dimension of the state
feature. It is a boolean variable, and is set as 1 when the
node is dummy otherwise 0. We find that some worse de-
tections may result in tracking failures such as false alarm or
identity switches. Thus, the confidence of detections is inte-
grated into the fourth dimension of the state feature, which
is normalized to [0, 1]. For a track proposal, it can be repre-
sented by a sequence of state features. So the state feature,
as the record of tracking information, is input to RTU.

Fig. 3 shows the graphical depiction of RTU. For time
steps t, RTU takes four inputs: the old appearance fea-
ture template Ft−1, the appearance feature Ft of the current
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Figure 3. The structure of RTU.

node, the old hidden state ht−1 and the state feature Xt of
the current node. In the first time step, the appearance fea-
ture template is initialized the same as appearance feature
F0 while the hidden state is initialized to zero.

First, RTU projects the state feature to the hidden space.
Then the reset gate r is computed by:

X ′
t = WxXt

rt = σ(Wr[ht−1, X
′
t] + br)

(2)

where σ is the sigmoid function, Wr and Wx are weight
matrices which are learned, br represents the bias.

Similarly, the update gate z is computed by:

zt = σ(Wz[ht−1, X
′
t] + bz) (3)

where Wz is a learned weight matrix, bz is the bias.
The update of the hidden state is computed by:

ĥt = tanh(Wĥ[rt ∗ ht−1, X
′
t])

ht = (1− zt)ht−1 + ztĥt

(4)

In this formulation, the reset gate chooses to ignore the
previous hidden state and reset with the current input only.

In practice, it is common that some regions of an ob-
ject suffer from occlusion, blur and varied postures. In the
occluded regions, the raw appearance feature is easily pol-
luted. However, the appearance information remembered
from regions of the same position in previous frames can
help to recover the polluted information [13]. This paper
design the Appearance Update Gate (AUG) in RTU to re-
fine the appearance feature, which is defined as follow:

F ′
t = Ft−1 ∗X1

t + (1−X1
t ) ∗ Ft (5)

where X1
t represents the first dimeneion of Xt.

Finally, the hidden state is projected to the score St, after
the Score Compute Module (SCM). It is formulated as:

St = W 2
s (relu(W

1
s ht + b1s)) + b2s (6)

where W 1
s and W 2

s are learned weight matrices, b1s and b2s
are bias.

3.3. Simulated Tracking Data Generation

Although many deep learning-based methods have been
proposed to resolve the problem of scoring potential tracks,
they may perform worse when facing a new scenario. In
other words, they can not generalize satisfactorily in new
dataset since they are influenced by the style of the training
dataset. In addition, their training data is limited by the
scale of the dataset used.

In our tracking framework, each potential track is a node
sequence. It is simple to generate artificial track propos-
als by randomly arranging different nodes. Although this
way ensures that most possible track proposals are covered,
the scale of sample space grows exponentially as the track
length increases. In order to repress this, this paper proposes
a conditional sample strategy.

…

Tree 1 Tree 2

…

Tree 3

t=1

t=i

t=i-1

t=i-2

prune

Figure 4. A pruning process.

First, we take account of the distribution of different
types of nodes during tracking. Pruning is an essential step
for most trackers due to the exponential increase in the num-
ber of potential track proposals. The pruning has a great in-
fluence on the distribution of track proposals. As shown in
Fig. 4, an N-scan (N=2) pruning approach [10] is adopted,
the tracker traces back to the node at frame t−N and prunes
the other branches that diverge from the selected branch at
that node. So only one of the nodes born in time t = i − 1
survives after pruning. This procedure is looping until stop
tracking. The pruned branches (drawn transparent in Fig.
4) are nonexistent for the future nodes (at time t > i) af-
ter pruning at t = i. Because once remove other branches,
the track proposal from frames 1 to i −N is confirmed. In
other words, this confirmed part Tcof nearly fits a condi-
tional probability distribution:

p(Tcof ) = p(nl ∪ nl−1 ∪ nl−2 ∪ ... ∪ n1)

=

l∏
i=1

p(ni|ni−1, ..., n1)
(7)

where p(.) reprents the probability, i means the current time
step, l is the length of the confirmed part of the track.

However, the pruning is not always correct, sometimes it
keeps a false node like tree 3 in Fig. 4. Hence we suppose
that the accuracy of pruning is α, and the probability of a
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track composed of entire correct nodes is:

p(T ) = p(cl ∪ cl−1 ∪ cl−2 ∪ ... ∪ c1) =

l∏
i=1

α (8)

Based on this distribution, the sample space is repressed
to generate simulated tracking data more efficiently. For
each node, we introduce a state feature to record informa-
tion in Section.3.2. Hence, we can generate different nodes
by adjusting their state features.

(a) Fair feature. (b) PCB feature.

Figure 5. The similarity distribution of two kinds of features.

As described in Section.3.2, the state features contain
four types of information. The most important information
is appearance similarity, which reflects the trend of object
appearance to some extend. The appearance feature from
different extractors usually is of great variety in distribu-
tion, which may lead to the different distribution of appear-
ance similarity. We explore the common behind them and
finds some inspiring phenomena. As shown in Fig. 5, the
blue line represents the appearance similarity of the same
target while the orange line denotes the similarity of differ-
ent targets. In Fig. 5(a), with Fair [31] feature, we find
that the appearance similarity of the same target follows
normal distribution approximately. Meanwhile, the similar-
ity of different targets follows another normal distribution
with a different mean value. When using PCB [21] fea-
ture, the similarity of the same targets is still in an approx-
imately normal distribution. Although there is a huge gap
between the similarity distribution of different features, the
statistical results show that the same target maintains a high
appearance similarity ( bigger than 0.8) with different fea-
tures. Similarly, we observe the distribution of normalized
Euclidean distance and find that it is a normal distribution
as well. As for the confidence in state feature, it lies more
randomly within the range of [0, 1]. According to these
observations, it is easy to generate different nodes. For ex-
ample, a simulated correct node can be built with a high
appearance similarity and high Euclidean distance.

Further, the corresponding label of simulated data is an-
other core for training RTU. In order to solve this, we in-
troduce a reward mechanism to ensure the order of data.
We assign different rewards to those nodes and calculate

the total reward of each track. Obviously, the correct nodes
should deserve the biggest reward rc, while the dummy and
the false get less reward rd and rf . Exactly, the reward for
the false nodes is called ”penalty” instead. The total reward
of a track can be regarded as its score. Hence the training
label, that is, the ground truth score of each simulated track
proposal is computed by :

label =rc

L∑
t=1

1c[Xt] ∗ (X(1)
t +X

(2)
t )

+ rd

L∑
t=1

1d[Xt] ∗ (X(1)
t +X

(2)
t )

− rf

L∑
t=1

1f [Xt] ∗ (2−X
(1)
t −X

(2)
t )

(9)

where * represents the element-wise product, 1c[.] is a
boolean variable that is 1 when Xt belongs to a correct
node otherwise is 0. 1d[.] and 1f [.] are the corresponding
boolean variable for the dummy node and false node. X(i)

t

denotes the ith dimension of Xt.
This design ensures that the track proposals are strictly

ordered by the total reward, which is of greate benefit to
select the best track. With this label, RTU can be trained by
mean squared error (MSE) loss in an end-to-end way.

4. Experiments

In this section, the implementation details are described
first and then the hyperparameter searching experiments are
shown. Next, the ablation study experiments are conducted
to demonstrate the effectiveness of our methods. In addi-
tion, we plug RTU into other trackers to valid its transporta-
bility in effect analysis experiments. Finally, we report the
results of the proposed approach compared to other state-
of-the-art tracking methods based on MOT17 and MOT16
datasets.

4.1. Implementation Details

Network Architecture and Training. It is discussed by
Kim et al. [11] that the hidden state dimension dh = 512
has a good performance when processing appearance and
motion information. So in RTU, the hidden state is of di-
mension 512. Two fully connected layers with dimension
1024 are applied after updating the hidden state, which are
used to compute the final score (see Section.3.2). During
training, we use the standard Adam optimizer with an ini-
tial learning rate of 1 × 10−4. The pruning accuracy α
is set as 0.8 according to the statistic result from trackers.
RTU is trained on the simulated tracking data without any
other dataset. In each epoch, we randomly generate differ-
ent length training data from min length Lmin = 2 to max
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(a) IDF1 surface (PCB) (b) MOTA surface (PCB) (c) IDF1 surface (Fair) (d) MOTA surface (Fair)

Figure 6. The surfaces of IDF1 and MOTA in searching space. In (a) and (b), the tracker utilizes PCB [21] as the appearance feature
extractor while use Fair [31] in (c) and (d).
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Figure 7. The tracking result of MOT17-09. The red arrows point to the linked detections and the red line represents the association while
the red dotted line denotes the correct association.

length Lmax = 355. To accelerate the training process, all
the training data is padding to the max length of 355.

Datasets and Evaluation Metrics. Two MOT Bench-
marks [14] are utilized for evaluation in our experiments.
These benchmarks are widely used in multi-object track-
ing to evaluate different trackers for the large difference in
illumination camera motion and etc. MOT17 has 7 train-
ing sequences and 7 testing sequences. These sequences
have different frame rates, resolutions, viewpoints and etc.
For quantitive evaluation, the CLEAR MOT [3] metrics are
adapted in this paper, including MOTA↑ (multiple object
tracking accuracy), IDF1↑ (IDF1 score), FP↓ (false posi-
tive), FN↓ (false negatives) and IDs↓ (identity switches).
MOTA mainly reflects the most tracks are tracked or not,
which is easily affected by the total number of detections.
IDF1 concerns whether a target is labeled with a correct ID.

4.2. Hyperparameter Search

There are three important hyperparameters in our meth-
ods, so we search the parameters space to maximize IDF1
and MOTA. Accourding to the formulation in Section.3.3,
it is obvious that the reward rc of correct nodes should be
bigger than the reward rd of the dummy. If we divide both
sides of Eq. 9 by rf (rf > 0), then the order of label is
stable and rf is reduced. Based on this rule and some ex-

perience, the hyperparameter searching space can be deter-
mined: rc ∈ [2, 10], rd ∈ [1, rc).

In order to acquire more robust parameters, we repeat
the hyperparameters searching experiments with different
appearance features. First, the tracker obtains features from
PCB. As shown in Fig. 6 (a) and (b), when rc = 2 and
rd = 1, both IDF1 and MOTA are lowest. As rc increases,
MOTA and IDF1 climb rapidly. When adjusting rd, the re-
sults show that MOTA is more stable since it relies on detec-
tion quality more. But IDF1 first increase and then drops.

Setting IDF1↑ MOTA↑ IDs↓ FP↓ FN↓
baseline 63.1 78.4 809 1330 22034
+D 78.3 82.2 503 6044 13359
+C+F+D 80.6 83.2 494 5323 13706

Table 1. Ablation study of various settings of node types and scor-
ing mechnism.

Similar phenomenon can be observed with features from
Fair [31]. As shown in Fig. 6 (c) and (d), IDF1 and MOTA
are at the lowest point when rc and rd are too small. When
tuning rc, we find that MOTA improves significantly at be-
gin. But the IDF1 surface presents slightly differently with
Fig. 6 (a). It reaches the highest with rd = 5, but in Fig.
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IDF1↑ MOTA↑ FP↓ FN↓ IDs↓ MT%↑ ML%↓ Frag↓ MOTP↑
MHT DAM [10] 76.2 83.1 4566 13667 659 66.8 13.5 886 81.6
+ RTU 79.4 83.5 4344 13714 457 66.0 12.7 767 81.7
MLT [33] 77.8 81.8 5245 14621 480 61.5 16.7 822 81.7
+ RTU 78.7 83.9 3928 13653 522 63.7 13.7 907 81.7
DeepSORT [27] 72.5 83.6 2841 14811 691 61.7 5.9 2011 81.1
+ RTU 76.3 83.7 2814 14826 681 62.2 6.1 2010 81.1

Table 2. The effect analysis experiments on MOT17 training dataset. All trackers acquire appearance features from PCB[21].

Method IDF1↑ MOTA↑ FP↓ FN↓ IDs↓ MT%↑ ML%↓ Frag↓ MOTP↑
MHT DAM [10] 79.4 84.0 5757 11530 626 71.1 10.6 1018 81.6
+ RTU 79.6 84.1 5651 11398 760 71.3 10.4 1143 81.6
MLT [33] 80.7 83.9 5745 11750 519 66.3 13.9 960 81.5
+ RTU 82.2 85.6 4003 11703 430 68.7 12.2 946 81.7
DeepSORT [27] 75.6 80.8 7117 13690 673 61.1 10.4 848 81.6
+ RTU 81.4 83.5 2564 15130 768 60.8 12.5 1964 82.0

Table 3. The effect analysis experiments on MOT17 training dataset. All trackers acquire appearance features from Fair [31].

6 (a) it reaches the highest with rd = 4. Hence we adopt
rc = 10, rd = 4.5 in other experiments.

4.3. Ablation Study

As shown in Tab. 1, we conduct the ablation study ex-
periment to validate the effectiveness of each component.
In the ablation study, all experiments use the same detection
provided by [31]. The baseline is a naive MHT framework,
which is modified from [18]. It only implements data as-
sociation, pruning and optimization. The division of three
types of nodes is not included. In addition, the baseline uses
the same manual scoring function as [18]. We add dummy
nodes (D) to the baseline and still use the manual scoring
function. The result shows that IDF1 increases from 63.1
to 78.3, because dummy nodes can represent the missing
detections and the fragmented tracks are linked to a com-
plete trajectory. A significant reduction in FN is observed,
indicating that most false negatives are suitably estimated
by dummy nodes. Trajectories are more completed and
smoother than baseline, so MOTA improves to 82.2.

Further, the manual score function is replaced with RTU
to classified correct (C) and false nodes(F). As shown in
Fig. 7, the tracker (baseline+D) associates the man with ID
2 falsely due to the heavy occlusion at 246th frame. But af-
ter adding RTU (baseline +C+F+D), the tracker refinds the
correct association. The results in Tab. 1 show that it is ob-
vious that IDF1 and MOTA raise by 2.3 and 1 respectively.
Because RTU can classify the correct nodes and false nodes
according to historical information, the track proposals con-
taining false nodes get lower scores. The sum of FP and FN
decrease 374, which ensures the unity of targets’ identity.
Hence MOTA reaches 83.2 and IDF1 improves to 80.6.

4.4. Effect Analysis

To demonstrate the effectiveness and university of our
method, we choose three famous open-sourced trackers to
perform a series of experiments. The scoring procedures
of these trackers are replaced with RTU. In addition, two
kinds of appearance feature are adopted in these experi-
ments to prove the robustness of our approach. The first
is proposed by Zheng et al. [21] (denoted by PCB), and
is only trained on Market [35]. The second is designed by
Zhan et al. [31], which is trained on many datasets such as
CityPersons [32], Caltech Pedestrian[7], and MOT17 [14].
All the corresponding results are listed in Tab. 2 and 3.

MHT DAM is a classic tracker based on a manual
scoring mechanism. It is obvious that adding RTU into
MHT DAM substantially improves the IDF1 and MOTA by
3.2 and 0.4 respectively, as shown in Tab. 2. Even when us-
ing another appearance feature, MOTA and IDF1 improve
as well.

MLT conducts the association among different length
tracklets, which is of great difference with frame-level
methods. We replace its score module with RTU accord-
ingly and the results improve as well. As shown in Tab.
2, when adding RTU to MLT, the IDF1 indicator increases
by 0.9 and MOTA reaches 83.9. This result indicates that
RTU is still adaptable to tracklet-based methods, since the
association among tracklets still can be described by MNT.

DeepSORT is a famous real-time tracker, which is the
basis of many new trackers such as Fair [31]. It solves the
association by the bipartitegraph so performs worse than
others in IDF1. Here, dummy nodes are introduced into
DeepSORT and the weight (score) in bipartite is computed
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Method IDF1↑ MOTA↑ FP↓ FN↓ IDs↓ MT%↑ ML%↓ Frag↓ MOTP↑
TubeTK [16] 58.6 63.0 27060 177483 5137 31.2 19.9 5727 81.1
GSDT [25] 68.7 66.2 43368 144261 3318 40.8 18.3 8046 79.9
CenterTrack [36] 64.7 67.8 18498 160332 3039 34.6 24.6 6102 78.4
TraDes [28] 63.9 69.1 20892 150060 3555 36.4 21.5 4833 78.9
MLT [33] 70.1 69.3 35844 135888 1347 38.5 39.0 2028 81.3
CSTrack [12] 72.9 74.9 23847 114303 3567 41.5 17.5 7668 80.9
Fair [31] 72.3 73.7 27507 117477 3303 43.2 17.3 8073 81.3
ours 75.0 74.9 32007 107616 1812 49.7 18.9 1824 81.7

Table 4. Tracking performance on MOT17 benchmark dataset.

Method IDF1↑ MOTA↑ FP↓ FN↓ IDs↓ MT%↑ ML%↓ Frag↓ MOTP↑
TubeTk [16] 62.2 66.9 11544 47502 1236 39.0 16.1 1444 78.5
TraDes [28] 64.7 70.1 8091 45210 1144 37.3 20.0 1575 78.8
LMP [22] 70.0 71.0 7880 44564 434 46.9 21.9 587 80.2
Fair [31] 72.8 74.9 10163 34484 1074 44.7 15.9 2567 81.2
CSTrack [12] 73.3 75.6 9646 33777 1121 42.8 16.5 2450 80.8
ours 76.0 76.5 11438 30866 584 51.5 17.0 597 81.6

Table 5. Tracking performance on MOT16 benchmark dataset.

by RTU. As shown in Tab. 2, RTU boosts the performance
of DeepSORT in almost all indicators. DeepSORT prunes
at each frame so that loses much available information. But
with RTU, historical information is able to be recurrently
stored in the node. So even it is a bipartitegraph-based
method, it still can utilize long-term information via RTU.

As shown in Tab. 3, when we take the feature design
in [31], all the trackers obtain remarkable improvements by
RTU as well. This indicates that not only RTU is effective
to other trackers, but also the proposed simulated tracking
data is robust and efficient, so it is easy to embed RTU into
other trackers.

4.5. State-of-the-art Comparison

In Tab. 4 and Tab. 5, we compare our tracking frame-
work with other latest published trackers on the MOT17 and
MOT16 benchmarks. We use the same model and setting as
Section.4.2 as our final method for evaluating on the bench-
marks. The input detection is provided by [31]. The results
show that our methods conduct state-of-the-art performance
among other methods.

As shown in Tab. 4, we achieve the highest IDF1 by
75.0, 2.7 higher than the second results given by Fair, be-
cause our RTU restrains the identity switches and fragmen-
tation. Since RTU can classify false nodes and correct nodes
according to long-term information, our tracker reaches the
best IDF1 by 74.9. Meanwhile, the dummy node in MNT is
effective for detection missing under occlusion. Although
some unprecise dummy nodes are regarded as FPs, those
precise ones can complement the missing detections suit-
ably. So our method achieves the lowest FN.

Tab. 5 shows the results compared on MOT16. We still
acquire the best performance on IDF1 and MOTA. The IDs
indicator of ours is half of CSTrack and Fair. Because their
association scheme is easy to make tracking failure over a
long time, especially in crowded scenes. So our result is
smoother and decreases Frag about 2000 compared to them.

5. Conclusions
This paper presents a general tracking framework com-

posed of multiple nodes. To efficiently combine various in-
formation, an extendable state feature is designed for each
node. Based on this, we introduce RTU to combine in-
formation over a long time and score possible tracks. In
addition, we propose a method for generating simulated
tracking data to solve the lack of data in MOT. The experi-
mental results prove that RTU can be flexibly plugged into
other tracks and bring obvious improvements. Meanwhile,
our methods conduct state-of-the-art performance on both
MOT17 and MOT16 datasets.
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