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Abstract

We consider the scalable recognition problem in the fine-
grained expert domain where large-scale data collection
is easy whereas annotation is difficult. Existing solutions
are typically based on semi-supervised or self-supervised
learning. We propose an alternative new framework, MEM-
ORABLE, based on machine teaching and online crowd-
sourcing platforms. A small amount of data is first labeled
by experts and then used to teach online annotators for
the classes of interest, who finally label the entire dataset.
Preliminary studies show that the accuracy of classifiers
trained on the final dataset is a function of the accuracy
of the student annotators. A new machine teaching algo-
rithm, CMaxGrad, is then proposed to enhance this accu-
racy by introducing explanations in a state-of-the-art ma-
chine teaching algorithm. For this, CMaxGrad leverages
counterfactual explanations, which take into account stu-
dent predictions, thereby proving feedback that is student-
specific, explicitly addresses the causes of student confu-
sion, and adapts to the level of competence of the student.
Experiments show that both MEMORABLE and CMaxGrad
outperform existing solutions to their respective problems.

1. Introduction
The success of deep learning in computer vision has been

largely driven by large-scale datasets. Many breakthroughs,
made across various tasks, have benefited from large-scale
and well-curated datasets like ImageNet for object recogni-
tion [6], COCO for object detection and segmentation [23],
Kinetics for action recognition [19], etc. These datasets
usually contain common objects, scenes, or actions and thus
can be scalably annotated on crowdsourcing platforms such
as Amazon Mechanical Turk (MTurk) [14]. When this is
possible, we say that learning is scalable. However, this
is usually not the case for expert domains, such as biol-
ogy or medical imaging. While data collection can still be
easy in these domains, annotations require highly special-
ized and domain-specific knowledge. For example, while it
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Figure 1: The proposed MEMORABLE framework is a new solu-
tion to the problem of large-scale recognition in fine-grained do-
mains. 1⃝ A large-scale raw dataset (D) is collected and a small
subset delivered to experts, who produce a labeled dataset Dl; 2⃝
A neural network is trained on Dl or semi-supervised trained on
Dl ∪Du, whereDu = D−Dl; 3⃝ A teaching tutorial, composed
of a teaching set L of images and associated explanations, is cre-
ated from Dl with the CMaxGrad algorithm, and used to teach
human annotators the target categories; 4⃝ human annotators label
the unlabeled data Du. Finally, the classifier is re-trained on the
fully labeled datset D. (Red and blue cylinders represent whether
data is labeled or not.)

is easy to crawl the web or deploy cameras in the wild to
collect a large number of animal images, it is usually ex-
pensive to recruit the biologists or taxonomists needed to
label them. The resulting lack of large annotated datasets
hampers the application of deep learning to expert domains.
For example, the largest existing bird dataset, NAbirds, only
contains about 48k instances [37]. Even the recent and
largest biological dataset, iNaturalist, contains only about
850k instances [38]. This is smaller than ImageNet, pro-
posed about 10 years ago, and pales in comparison to the
largest datasets of everyday objects, e.g. Open Images with
9M images [20].

Since labeling is difficult in expert fine-grained domains,
scalable learning must take advantage of small expert-
labeled datasets and large amounts of unlabeled data. This
motivated extensive research on less label-intensive forms
of learning, including few-shot learning, transfer learning,
semi-supervised learning, and self-supervised learning. For
example, models pre-trained on an everyday domain by su-
pervised learning are frequently transferred to a target fine-
grained domain by fine-tuning. Another strategy is to learn
a good feature extractor by self-supervised learning, which
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requires no labels, and then fine-tune a classifier at the top
of it on a small set of labeled target data. However, these
approaches usually underperform scalable supervised learn-
ing. For example, state-of-the-art self-supervised learn-
ing with SimCLR [3] underperforms a supervised baseline
when only a subset of the samples are labeled, especially on
fine-grained domains [43].

Unlike all these approaches, we pursue the alternative so-
lution of scaling up the process of data annotation. While
this was a pie in the sky idea in the past, two recent develop-
ments now make it promising. First, several crowdsourcing
platforms, like Amazon Mechanical Turk, Sama [15], mi-
croWorkers [13], or Clickworker [12], have appeared in re-
cent years, making it easier to recruit large numbers of im-
age annotators online. Second, research has been steadily
increasing in the area of machine teaching [48, 47, 28],
showing potential to develop algorithms capable of teaching
these annotators the domain-specific knowledge needed to
label expert data. While these developments are promising,
there have been so far no efforts to study how they can be
combined into a complete framework for scalable learning.
Typically, machine teaching papers only evaluate the accu-
racy of the labeling produced by the annotators taught by
their algorithms. While this is informative, it does not fully
address the scalable learning problem, which also includes
the design of deep learning systems using those annotations.
This raises an additional set of questions, such as what qual-
ity must the labels have to guarantee effective deep learn-
ing performance, how can the machine teaching algorithms
achieve that quality, and whether noisy label learning algo-
rithms [22, 9] have a role in the process.

In this work, we address these questions in the context
of scalable learning of recognition systems, which we de-
note as scalable recognition. We propose a new Machine
tEaching fraMewORk for scAlaBLe rEcognition (MEMO-
RABLE) in fine-grained expert domains, illustrated in Fig-
ure 1. A large raw dataset (D) is first collected for a target
fine-grained task, e.g. by deploying cameras in the wild or
crawling archived medical images in a hospital database.
A small subset Dl ⊂ D and |Dl| ≪ |D| is then labeled
by experts. Machine teaching is next used to teach non-
experts, e.g. Amazon MTurk workers, how to label for the
target categories. The unlabeled data Du = D/Dl is finally
labeled by these humans and the complete dataset used to
train an image recognition system. To identify critical areas
of this framework, we perform an initial study with simu-
lated noisy annotations. This shows that the accuracy of the
machine teaching plays a significant role in the accuracy of
the final recognition system. We then hypothesize that bet-
ter machine teaching performance can be achieved by in-
troducing explanations in the machine teaching algorithm.
State-of-the-art machine teaching algorithms [25, 26, 18]
tend not to use explanations. Although there is literature do-

ing [28], it tends to rely on attributive explanations [33, 46]
that do not take into account the student predictions. To
address this problem, we propose the addition of counter-
factual explanations to machine teaching.

Counterfactual explanations [41, 8] take into account
both ground-truth labels and student predictions, highlight-
ing image regions that are most discriminant of student mis-
takes. They are thus most instructive for humans to learn
from their errors. Furthermore, because the explanatory
feedback varies according to the student’s prediction, they
naturally adjust to the level of competence of the student.
We seek to leverage all these benefits by introducing a gen-
eralization of the recent MaxGrad machine teaching algo-
rithm [40], denoted Counterfactual MaxGrad (CMaxGrad),
which is endowed with counterfactual explanations. Exper-
iments show that this algorithm both achieves state-of-the-
art machine teaching performance and enables significant
scalable recognition gains for the MEMORABLE frame-
work. The latter is itself shown to outperform other scal-
able recognition strategies, such as semi-supervised learn-
ing. It is also shown that deep learning systems trained with
MEMORABLE can leverage noisy label training schemes
with surprising effectiveness.

The contributions of the paper are summarized as 1) a
study of the importance of labeling accuracy for the accu-
racy of scalable recognition; 2) the MEMORABLE frame-
work to solve the fine-grained scalable recognition problem,
by leveraging crowdsourcing platforms and machine teach-
ing algorithms; 3) the new CMaxGrad machine teaching
algorithm that introduces counterfactual explanations into
machine teaching; and 4) new benchmarks, based on two
challenging datasets, for the evaluation of scalable recogni-
tion.

2. Related Work
Crowdsourcing platforms There are two types of crowd
sourcing platforms. They provide expert and non-expert
annotation services. Amazon Mechanical Turk [14] is a
widely known and representative one. It has been making it
easy to require simple annotation tasks of significantly huge
size to a large pool of workers. Although Amazon Turk has
been broadly used, most of the workers are non-expert for
a specific target expertise task like fine-grained annotation.
For example, they can help annotate “dog” and “cat”, but
hard to do “California Gull” and “Western gull”. The lack
of prior knowledge of a specific domain makes it hard to
satisfy the requirement of fine-grained expert domain label-
ing. The similar platforms include Sama [15], microWork-
ers [13], Clickworker [12], etc. They all provide similar
services just with slight differences. A comprehensive dis-
cussion of them can be found in [32].

Another type of crowdsourcing platform can give ex-
pertise annotation service. Citizen scientist is a typical
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one [37]. It is non-profit and people in this platform are
nonprofessional scientists or enthusiasts in a particular do-
main. They contribute annotations with the understanding
that their expertise, experience and passion in a domain of
interest. Although it makes it feasible to do expert labeling,
there are some problems. Because of non-profits, it is hard
to guarantee the quality of their results and guarantee that
they are all responsible. This is different from Amazon Turk
where if the annotation results are assessed badly by the re-
quester, the worker would not get the payment. The second
problem is that the active user number is small, especially
on some minor domains. So it is hard to meet the large-scale
annotation requirement. In this work, we use Amazon Turk,
but unlike the common usage, a short course is introduced
preceding the annotation. The worker is trained first and
then annotates. This alleviates the problems of both types.
Semi-supervised and self-supervised learning Semi-
supervised learning describes a class of algorithms that seek
to learn from both unlabeled and labeled samples, typically
assumed to be sampled from the same or similar distribu-
tions. Limited to the space, we refer to [44] for an extensive
survey and [45] for up-to-date development.

Self-supervised learning (SSL) refers to learning meth-
ods in which the model is explicitly trained with supervisory
signals that are generated from the data itself by leverag-
ing some pretext tasks. The pretext tasks can be predictive
tasks, generative tasks, contrasting tasks, or a combination
of them. SSL can benefit almost all types of downstream
tasks, e.g. semi-supervised learning, that can also be used
to evaluate the quality of features learned by self-supervised
learning [3, 4, 2]. Literature [17, 27, 16] is recommended
for an extensive overview.
Counterfactual explanations Given an image of class A
and a user-specified counterfactual class B, counterfactual
explanations produce an explanation to answer “why the
prediction is A but not B” [39, 24, 49, 1, 10]. In computer
vision, the explanations are usually given by visualizations.
Two main approaches to these explanations have emerged.
The first group is based on an image transformation that
elicits the classification as B [39, 24, 49]. The simplest
example is adversarial attack [7, 39], which optimize per-
turbations to map an image of class A into class B. How-
ever, adversarial perturbations usually push the perturbed
image outside the boundaries of the space of natural im-
ages. A more plausible alternative is to exhaustively search
the space of features extracted from a large collection of im-
ages, to find replacement features that map the image from
class A to B [8]. However, exhaustive search is too complex
for interactive applications. Another form is optimization-
free but produces a pair of segments on two images from
ground truth class and counterfactual class [41]. These seg-
ments cover the class-discriminant regions. Its generation
is much faster and we use it in our work.

Machine teaching Machine teaching is a broad area. The
goal is to select a small number of data from a large set
so that this small set can efficiently teach a student. The
student can be either a network model or a real human.
Because this paper mainly talks about the latter, we rec-
ommend [48, 47] for the reader about the network-oriented
machine teaching. For real-human machine teaching, a typ-
ical strategy is to first model humans as a network model
and then select a teaching sequence universally used for
human teaching. In this process, most of the previous lit-
erature simulates human students based on the assump-
tion that they have limited capacity or are otherwise sub-
optimal learners [34, 18, 30]. This is intuitive but not op-
timal in the crowdsourcing context, which has been dis-
cussed in [40]. The latter is subject to an optimal student
assumption that the students will try their best to complete
the assigned tasks. Another direction of real-human ma-
chine teaching is to think about how to incorporate the ex-
planation into the teaching process because it is straightfor-
ward that explanations are helpful for digesting the knowl-
edge easily [28, 5, 36]. A representative work [28] merges
the attribution map into the example selection and feedback
stage of teaching. When the learner makes a mistake, a
heatmap [46] that highlights the regions that contribute to
the correct class is shown. This, to a certain extent, pro-
vides some explanations but can not adapt to the learner’s
choice. Counterfactual explanations were simply associ-
ated with random selected images to evaluate their qualities
in [41, 8], but there is no special machine teaching algo-
rithm involved and the evaluation is only on simple binary
classification tasks. Tropel [31] lets workers identify posi-
tive/negative images with respect to a given query image, to
train a detector. This is unlike a counterfactual explanation
for teaching, where the counter class is an incorrect label
chosen by the worker. The latter more directly provides
the worker with feedback regarding mistakes. Also, there
is no image-based explanation in Tropel. In this paper, we
attempt to include the counterfactual explanation into the
machine teaching, an explanation that explicitly indicates
the class-discriminant between correct class and mis-chosen
class. The experiments show that this is more helpful.

3. The MEMORABLE Framework
In this section we introduce the MEMORABLE frame-

work.

3.1. Machine Teaching

We consider the problem of C-class classification on
expert domains where data collection is easy but annota-
tion is difficult. For example, while biologists routinely
deploy camera traps in the wild [29] or underwater [11],
the labeling of the resulting images by professional tax-
onomists is quite expensive. The goal is to train classifiers
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Figure 2: Confusion matrices for human annotators trained by different machine teach-
ing algorithms on Butterflies dataset [28].
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Figure 3: Labeling and classification ac-
curacies of simulated turkers.

from large datasets, i.e. scalable recognition. A practical
solution is semi-supervised learning. A large set of im-
ages D = {xi}M+N

i=1 is first collected and a small subset
Da = {xi}Mi=1, where M ≪ N labeled by experts. This
results in a labeled dataset Dl = {(xi, yi)}Mi=1 where yi is
the label of xi. A classifier f is then learned from the semi-
supervised dataset Ds = Du ∪ Dl, where Du = D −Da is
the set of unlabeled images. The performance of f is finally
evaluated on a testing set T . While various semi-supervised
learning algorithms exist [45, 44], their performance is fre-
quently inferior to supervised learning. This gap can be
bridged by labeling the data Du on a crowd-sourcing plat-
form, such as Amazon MTurk. This, however, is impossible
for data from domains, e.g. animal taxonomies, on which
MTurk annotators have no expertise.

MEMORABLE addresses this problem by leveraging
the labeled dataset Dl to teach MTurk annotators to label
the images in Du. As shown in Figure 1, this is done in
several steps. A classifier f is first trained, either by semi-
supervised learning on Dl ∪ Du, or supervised learning on
Dl. This classifier is then leveraged to design a teaching set
L ⊂ Dl of L ≪ M images for training MTurk annotators.
Several machine teaching algorithms have been proposed to
extract an optimal teaching set from Dl [28, 34, 40]. Finally,
MTurk annotators are trained by practicing on the teaching
set L. This usually consists of an introductory step where
they are shown one (or a few) images of each class, and
an iterative step where they attempt to classify images in L
and receive feedback on their mistakes. When this process
is completed, the trained MTurkers are finally asked to label
Du and the classifier is retrained.

While various works have addressed individual compo-
nents of this framework, e.g. by proposing different ma-
chine teaching algorithms [28, 34, 40] or semi-supervised
learning techniques [45, 44], we are aware of no studies
on the effectiveness of the entire scalable recognition archi-
tecture. Two questions, in particular, seem quite relevant.
First, how does the accuracy of the trained MTurkers affect
the accuracy of scalable recognition? Second, how can ma-
chine teaching algorithms be enhanced to improve MTurker
accuracy?

3.2. How Important is Annotator Accuracy?

Since the training of MTurkers is not perfect, labels can
be noisy. In general, the human-labeled dataset Du is nois-

ier than if labeled by experts. This begs the question of how
accurate must the trained MTurkers be for machine teach-
ing to be useful. To determine this, we perform a set of ex-
periments with simulated “noisy MTurkers.” Given an un-
labeled dataset Du, for which the ground-truth labels Y are
known to us but unavailable to the algorithms, we assign to
each image a noisy label Y ′, according to a confusion ma-
trix M, where mij = P (Y ′ = i|Y = j). More precisely,
given ground truth label y = j, a class label y′ is sampled
from the distribution [m1j , ...,mCj ].

The resulting noisy labeled dataset Dn is used to train a
classifier f . By comparing the accuracy of f to that of a
classifier g trained on the ground truth dataset, it is possible
to determine the effect of MTurker annotation noise on the
final classification performance. By varying the matrix M,
it is possible to analyze how the latter depends on the quality
of the annotators. To enable these comparisons, we propose
two metrics. The first is the labeling accuracy

ACCl =

∑C
i=1 mii∑C

i=1

∑C
j=1 mij

. (1)

This is a number in [0, 1], equal to 1 when there is no label-
ing noise. The second is the classification accuracy, mea-
sured by average accuracy on the testing set T of classifiers
f trained on Dl ∪ Dn.

To investigate the effects of the confusion matrix M on
classifier accuracy, we considered nine different matrices.
The first five were estimated from real MTurker data. An-
notators were trained with several machine teaching algo-
rithms from the literature, chosen to reflect the spectrum of
training effectiveness. The weakest performance was im-
plemented with the RANDOM [28, 40] procedure, where
annotators are taught with a randomly chosen teaching set
L. Stronger performances were implemented with omni-
IMT [25], imiIMT [25], bbIMT [26] as well as the state-
of-the-art MaxGrad machine teaching algorithm [40]. As
can be seen in Figure 2, the latter four produce much more
accurate annotators than the former. The next four ma-
trices are hand-crafted models of annotator quality. The
first is a “chance level” annotator, i.e. mij = 1/C,∀i, j.
The next two are models that mimic matrices estimated on
MTurk. They are denoted as diag-60 and diag-80, and have
diagonal elements of 0.6, 0.8, respectively, and uniform
non-diagonal values. diag-60 approximates RANDOM and
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diag-80 approximates MaxGrad. The final model is a per-
fect annotator with a diagonal matrix M of entries 1.

Figure 3 summarizes the result of this experiment, en-
abling several interesting observations. First, the labeling
accuracies of diag-60 and diag-80 do match those of RAN-
DOM and MaxGrad, respectively. However, the same does
not hold for the associated classification accuracies. In fact,
one of the most interesting observations of the figure is how
the hand-crafted matrices have much weaker classification
accuracy than those learned from MTurker data. In partic-
ular, the classification accuracy is always higher than the
labeling accuracy for the MTurk matrices, but the reverse
holds for their models.

A closer inspection of the confusion matrices shows that
those estimated from human annotators do not have a uni-
form distribution for the annotation errors. While the diago-
nal value may not be 1, there is usually a dominant class for
mistakes, i.e. the second probability tends to be larger than
the remaining. This is likely to simplify the learning of the
classifier, since it is mostly faced with label noise between
pairs of classes, rather than all. The ensuing insight is that,
beyond errors, it also matters what type of errors are made
by the annotators. Informative labeling errors, between a
few classes, lead to much better classifiers than uninforma-
tive, uniformly distributed, ones. Note that the differences
in classification accuracy are substantial, with the MTurk-
trained classifiers outperforming the model-trained classi-
fiers by 5− 10%.

Having said this, a second observation is that the accu-
racy of the machine teaching algorithm does matter. For
example, both MaxGrad and diag-80 produced better clas-
sifiers than RANDOM and all methods produced very large
gains over the chance annotator. Comparing machine teach-
ing algorithms, it is clear that recognition accuracy in-
creases with labeling accuracy. Finally, it can be observed
that there is an upper bound on the required annotator accu-
racy. In fact, the perfect annotator produces classifiers that
are only marginally better than those of MaxGrad. This is
quite interesting, suggesting that current machine teaching
algorithms already are a viable solution for classifier train-
ing. We note, however, that this is an experiment based on
five classes. For large C, the differences are likely to be
more significant. This is left for future research.

3.3. The Role of Explanations

A machine teaching algorithm aims to select the teach-
ing set L from Dl that maximizes student labeling accu-
racy. Traditional algorithms [34, 25] present the images in
L to the student, displaying the ground truth label as feed-
back when the latter makes a mistake. While this can suffice
for coarse-grained classification, it is not ideal for most ex-
pert domains, where classification tends to be fine-grained.
In this case, the differences between categories can be im-

Figure 4: Interface. When the teaching image is “Viceroy” but the
worker selected “Monarch”, the shown feedback will be given.

perceptible to the untrained eye. Without further hints, it
can be quite hard for non-experts to learn the target con-
cepts. [28] addressed the problem with the EXPLAIN al-
gorithm, which introduced attributive explanations into ma-
chine teaching. These are explanations based on a saliency
map that highlights regions contributing to the classifier pre-
diction [33, 46]. By directing student attention to features
important for the classification, these explanations can en-
hance teaching. However, more recent methods, such as
bbIMT [26], imiIMT [25], or MaxGrad [40] achieve better
results than EXPLAIN without explanations.

In this work, we seek to add explanations to the state-of-
the-art MaxGrad algorithm [40]. We note, however, that a
limitation of attributive explanations, such as those of EX-
PLAIN, is the lack of user-specific interaction. At each
teaching iteration, the feedback provided by these expla-
nations is always the correct label and the corresponding
attribution map. Since the class predicted by the student is
not considered in the explanation, the latter does not nec-
essarily address the student’s difficulties. Better feedback
should take the student prediction into account. This is the
definition of counterfactual explanations [41, 8], which ad-
dress the question: “why is the class predicted by the stu-
dent incorrect?” We next introduce an enhanced version of
MaxGrad that leverages counterfactual explanations.

3.4. Counterfactual MaxGrad (CMaxGrad)

MaxGrad uses the iterative teaching strategy popular in
the literature [25, 26, 40]. A network (f1) initialized with
an ImageNet pre-trained model is used to model the stu-
dent. The MaxGrad teacher builds the teaching set itera-
tively, by extracting from Dl the images most informative
for the student. In particular, at iteration t, the teacher se-
lects an image xt from Dl−Lt−1, where Lt−1 is the teach-
ing set assembled at iteration t− 1. The teaching set is then
augmented into Lt = Lt−1 ∪ {xt} and used to retrain the
student into f t = f∗(Lt), where f∗ denotes optimal classi-
fier. The complete algorithm is given in Algorithm 1.

Counterfactual explanations can provide detailed student
feedback during the retraining step when, given the query
image xt of ground-truth label yt, the student predicts a
counterfactual class yc ̸= yt. An example is shown in Fig-
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Algorithm 1 MaxGrad
Input Data D = {(xi, yi)}Mi=1, max iter.
T .

1: Initialization: L0 ← ∅, f1, D0 ← D
2: for t = {1, . . . , T} do
3: compute ξ(xi) for all examples in

Dt−1

4: select xt = argmaxxi∈Dt−1 ξ(xi)

5: teaching set update: Lt ← Lt−1 ∪
{xt}

6: student update: f t+1 = f∗(Lt)
7: Dt ← Dt−1 \ {xt}
8: end for

Output Lt

Algorithm 2 CMaxGrad
Input Data Dl = {(xi, yi)}Mi=1, max iter. T , α and β, E = {cy

c

(xi)|yc ̸=
yi}M,C

i=1,c=1.

1: Initialization: L0 ← ∅, C0 ← ∅, f1, D0 ← Dl, E0 ← E
2: for t = {1, . . . , T} do
3: compute ξ(xi) for all examples in Dt−1 and ξ(cf

t(xi)(xi)) for all examples in
Et−1

4: select xt = argmax{xi∈Dl−Lt−1} ξc(xi, c
ft(xi)(xi);α)

5: select xt,c = argmax{xi∈Dl−Lt−1|yi=ft(xt)} ξc(xi, c
yt

(xi);β)

6: teaching and explanation sets update: Lt ← Lt−1 ∪ {xt}, Ct ← Ct−1 ∪
{xt,c, cf

t(xt)(xt), cy
t

(xt,c)}
7: student update: f t+1 = f∗(Lt ∪ Ct)
8: Dt ← Dt−1 \ {xt,xt,c}, Et ← Et−1 \ {cf

t(xt)(xt), cy
t

(xt,c)}
9: end for

Output Lt

ure 4 for the Butterflies dataset, where yt = ‘Viceroy’ and
yc = ‘Monarch’. The explanation first samples an image
xc from yc, and then produces a visualization of the form:
“The correct label is yt. If the correct label were yc, the cir-
cled region of xt should look like the circled region of xc.”
Mathematically, this reduces to a function

C(xt, yt, yc,xc) = (cc(xt), ct(xc)), (2)

where cc(xt) and ct(xc) are counterfactual heatmaps or
segments for images xt and xc respectively. They highlight
image regions of features discriminant for the two classes.
In Figure 4, these are the presence/absence of a line that
crosses the radial wing lines of the two butterflies, and the
different configurations of white spots. This explanation al-
lows the student to quickly learn what to look for in order to
distinguish the two classes. Since the counterfactual class
was selected by the student, the process quickly provides
the student with precise feedback on how to differentiate
between the classes that most confuse them.

To include counterfactual explanations on MaxGrad, we
propose the following generalization.

1. counterfactual maps are generated for all pairs of
queries and counterfactual examples in the labeled
dataset Dl. This results in the explanation set E =
{cyc

(xi)|yc ̸= yi}M,C
i=1,c=1. This is a pre-processing

step, performed before machine teaching takes place.

2. teaching set Lt is augmented with a counterfactual set
Ct that includes counterfactual images and heatmaps.

3. during training, at iteration t the teacher selects an im-
age xt from Dl − Lt−1. The student then makes a
prediction y = f t(xt). For the reasons discussed
below, this is always incorrect i.e. y = yc ̸= yt,
A counterfactual image xt,c is selected from class yc

and the counterfactual maps (cc(xt), ct(xt,c)) are re-
trieved from E . The teaching set is then augmented

into Lt = Lt−1 ∪ {xt} and the counterfactual set into
Ct = Ct−1 ∪ {xt,c, cc(xt), ct(xt,c)}. The student is
finally updated with f t+1 = f∗(Lt ∪ Ct).

In MaxGrad, the image xt selected by the teacher is the one
that maximizes a score ξ(x) representative of the classifi-
cation difficulty posed by image x to the student model f t.
Since this score is the negative classification margin ξ(x)
of the image x under f t, there is always at least one im-
age that the student cannot classify correctly in Dl − Lt−1

(otherwise the training would be complete). Hence, the re-
sulting student prediction is incorrect, i.e. a counterfactual
class yt,c.

However, in the counterfactual setting, image selec-
tion must also account for the counterfactual heatmaps
(cc(xt), ct(xt,c)). For this, we propose a counterfactual
margin score

ξc(x, c
y(x);α) = αξ(x) + (1− α)ξ(cy(x)), (3)

where α ∈ [0, 1] is a hyperparameter that weighs the con-
tribution of images and counterfactual regions. Note that
this supports scores based on the margin of the whole im-
age (α = 1), the counterfactual region (α = 0) or both.
This leads to the following procedure for the selection of
the image xt to augment the teaching set. For each image
xi ∈ Dl − Lt−1, the counterfactual class is identified as
f t(xi) and the heatmap cf

t(xi)(xi) retrieved from E . The
teacher then selects the image of largest score, i.e.

xt = argmax
{xi∈Dl−Lt−1}

ξc(xi, c
ft(xi)(xi);α), (4)

to add to the teaching set Lt−1.
The image xt,c of the counterfactual class yt,c is then

chosen with the same criterion among the images in the
counterfactual class, i.e.

xt,c = argmax
{xi∈Dl−Lt−1|yi=ft(xt)}

ξc(xi, c
yt

(xi);β), (5)
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Butterflies Chinese Char.
RANDOM 65.20 47.05
STRICT [34] 65.00 51.51
EXPLAIN [28] 68.33 65.44
omniIMT [25] 70.07 (18.30) 64.36 (19.58)
imiIMT [25] 72.70 (17.63) 64.46 (23.72)
bbIMT [26] 76.09 (18.05) 64.37 (19.57)
MaxGrad [40] 80.33 (19.76) 81.89 (12.93)
CMaxGrad 84.10 (18.24) 84.63 (20.18)

Table 1: Test set labeling accuracy, mean (std), of MTurkers.

where yt is the label of xt. The teaching set Lt and
the counterfactual set Ct are then updated with xt and
(xt,c, cf

t(xt)(xt), cy
t

(xt,c)), respectively, and the student
updated with f t+1 = f∗(Lt ∪ Ct). This requires train-
ing a classifier with both images and image regions, derived
from the counterfactual heatmaps. In our implementation,
counterfactual regions are converted to images by simply
thresholding the heatmaps and setting the pixels outside the
counterfactual region to the average image color. The re-
sulting images are then added to Ct. We note, however, that
this is not done on human teaching experiments, where sub-
jects are shown whole images, as demonstrated in Figure 4.
The overall procedure is summarized in Algorithm 2 and
denoted CMaxGrad.

4. Evaluation of Student Teaching

We start by evaluating the accuracy of the labels pro-
duced by students trained with CMaxGrad. Following
[40, 28], we consider both simulated and real students.
Dataset We used two recent machine teaching benchmark
datasets: Butterflies and Chinese Characters [28]. These
are more challenging than binary classification or synthetic
datasets used in earlier work [34, 5, 36], because they are
both fine-grained multi-class datasets of real images from
expert domains. Butterflies has five butterfly species sam-
pled from iNaturalist [38], with 1544 training and 386 test-
ing samples. Chinese Characters consists of three similar
Chinese characters, with 568 training and 143 testing exam-
ples. Both datasets have large intra-class diversity, e.g. due
to different handwriting styles, and large inter-class similar-
ity.
Network Counterfactual explanations are generated by a
ResNet-18 pre-trained in ImageNet and fine-tuned on the
target training set. The student is simulated with a ResNet-
18 pre-trained on ImageNet. This mimics a student that
starts from a good generic understanding of image classi-
fication but has no expertise in the target domain.
Teaching All experiments use a teaching set of 20 exam-
ples, selected from the training set and tested on the testing
set. Counterfactual maps were generated with the recent
SCOUT algorithm [41]. Counterfactual regions were ex-

Heermann WesternRing billedGlaucous wingedCalifornia

Figure 5: Sample images of Gull dataset.

tracted by setting the segment size parameter to 5% of the
image area. The parameters α, β of (4) and (5), respec-
tively, were set to α = β = 0.5 after cross-validation. In
the supplement we also present results for experiments with
simulated students, which enable replicable method com-
parisons, and a detailed description of the set-up used to
train MTurkers, using the interface of Figure 4. Table 1 re-
ports the test accuracies of workers trained with different
methods from the literature. Counterfactual explanations
enabled a significant improvement in the accuracy of the
MTurk student labels.

5. Evaluation of Scalable Recognition
In this section, we evaluate the performance of the com-

plete architecture of Figure 1.
Dataset Because there is no benchmark for the evaluation
of scalable fine-grained recognition in expert domains, we
created two such benchmarks. The first is based on the But-
terflies dataset. The first 300 training samples (according
to the dataset order1) compose the expert labeled dataset
Dl, and the remaining 1, 244 the unlabeled dataset Du to
be annotated by Mturkers. The testing set is used for eval-
uation. The second benchmark is from an even more fine-
grained and thus difficult task, based on the recognition of
five gull categories: “California Gull”, “Glaucous winged
Gull”, “Heermann Gull”, “Ring billed Gull” and “West-
ern Gull”. An example image from each class is shown
in Figure 5. These classes were chosen because they are
the overlapping classes of two widely used bird datasets,
CUB200 [42] and NAbirds [37]. The images from the CUB
training set (150 instances) serve as expert-labeled dataset
Dl whereas those from NAbirds serve as unlabeled dataset
Du (431 instances). The CUB testing set (149 instances) is
used for evaluation.
Network A ResNet-18 is used as classifier. Explanations
are generated by two models, each specific to one dataset.
Because two of the butterfly categories are in ImageNet,
the ResNet-18 is initialized from scratch for the Butterflies
dataset. The Gull dataset has no overlap with ImageNet
and is more challenging. Since the network trained from
scratch on this dataset performs only slightly better than
chance level (≈ 30%), the network is initialized with the
model pre-trained on ImageNet.
Platform All experiments were conducted on Amazon Me-
chanical Turk. Each MTurker received a teaching set of 20

1https://github.com/macaodha/explain_teach
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StandardSimCLR

Figure 6: Comparison of counterfactual explanations generated
by different models. Two examples are shown. Top: true class is
“Viceroy” and counter class is “Monarch”; bottom: true class is
“Queen” and counter class is “Red Admiral”.

examples, chosen by CMaxGrad, and was then requested to
label 30 images randomly sampled from the unlabeled set.
This number was chosen so as to avoid the danger of worker
fatigue and frustration possible with larger jobs. Three la-
belings were collected per example and their majority vote
was chosen as the final label. If the labels were distinct, we
chose one randomly.
Baselines MEMORABLE was compared to a number of
scalable recognition baselines, whose results are shown in
the top part of Table 2. “Supervised” refers to vanilla su-
pervised learning on the expert-labeled dataset Dl. Pseudo-
Label [21] first trains with supervision on Dl, then itera-
tively improves the performance by self-labeling the unla-
beled examples in Du and training on the pseudo labels.
SimCLR [3] is a representative semi-supervised learning
method.
Results The second part of Table 2 presents results of
MEMORABLE, using two strategies to train the classifier
that produces the counterfactual explanations. The first is
supervised learning on the expert-labeled dataset Dl. The
second is semi-supervised learning on Dl and Du. For the
latter, we adopted the SimCLR [3] contrastive learning al-
gorithm. This is denoted with ”+SimCLR”in Table 2.

When compared to MaxGrad, the counterfactual expla-
nations produced by CMaxGrad enable substantial better
classification accuracies, e.g. a gain of about 4% on Gull.
For CMaxGrad, best performance was achieved with the
semi-supervised model, with which MEMORABLE outper-
formed the best baseline by 1.3% on Butterflies but without
the semi-supervised model by 1.5% on the more challeng-
ing Gull dataset. This is consistent with the performance
of the classifier. Figure 6 shows examples of counterfactual
regions selected by the two versions of CMaxGrad. While
those produce with SimCLR cover body parts, the super-
vised model sometimes has difficulty localizing the class-
discriminant regions, perhaps due to its lower classification
accuracy.

Butterflies Gull
Supervised baseline 59.4 (1.3) 58.3 (0.6)
Pseudo-Label [21] 64.7 (1.1) 58.7 (1.4)
SimCLR [3] 76.9 (0.4) 53.0 (0.8)
MaxGrad 74.7 (0.7) 56.3 (0.9)
CMaxGrad 77.5 (0.5) 60.2 (1.1)
CMaxGrad+SimCLR 78.2 (0.2) 59.7 (0.7)
MaxGrad+DivideMix 78.6 (1.2) 59.9 (1.2)
CMaxGrad+DivideMix 81.2 (1.1) 61.7 (1.5)
CMaxGrad+SimCLR+DivideMix 83.4 (0.7) 61.2 (1.1)

Table 2: Test accuracy comparison with mean (std). The lower
group shows our results whereas the upper other literature.

Enhancements Since the labels produced by MTurkers are
noisy, further performance improvements can in principle
be accrued by training the final classifier with noisy label
learning algorithms [22, 9, 35]. The bottom part of Table 2
shows results obtained with the state of the art DivideMix
method [22]. Somewhat surprisingly, DivideMix was al-
ways able to improve results significantly. Note that even
the combination CMaxGrad+DivideMix outperformed the
best baseline by 3 − 5% on these datasets. When further
combined with SimCLR-based explanations, the gains were
of about 6% on Butterflies. This suggests that even when
the MTurker labels are incorrect they are informative of the
true class, as discussed in Section 3.2. It also shows that
MEMORABLE is a viable alternative to scalable recogni-
tion, especially in expert domains.

6. Conclusion

In this paper, we proposed the MEMORABLE frame-
work for scalable recognition in fine-grained expert do-
mains. This is based on the novel CMaxGrad machine
teaching algorithm, which leverages counterfactual expla-
nations to account for student predictions during the teach-
ing process. We have also conducted the first studies of ma-
chine teaching in the context of the entire scalable recogni-
tion pipeline. It was shown that both CMaxGrad and MEM-
ORABLE achieve superior results to existing solutions to
their respective problems. It could be argued that comparing
MEMORABLE to previous scalable recognition methods is
unfair, since it leverages additional resources in the form of
crowdsourcing. While this is true, we argue that crowd-
sourcing platforms are now very accessible and dataset la-
beling is a one-time cost. This must be weighed against
the benefits of a better dataset that, as shown by the recent
computer vision history, is a gift that keeps on giving.
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awards IIS-1924937, IIS-2041009, a gift from Amazon, a
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