
Adaptive Focus for Efficient Video Recognition

Yulin Wang∗, Zhaoxi Chen∗, Haojun Jiang, Shiji Song, Yizeng Han, Gao Huang†

Department of Automation, BNRist, Tsinghua University, Beijing, China
{wang-yl19, jhj20, hanyz18}@mails.tsinghua.edu.cn, frozen.burning@gmail.com,

{shijis, gaohuang}@tsinghua.edu.cn

Abstract

In this paper, we explore the spatial redundancy in video
recognition with the aim to improve the computational ef-
ficiency. It is observed that the most informative region
in each frame of a video is usually a small image patch,
which shifts smoothly across frames. Therefore, we model
the patch localization problem as a sequential decision task,
and propose a reinforcement learning based approach for
efficient spatially adaptive video recognition (AdaFocus). In
specific, a light-weighted ConvNet is first adopted to quickly
process the full video sequence, whose features are used by
a recurrent policy network to localize the most task-relevant
regions. Then the selected patches are inferred by a high-
capacity network for the final prediction. During offline in-
ference, once the informative patch sequence has been gen-
erated, the bulk of computation can be done in parallel, and
is efficient on modern GPU devices. In addition, we demon-
strate that the proposed method can be easily extended by
further considering the temporal redundancy, e.g., dynami-
cally skipping less valuable frames. Extensive experiments
on five benchmark datasets, i.e., ActivityNet, FCVID, Mini-
Kinetics, Something-Something V1&V2, demonstrate that
our method is significantly more efficient than the competi-
tive baselines. Code is available at https://github.
com/blackfeather-wang/AdaFocus.

1. Introduction
The explosive growth of online videos (e.g., on YouTube

or TikTok) has fueled the demands for automatically recog-
nizing human actions, events, or other contents within them,
which benefits applications like recommendation [7, 8, 15],
surveillance [6, 3] and content-based searching [22]. In
the past few years, remarkable success in accurate video
recognition has been achieved by leveraging deep networks
[11, 53, 12, 2, 36, 19]. However, the impressive perfor-
mance of these models usually comes at high computational
∗Equal contribution.
†Corresponding author.

Figure 1. Comparisons of temporal-based methods and our
proposed AdaFocus approach. Most existing works reduce com-
putational costs by selecting a few informative frames to process,
while AdaFocus aims to perform efficient inference by attending to
the task-relevant patch of each frame. Importantly, our method is
compatible with temporal-based techniques as it can be improved
by skipping less important frames (AdaFocus+).

costs. In real-world scenarios, computation directly trans-
lates into power consumption, carbon emission and prac-
tical latency, which should be minimized under both eco-
nomic and safety considerations.

To address this issue, a number of recent works pro-
pose to reduce the inherent temporal redundancy in video
recognition [26, 29, 45, 42, 16, 44, 25]. As shown in Fig-
ure 1 (b), it is efficient to focus on the most task-relevant
video frames, and allocate the majority of computation
to them rather than all frames. However, another impor-
tant source of redundant computation in image-based data,
namely spatial redundancy, has rarely been explored in
the context of efficient video recognition. In fact, it has
been shown in 2D-image classification that convolutional
networks (CNNs) are able to produce correct predictions
with only a few discriminative regions of the whole image

16249



[41, 47, 18, 31, 14, 5]. By performing inference on these
relatively small regions, one can dramatically reduce the
computational cost of CNNs (e.g., processing a 96x96 patch
requires∼18% computation of inferring a 224x224 image).

In this paper, we are interested in whether this spatial
redundancy can be effectively leveraged to facilitate effi-
cient video recognition. We develop a novel adaptive fo-
cus (AdaFocus) approach to dynamically localize and at-
tend to the task-relevant regions of each frame. In specific,
our method first takes a quick glance at each frame with a
light-weighted CNN to obtain cheap and coarse global in-
formation. Then we train a recurrent policy network on its
basis to select the most valuable region for recognition. This
procedure leverages the reinforcement learning algorithm
due to the non-differentiability of localizing task-relevant
regions. Finally, we activate a high-capacity deep CNN to
process only the selected regions. Since the proposed re-
gions are usually small patches with a reduced size, con-
siderable computational costs can be saved. An illustration
of AdaFocus is shown in Figure 1 (c). Our method allo-
cates computation unevenly across the spatial dimension of
video frames according to the contributions to the recogni-
tion task, leading to a significant improvement in efficiency
with preserved accuracy.

The vanilla AdaFocus framework does not model tempo-
ral redundancy, i.e., all frames are processed with identical
computation, while the only difference lies in the locations
of the selected regions. We show that our method is com-
patible with existing temporal-based techniques, and can be
extended via reducing the computation spent on uninforma-
tive frames, as presented in Figure 1 (d). This is achieved
by introducing an additional policy network that determines
whether to skip some less valuable frames. This algorithm
is referred to as AdaFocus+.

We evaluate the effectiveness of AdaFocus on five video
recognition benchmarks (i.e., ActivityNet, FCVID, Mini-
Kinetics, Something-Something V1&V2). Experimental
results show that AdaFocus by itself consistently outper-
forms all the baselines by large margins, while AdaFocus+
further improves the efficiency. For instance, AdaFocus+
has 2-3x less FLOPs1 than the recently proposed AR-Net
[29] when achieving the same accuracy. We also demon-
strate that our method can be deployed on top of the state-
of-the-art networks (e.g., TSM [27]) and effectively im-
prove their computational efficiency.

2. Related Works
Video recognition. Significant progress has been made

in video recognition with the adoption of convolutional neu-
ral networks (CNNs). One prevalent approach is construct-
ing 3D-CNNs to model the temporal and spatial information
jointly, e.g., C3D [36], I3D [2] and ResNet3D [19]. The

1In this paper, FLOPs refers to the number of multiply-add operations.

other line of works first extracts frame-level features, and
aggregates the features at different temporal locations via
temporal averaging [39], long short-term memory (LSTM)
networks [9], channel shifting [27], etc.

Despite the success achieved by the aforementioned
works, the expensive computational cost of CNNs, espe-
cially 3D-CNNs, usually limits their applicability. Recent
research efforts have been made towards improving the ef-
ficiency of video recognition, via designing light-weighted
architectures [38, 46, 32, 37, 54, 27] or perform dynamic
computation on a per-video basis [49, 45, 25, 52, 26, 30].
Our approach shares a similar idea as the latter on reducing
the intrinsic redundancy in video data, while with a special
focus on spatial redundancy.

Reducing temporal redundancy is a popular solution
to efficient video recognition, based on the intuition that
not all frames contribute equally to the final prediction.
In particular, a model could dynamically allocate no/little
computation to some less informative or highly correlated
frames [18]. This idea has been proven effective by many
implementations, including (1) early stopping, i.e., ter-
minating the computation before “watching” the full se-
quence [10, 43]; (2) conditional computing, e.g., LiteE-
val [45] adaptively selects an LSTM model with appropri-
ate size at each time step in a recurrent recognition pro-
cedure; adaptive resolution network (AR-Net) [29] pro-
cesses different frames with adaptive resolutions to save
unnecessary computation on less important frames; and
(3) frame/clip sampling, i.e. dynamically deciding which
frames should be skipped without performing any compu-
tation [42, 16, 25, 44]. The proposed AdaFocus method
differentiates itself from these approaches in that we focus
on reducing the spatial redundancy, namely allocating the
major computation to task-relevant regions of the frames.
In addition, our method is compatible with them as it can
be improved by further reducing temporal redundancy.

Reducing spatial redundancy. It has been observed
that considerable spatial redundancy exists in the process
of extracting deep features from image-based data [18, 48].
For example, in 2D-image classification, a number of re-
cent works successfully improve the efficiency of CNNs by
attending to some task-relevant or more informative parts
of images [47, 41, 13]. In the context of video recogni-
tion, existing attention-based methods have demonstrated
that different image regions of video frames do not con-
tribute equivalently to the prediction [28]. However, to our
best knowledge, the spatial redundancy has not been ex-
ploited to improve the efficiency of video recognition.

3. Method
Different from most existing works that facilitate effi-

cient video recognition by leveraging the temporal redun-
dancy, we seek to save the computation spent on the task-
irrelevant regions of video frames, and thus improve the ef-

16250



Figure 2. Overview of AdaFocus. It first takes a quick glance at each frame vt using a light-weighted global CNN fG. Then a recurrent
policy network π is built on top of fG to select the most important image region ṽt in terms of recognition. A high-capacity local CNN fL

is adopted to extract features from ṽt. Finally, a recurrent classifier aggregates the features across frames to obtain the prediction pt.

ficiency by reducing the spatial redundancy. To this end, we
propose an adaptive focus (AdaFocus) framework to adap-
tively identify and attend to the most informative regions of
each frame, such that the computational cost can be signifi-
cantly reduced without sacrificing accuracy.

In this section, we first describe its components and the
correspond training algorithm in Section 3.1 and Section
3.2, respectively. Then we show in Section 3.3 that AdaFo-
cus can be improved by further considering temporal redun-
dancy (e.g., skipping uninformative frames).

3.1. Network Architecture
Overview. We first give an overview of AdaFocus (Fig-

ure 2). Consider the online video recognition scenario,
where a stream of frames come in sequentially while a pre-
diction may be retrieved after processing any number of
frames. At each time step, AdaFocus first takes a quick
glance at the full frame with a light-weighted CNN fG, ob-
taining cheap and coarse global features. Then the features
are fed into a recurrent policy network π to aggregate the in-
formation across frames and accordingly determine the lo-
cation of an image patch to be focused on, under the goal of
maximizing its contribution to video recognition. A high-
capacity local CNN fL is then adopted to process the se-
lected patch for more accurate but computationally expen-
sive representations. Finally, a classifier fC integrates the
features of all previous frames to produce a prediction. In
the following, we describe these four components in details.

Global CNN fG and local CNN fL are backbone net-
works that both extract deep features from the inputs, but
with distinct aims. The former is designed to quickly catch

a glimpse of each frame, providing necessary information
for determining which region the local CNN fL should at-
tend to. Therefore, a light-weighted network is adopted for
fG. On the contrary, fL is leveraged to take full advantage of
the selected image regions for learning discriminative repre-
sentations, and hence we deploy large and accurate models.
Since fL only needs to process a series of relatively small re-
gions instead of the full images, this stage also enjoys high
efficiency. We defer the details on the architectures of fG
and fL to Section 4.

Formally, given video frames {v1,v2, . . .}with sizeH×
W , fG directly takes them as inputs and produces the coarse
global feature maps eG

t :

eG
t = fG(vt), t = 1, 2, . . . , (1)

where t is the frame index. By contrast, fL processes P×P
(P < H,W ) square image patches {ṽ1, ṽ2, . . .}, which are
cropped from {v1,v2, . . .} respectively, and we have

eL
t = fL(ṽt), t = 1, 2, . . . , (2)

where eL
t denotes the fine local feature maps. Importantly,

the patch ṽt is localized to capture the most informative re-
gions for a given task, and this procedure is fulfilled by the
policy network π, which is described in the following.

Policy network π is a recurrent network that receives
the coarse global features eG

t from the global CNN fG, and
specifies which region the global CNN fG should attend to
for each frame. Note that both the information of previ-
ous and current inputs is used due to the recurrent design.
Formally, π determines the locations of images patches

16251



Figure 3. The architecture of the policy network π. The global
feature maps eG

t is fed into a 1x1 convolutional layer followed
by a gated recurrent unit (GRU) to aggregate temporal informa-
tion. The outputs of GRU parameterize a categorical distribution
π(·|eG

t ,h
π
t−1) on multiple patch candidates (here we take 25 as

an example). During training, we sample ṽt from π(·|eG
t ,h

π
t−1),

while at test time, we directly select the patch with the largest soft-
max probability.

{ṽ1, ṽ2, . . .} to be cropped from the frames. Given that this
leads to a non-differentiable operation, we formalize π as an
agent and train it with reinforcement learning. In specific,
the location of the patch ṽt is drawn from the distribution:

ṽt ∼ π(·|eG
t ,h

π
t−1), (3)

where hπt−1 denotes the hidden states maintained in π that
are updated at (t − 1)th frame. In our implementation, we
consider multiple candidates (e.g., 36 or 49) uniformly dis-
tributed across the images, and establish a categorical distri-
bution on them, which is parameterized by the outputs of π.
At test time, we simply adopt the candidate with maximum
probability as ṽt for a deterministic inference procedure. In
addition, note that we do not perform any pooling on the
features maps eG

t since pooling typically corrupts the useful
spatial information for localizing ṽt. As an alternative, we
compress the number of channels with 1× 1 convolution to
reduce the computational cost of π. An illustration of π is
shown in Figure 3.

Classifier fC is a prediction network aiming to aggre-
gate the information from all the frames that have been pro-
cessed by the model, and output the current recognition re-
sult at each time step. To be specific, we perform global
average pooling on the feature maps eG

t , e
L
t from the two

aforementioned CNNs to get feature vectors eG
t , e

L
t , and

concatenate them as the inputs of fC, i.e.,

pt = fC([e
G
1 , e

L
1], . . . , [e

G
t , e

L
t ]), (4)

where pt refers to the softmax prediction at tth step. It is
worth noting that we allow eG

t to be utilized for classifi-
cation as well, with the aim of facilitating more efficient
feature reusing. Such a design leverages previous observa-
tions [51, 35] revealing that CNNs are capable of achieving
both remarkable localization and recognition performance

at the same time. Many of existing methods also adopt sim-
ilar reusing mechanisms [45, 44, 29, 16]. Besides, there
are multiple possible architectures for fC. In addition to
the choice of recurrent networks such as long short-term
memory (LSTM) [21] or gated recurrent unit (GRU) [4], fC
can also be set as taking the average of frame-wise predic-
tions, which are typically obtained with a common fully-
connected layer, as done in [27, 29, 30].

3.2. Training Algorithm
To ensure the four components function properly, a

three-stage training algorithm is introduced.
Stage I: Warming-up. We first initialize fG, fL and

fC, but leave the policy network π out at this stage. Then
we randomly sample the image patches ṽt to minimize the
cross-entropy loss LCE(·) over the training set Dtrain:

minimize
fG,fL,fC

E{v1,v2,...}∈Dtrain

[
1

T

∑T

t=1
LCE(pt, y)

]
,

ṽt ∼ RandomCrop(vt).
(5)

Here T and y refer to the length and the label correspond-
ing to the video {v1,v2, . . .}, respectively. In this stage,
the model learns to extract task-relevant information from
an arbitrary sequence of frame patches, laying the basis for
training the policy network π.

Stage II: Learning to select informative patches. In
this stage, we fix the two CNNs (fG and fL) and the clas-
sifier fC obtained in stage I, and evoke a randomly ini-
tialized policy network π to be trained with reinforcement
learning. Specifically, after sampling a location of ṽt from
π(·|eG

t ,h
π
t−1) for the frame vt (see Eq. (3)), π will receive

a reward rt indicating whether this action is beneficial. We
train π to maximize the sum of discounted rewards:

maximize
π

Eṽt∼π(·|eG
t ,h

π
t−1)

[∑T

t=1
γt−1rt

]
, (6)

where γ ∈ (0, 1) is a discount factor for long-term rewards.
In our implementation, we fix γ = 0.7 and solve Eq. (6)
using the off-the-shelf proximal policy optimization (PPO)
algorithm [34]. Notably, here we directly train π on the
basis of the features extracted by fG, since previous works
[51, 35] have demonstrated that CNNs learned for classi-
fication generally excel at localizing task-relevant regions
with their deep representations.

Ideally, the reward rt is expected to measure the value of
selecting ṽt in terms of video recognition. With this aim,
we define rt as:

rt(ṽt|ṽ1, . . . , ṽt−1)

= pty(ṽt|ṽ1, . . . , ṽt−1)

− Eṽt∼RandomCrop(vt) [pty(ṽt|ṽ1, . . . , ṽt−1)] ,

(7)

where pty refers to the softmax prediction on y (i.e., confi-
dence on the ground truth label). When computing rt, we

16252



assume all previous patches {ṽ1, . . . , ṽt−1} have been de-
termined, while only ṽt can be changed. The second term
in Eq. (7) refers to the expected confidence achieved by
the randomly sampled ṽt. By introducing it we ensures
Eṽt [rt] = 0, which is empirically found to yield a more
stable training procedure. In experiments, we estimate this
term with a single time of Monte-Carlo sampling. Intu-
itively, Eq. (7) encourages the model to select the patches
that are capable of producing confident predictions on the
correct labels with as fewer frames as possible.

Stage III: Fine-tuning. At the last stage, we fine-
tune fL and fC (or only fC) with the learned policy net-
work π from stage II, namely, minimizing Eq. (5) with
ṽt ∼ π(·|eG

t ,h
π
t−1). This stage further improves the per-

formance of our method.

3.3. Reducing Temporal Redundancy

The proposed AdaFocus processes each video frame
equivalently with the same amount of computation. In fact,
it is compatible with existing methods that focus on reduc-
ing the temporal redundancy of videos. To demonstrate this,
we propose an extended version of AdaFocus, named as
AdaFocus+, which dynamically skips less important frames
for the large network fL.

In specific, we add an additional recurrent policy net-
work π′ that has the same inputs and architectures as π, as
shown in Figure 4. This new network is trained simultane-
ously with π in Stage II. For each frame, the outputs of π′

parameterize a Bernoulli random variable bt:

bt∼Bernoulli(pB
t ), pB

t =π
′(eG

t ,h
π′

t−1)∈(0, 1), (8)

which specifies the probability of maintaining the frame vt,
i.e., Pr(bt = 1) = pB

t . The hidden stated of π′, hπ
′

t−1, is
updated at (t− 1)th frame.

During training, we sample bt according to Eq. (8), and
multiply it with the local feature vector eL

t , such that Eq. (4)
changes to:

p′t(b1, . . . , bt) = fC([e
G
1 , b1e

L
1], . . . , [e

G
t , bte

L
t ]). (9)

In other words, if bt = 1, the procedure mentioned in Sec-
tion 3.1 remains unchanged. If bt = 0, we simply do not
feed the image patch ṽt into the local CNN fL, and con-
catenate eG

t with an all-zero tensor as the inputs of the clas-
sifier fC. Notably, in this case, eG

t will also be fed into π
to update its hidden state hπt , which introduces negligible
computational overhead.

Similarly to π, π′ is trained to maximize the sum of dis-
counted rewards (Eq. (6)) as well. Here we define the re-
ward r′t corresponding to π′ as:

r′t(bt|b1, . . . , bt−1) =
p′ty(b1, . . . , bt−1, 1)
− p′ty(b1, . . . , bt−1, 0)−λP 2,

bt = 1,

0, bt = 0,

(10)

Figure 4. An illustration of AdaFocus+. The proposed AdaFocus
method is naturally compatible with temporal-based techniques.
By involving an additional policy network π′ to control whether to
attend on each frame (i.e., processing ṽt with fL), we can further
reduce the redundant computation spent on less important frames.

where p′ty(b1, . . . , bt−1, 1) and p′ty(b1, . . . , bt−1, 0) refer to
the confidence on the ground truth label y with bt=1 and
bt = 0, respectively. The coefficient λ is a pre-defined
hyper-parameter, while P is the length (or width) of the
patch ṽt. We use P 2 to estimate the required computa-
tion (FLOPs) of feeding ṽt into fL. When bt = 1, the
confidence gain of inferring fL (i.e., p′ty(b1, . . . , bt−1, 1) −
p′ty(b1, . . . , bt−1, 0)) is compared with the penalty term
λP 2, which reflects its computational costs. Only when this
comparison produces positive results will the action of ac-
tivating fL be encouraged. Otherwise, π′ will be trained
to decrease the probability of bt = 1, namely avoiding at-
tending to any local region with the expensive fL to avoid
redundant computation.

During inference, we compare pB
t of each frame with a

fixed threshold ρ∈(0, 1). When pB
t ≥ρ, we process ṽt with

fL, and otherwise this patch is skipped. These two cases
correspond to bt=1 and bt=0 during training, respectively.
The value of ρ should be solved on the validation set by
only activating fL for the frames with top η% largest pB

t

(0 < η < 100). One may vary η% for a flexible trade-off
between computational costs and accuracy.

3.4. Offline Video Recognition
All the discussions above are based on the online video

recognition setting where the model needs to output a rea-
sonable prediction after seeing each frame. However, we
note that AdaFocus can be straightforwardly adapted to the
offline scenario where all frames are given in batch. In
specific, one may train a model with the aforementioned
approach, but only collect the result correspond to the last
frame during inference. Importantly, the feed-forward pro-
cess of both fG and fL, which accounts for the majority of
computation, can be executed in parallel, enabling an effi-
cient implementation on GPU devices.

4. Experiment
In this section, we empirically validate our method. We

first compare AdaFocus with several recently proposed effi-
cient video recognition frameworks, showing that AdaFo-
cus gives rise to an improved efficiency. Then we im-
plement our method by incorporating state-of-the-art light-

16253



10 20 30 40 50 60 70 80 90 100

GFLOPs/Video

71.0

71.5

72.0

72.5

73.0

73.5

74.0

74.5

75.0

75.5

76.0

76.5

77.0

m
A

P
(%

)

0 50 100 150 200 250 300

GFLOPs/Video

60

62

64

66

68

70

72

74

76

78

m
A

P
(%

)

MultiAgent (Wu et al., 2019a)

SCSampler (Korbar et al., 2019)

LiteEval (Wu et al., 2019b)

AdaFrame-5 (Wu et al., 2020b)

AdaFrame-10 (Wu et al., 2020b)

ListenToLook (Gao et al., 2020)

AR-Net (Meng et al., 2020)

AdaFocus

AdaFocus+

3.2x

2.7x

2.1x

Figure 5. Offline video recognition results on ActivityNet. The whole video is provided
at a time for a single prediction. Our method is implemented with the patch size P 2∈{962,
1282, 1602, 1922}. AdaFocus and AdaFocus+ refer to the vanilla spatial redundancy-based
AdaFocus and its augmented version by further reducing temporal redundancy.

0 5 10 15 20 25 30 35 40

GFLOPs/Video

30

35

40

45

50

55

60

65

70

75

m
A

P
(%

)

ResNet-50-Average

ResNet-50-GRU

AR-Net (Meng et al., 2020)

AdaFocus (128x128)

Figure 6. Online video recognition results on
ActivityNet. Video frames come sequentially,
while the models may need to output the pre-
diction after processing any number of frames.

Table 1. Comparisons of AdaFocus and state-of-the-art effi-
cient video recognition frameworks on ActivityNet-v1.3 and
FCVID. GFLOPs refers to the average computational cost for pro-
cessing a single video. MN2 and RN denote MobileNet-V2 and
ResNet, respectively. The best results are bold-faced.

Methods Backbones ActivityNet FCVID
mAP GFLOPs mAP GFLOPs

FrameGlimpses [49] VGG 60.2% 32.9 71.2% 29.9
AdaFrame [44] MN2+RN 71.5% 79.0 80.2% 75.1
LiteEval [45] MN2+RN 72.7% 95.1 80.0% 94.3

ListenToLook [16] MN2+RN 72.3% 81.4 – –
SCSampler [25] MN2+RN 72.9% 42.0 81.0% 42.0

AR-Net [29] MN2+RN 73.8% 33.5 81.3% 35.1

AdaFocus (128x128) MN2+RN 75.0% 26.6 83.4% 26.6

weighted CNN architectures to demonstrate that AdaFocus
complements them and further improves the efficiency. Fi-
nally, we provide detailed visualization and ablation results
to give additional insights into our method.

Datasets. Our experiments are based on five widely-
used video datasets: (1) ActivityNet-v1.3 [1] contains
10,024 training videos and 4,926 validation videos labeled
by 200 action categories. The average duration is 117 sec-
onds; (2) FCVID [23] includes 45,611 training videos and
45,612 validation videos labeled into 239 classes. The av-
erage duration is 167 seconds; (3) Mini-Kinetics is a subset
of Kinetics [24] introduced by [29, 30]. The dataset con-
sists of 200 classes of videos selected from Kinetics, with
121k videos for training and 10k videos for validation; (4)
Something-Something V1&V2 [17] are two large-scale hu-
man action datasets, including 98k and 194k videos respec-
tively. We use the official training-validation split.

Data pre-processing. Unless otherwise specified, we
uniformly sample 16 frames from each video on Activi-
tyNet, FCVID and Mini-Kinetics, while sample 8 or 12
frames on Something-Something. Following [27, 29], we
augment training data by first adopting random scaling fol-
lowed by 224x224 random cropping, and then perform-
ing random flipping on all datasets except for Something-
Something V1&V2. During inference, we resize all frames
to 256x256 and centre-crop them to 224x224.

Table 2. Performance of AdaFocus and baselines on Mini-
Kinetics. GFLOPs refers to the average computational cost for
processing a single video. MN2 and RN denote MobileNet-V2
and ResNet, respectively. The best results are bold-faced.

Methods Backbones Mini-Kinetics
Top-1 Acc. GFLOPs

LiteEval [45] MN2+RN 61.0% 99.0
SCSampler [25] MN2+RN 70.8% 42.0

AR-Net [29] MN2+RN 71.7% 32.0

AdaFocus (128x128) MN2+RN 72.2% 26.6
AdaFocus (160x160) MN2+RN 72.9% 38.6

AdaFocus+ (160x160) MN2+RN 71.7% 20.3

4.1. Comparisons with State-of-the-art Efficient
Video Recognition Methods

Baselines. In this subsection, AdaFocus is compared
with several competitive baselines that focus on facilitat-
ing efficient video recognition, including MultiAgent [42],
SCSampler [25], LiteEval [45], AdaFrame [44], Listen-to-
look [16] and AR-Net [29]. Due to spatial limitations, we
briefly introduce them in Appendix A.

Implementation details. We deploy MobileNet-V2 [33]
and ResNet-50 [20] as the global CNN fG and local CNN
fL in AdaFocus. A one-layer gated recurrent unit (GRU) [4]
with a hidden size of 1024 is used in both the policy network
π and the classifier fC. The number of patch candidates is
set to 49 (uniformly distributed in 7x7). Due to the limited
space, training details are deferred to Appendix B.

Offline video recognition. We first implement AdaFo-
cus under the offline recognition setting, where our method
produces a single prediction after processing the whole
video. This setting is adopted by the papers of most base-
lines as well. The results on ActivityNet and FCVID are
presented in Table 1. We use a patch size of P 2 = 1282 in
AdaFocus, and evaluate the performance of different meth-
ods via mean average precision (mAP) following the com-
mon practice [44, 45, 16, 29] on these two datasets. It can be
observed that our method outperforms the alternative base-
lines by large margins in terms of efficiency. For example,
on FCVID, AdaFocus achieves 2.1% higher mAP (83.4%
v.s. 81.3%) than the strongest baseline, AR-Net, with 1.3x

16254



Table 3. Performance of AdaFocus-TSM and other recently proposed efficient CNNs on Something-Something (Sth-Sth). TSM+
refers to the augmented TSM baseline with the same network architecture as our method except for the policy network π. We uniformly
sample 8/12 frames for the MobileNet/ResNet-50 in our models2. The latency and throughput are tested on a 2.20GHz Intel Core i7-
10870H CPU and a NVIDIA GeForce RTX 2080Ti GPU with the batch size of 1 and 64, respectively. The best results are bold-faced.

Method Backbones #Frames Sth-Sth V1 Sth-Sth V2 Latency Throughput
Top-1 Acc. GFLOPs Top-1 Acc. GFLOPs (Intel Core i7, bs=1) (NVIDIA 2080Ti, bs=64)

I3D [2] 3DResNet50 32×2 41.6% 306 - - - -
I3D+GCN+NL [40] 3DResNet50 32×2 46.1% 606 - - - -

ECOEnLite [54] BN-Inception + 3DResNet18 92 46.4% 267 - - - -

TSN [39] ResNet50 8 19.7% 33.2 27.8% 33.2 - -
TRNRGB/Flow [50] BN-Inception 8/8 42.0% 32.0 55.5% 32.0 - -

ECO [54] BN-Inception+3DResNet18 8 39.6% 32.0 - - - -
AdaFuse [30] ResNet50 8 46.8% 31.5 59.8% 31.3 - -

TSM [27] ResNet50 8 46.1% 32.7 59.1% 32.7 0.32s 128.8 Videos/s

TSM+ [27] MobileNet-V2+ResNet50 8+82 47.0% 35.1 59.6% 35.1 0.42s 105.0 Videos/s
AdaFocus-TSM (144x144) MobileNet-V2+ResNet50 8+12 47.0% 23.5 (↓1.49x) 59.7% 23.5 (↓1.49x) 0.32s (↓1.31x) 143.8 Videos/s (↑1.37x)
AdaFocus-TSM (160x160) MobileNet-V2+ResNet50 8+12 47.6% 27.5 60.2% 27.5 0.36s 122.1 Videos/s
AdaFocus-TSM (176x176) MobileNet-V2+ResNet50 8+12 48.1% 33.7 60.7% 33.7 0.42s 104.2 Videos/s

less computation (26.6 GFLOPs v.s. 33.5 GFLOPs).
Results of varying patch sizes are presented in Figure

5. We change the patch size within P 2 ∈{96x96, 128x128,
160x160, 192x192}, and plot the corresponding mAP v.s.
FLOPs relationships in black dots. We also present the vari-
ants of baselines with various computational costs. One can
observe that AdaFocus leads to a considerably better trade-
off between efficiency and accuracy.

Improvements from further reducing temporal re-
dundancy. Then we test extending AdaFocus by skipping
less informative frames, as stated in Section 3.3. The results
are presented as AdaFocus+ (black stars) in Figure 5. The
coefficient λ is set to 1e− 6, while the skipping proportion
η% is varied within {0.9, 0.7, 0.5}. For the ease of imple-
mentation, we solve the threshold ρ on the training set. We
find this achieves almost the same performance as using a
validation set. It is clear that further reducing temporal re-
dundancy leads to a significantly better efficiency. With a
given mAP, the number of required GFLOPs per video for
AdaFocus+ is approximately 2.1-3.2x less than AR-Net.

Results on Mini-Kinetics are presented in Table 2.
The observations here are similar to ActivityNet/FCVID.
AdaFocus+ reduces the required computation to reach
71.7% accuracy by 1.6x (20.3 GFLOPs v.s. 32.0 GFLOPs).

Online video recognition results are shown in Figure 6.
Note that here we assume a stream of video frames come
in sequentially for processing and the model may need to
output a prediction at any time. In specific, we take a fixed
number of frames from the beginning of videos, feed them
into networks to evaluate the results, and change the number
of frames to obtain the mAP-FLOPs trade-off. We consider
two additional baselines: (1) ResNet-50-Average averages
the frame-level predictions of a ResNet-50 with the full in-
puts; (2) ResNet-50-GRU augments (1) by aggregating the
features across frames using a GRU classifier. Figure 6
shows that our method is able to obtain much better per-

2In fact, we can also sample 8/12 frames for TSM+, but this increases
computational costs dramatically(∼1.5x). Hence, we do not consider it.

Table 4. Effects of Reusing eG
t for Recognition.

Reusing eG
t mAP

for Recognition 96x96 128x128 160x160 192x192

7 70.2% 73.4% 75.0% 75.9%
3 71.9% 75.0% 76.0% 76.7%

formance given the same number of FLOPs, which enables
accurate and fast recognition in real-time applications.

4.2. Building on Top of Efficient CNNs
Setup. In this subsection, we implement AdaFocus on

top of the recently proposed efficient network architecture,
CNNs with temporal shift module (TSM) [27], to demon-
strate that our method can effectively improve the efficiency
of such state-of-the-art light-weighted models. Specifically,
we still use MobileNet-V2 and ResNet-50 as fG and fL, but
add TSM to them. A fully-connected layer is deployed as
the classifier fC, and we average the frame-wise predictions
as the output, following the design of TSM [27]. For a fair
comparison, we augment the vanilla TSM by introducing
the same two backbone networks as ours (named as TSM+),
where their output features are also concatenated to be fed
into a linear classifier. In other words, TSM+ differentiates
itself from AdaFocus only in that it feeds the whole frames
into ResNet-50, while we feed the selected image patches.

The setting of offline video recognition on Something-
Something V1&V2 is used here. Notably, as the videos
in the two datasets are very short (average duration≈ 4s),
we find the networks require the visual angle of adjacent
inputs (frames/patches) to be similar for high generaliza-
tion performance. We also observe that the locations of
task-relevant regions do not significantly change across the
frames in the same video. Therefore, here we let AdaFo-
cus generate a single patch location for the whole video af-
ter aggregates the information of all frames. Importantly,
such a simplification does not affect the main idea of our
method since different videos have varying patch locations.
The architecture of the policy network π and the training
algorithm remain unchanged. Details of training hyper-
parameters are deferred to Appendix B.

16255



Windsurfing

BMX Race

Doing Motocross

Making a Sandwich

Playing Lacrosse

Blowing Leaves

Using Uneven Bars

Playing Flute

Figure 7. Visualization results (zoom in for details). The green boxes indicate the locations of the image patches selected by AdaFocus.

Table 5. Comparisons of various patch selection policies. Fixed
policies are pre-defined without leveraging reinforcement learning
(RL). For RL-based policy, we change the design of rewards.

Ablation mAP
96x96 128x128 160x160 192x192

Fixed
Policy

Random Policy 65.8% 70.7% 73.1% 74.8%
Central Policy 61.9% 68.7% 72.4% 74.8%

Gaussian Policy 64.7% 70.6% 73.5% 74.9%

Learned
Policy
by RL

Confidence Reward 68.5% 72.3% 74.1% 75.5%
Increments Reward 69.4% 72.7% 74.4% 75.6%

AdaFocus (ours) 70.2% 73.4% 75.0% 75.9%

Results on Something-Something are reported in Ta-
ble 3. One can observe that by reducing the input size of
the relatively expensive ResNet-50 network, AdaFocus en-
ables TSM to process more frames in the task-relevant re-
gion of each video using the same computation, leading to
a significantly improved efficiency. For example, AdaFo-
cus achieves the same performance as TSM+ with 1.5x less
GFLOPs on Something-Something V1.

Practical efficiency. In Table 3, we also test the actual
inference speed of AdaFocus-TSM on both an Intel i7 CPU
and a NVIDIA 2080Ti GPU, with the batch size of 1 and
64, respectively, which are sufficient to saturate the two de-
vices. It can be observed that our practical speedup is sig-
nificant as well, with a slight drop compared with theoret-
ical results. We tentatively attribute this to the inadequate
hardware-oriented optimization in our implementation.

4.3. Analytical Results
Visualization. In Figure 7, we visualize the regions se-

lected by our proposed AdaFocus. Here we uniformly sam-
ple 8 video frames from ActivityNet. One can observe that
our method effectively guides the expensive local CNN fL
to attend to the task-relevant regions of each frame, such as
the sailboard, bicycle and flute.

Importance of reusing eG
t for recognition. As afore-

mentioned, our method effectively leverages the coarse
global feature eG

t for both localizing the task-relevant patch
ṽt and recognition. As shown in Table 4, only using eG

t for
localization degrades the mAP by 1− 1.5%, which demon-
strates the effects of this reusing mechanism.

Effectiveness of the learned patch selection policy is
validated in Table 5. We consider its three alternatives: (1)
randomly sampling patches, (2) cropping patches from the
centres of the frames, and (3) sampling patches from a stan-
dard gaussian distribution centred the frame. In addition,
we test altering the reward function for reinforcement learn-
ing to: (1) confidence reward directly uses the confidence
on ground truth labels as rewards, and (2) increments re-
ward utilizes the increments of confidence as rewards. For a
clear comparison, here we do not reuse eG

t for recognition.
An interesting phenomenon is that random policy appears
strong and outperforms the central policy, which may be at-
tributed to the spatial similarity between frames. That is to
say, adjacent central patches might have repetitive contents,
while randomly sampling is likely to collect more compre-
hensive information. Besides, it is shown that the learned
policies have considerably better performance, and our pro-
posed reward function significantly outperforms others.

5. Conclusion
This paper has proposed a spatial redundancy based ap-

proach for efficient video recognition, AdaFocus. Inspired
by the fact that not all image regions in video frames are
task-relevant, AdaFocus reduces computational costs by in-
ferring the high-capacity network only on a small but in-
formative patch of each frame, which is adaptively local-
ized with reinforcement learning. We further show that our
method can be extended by dynamically skipping less valu-
able frames. Extensive experiments demonstrate that our
method outperforms existing works in terms of both theo-
retical computational efficiency and actual inference speed.

Acknowledgements
This work is supported in part by the National Science

and Technology Major Project of the Ministry of Science
and Technology of China under Grants 2018AAA0100701,
the National Natural Science Foundation of China un-
der Grants 61906106 and 62022048, the Institute for Guo
Qiang of Tsinghua University and Beijing Academy of Ar-
tificial Intelligence.

16256



References
[1] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In CVPR,
pages 961–970, 2015. 6

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
pages 6299–6308, 2017. 1, 2, 7

[3] Jianguo Chen, Kenli Li, Qingying Deng, Keqin Li, and S Yu
Philip. Distributed deep learning model for intelligent video
surveillance systems with edge computing. IEEE Transac-
tions on Industrial Informatics, 2019. 1

[4] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation. In
EMNLP, pages 1724–1734, Doha, Qatar, Oct. 2014. Associ-
ation for Computational Linguistics. 4, 6

[5] Wen-Hsuan Chu, Yu-Jhe Li, Jing-Cheng Chang, and Yu-
Chiang Frank Wang. Spot and learn: A maximum-entropy
patch sampler for few-shot image classification. In CVPR,
pages 6251–6260, 2019. 2

[6] Robert T Collins, Alan J Lipton, Takeo Kanade, Hironobu
Fujiyoshi, David Duggins, Yanghai Tsin, David Tolliver,
Nobuyoshi Enomoto, Osamu Hasegawa, Peter Burt, et al. A
system for video surveillance and monitoring. VSAM final
report, 2000(1-68):1, 2000. 1

[7] James Davidson, Benjamin Liebald, Junning Liu, Palash
Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He,
Mike Lambert, Blake Livingston, et al. The youtube video
recommendation system. In Proceedings of the fourth ACM
conference on Recommender systems, pages 293–296, 2010.
1

[8] Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Franca Gar-
zotto, Pietro Piazzolla, and Massimo Quadrana. Content-
based video recommendation system based on stylistic visual
features. Journal on Data Semantics, 5(2):99–113, 2016. 1

[9] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In CVPR, pages
2625–2634, 2015. 2

[10] Hehe Fan, Zhongwen Xu, Linchao Zhu, Chenggang Yan,
Jianjun Ge, and Yi Yang. Watching a small portion could
be as good as watching all: Towards efficient video classifi-
cation. In IJCAI, 2018. 2

[11] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, pages 6202–6211, 2019. 1

[12] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In CVPR, pages 1933–1941, 2016. 1

[13] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li
Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for
residual networks. In CVPR, pages 1039–1048, 2017. 2

[14] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see
better: Recurrent attention convolutional neural network for
fine-grained image recognition. In CVPR, pages 4438–4446,
2017. 2

[15] Junyu Gao, Tianzhu Zhang, and Changsheng Xu. A unified
personalized video recommendation via dynamic recurrent
neural networks. In ACM MM, pages 127–135, 2017. 1

[16] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo
Torresani. Listen to look: Action recognition by previewing
audio. In CVPR, pages 10457–10467, 2020. 1, 2, 4, 6

[17] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The ”something something” video
database for learning and evaluating visual common sense.
In ICCV, pages 5842–5850, 2017. 6

[18] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey. arXiv preprint arXiv:2102.04906, 2021. 2

[19] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and
imagenet? In CVPR, pages 6546–6555, 2018. 1, 2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 6

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 4

[22] Nazli Ikizler and David Forsyth. Searching video for com-
plex activities with finite state models. In CVPR, pages 1–8.
IEEE, 2007. 1

[23] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang.
Exploiting feature and class relationships in video cate-
gorization with regularized deep neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
40(2):352–364, 2018. 6

[24] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 6

[25] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:
Sampling salient clips from video for efficient action recog-
nition. In ICCV, pages 6232–6242, 2019. 1, 2, 6

[26] Hengduo Li, Zuxuan Wu, Abhinav Shrivastava, and Larry S
Davis. 2d or not 2d? adaptive 3d convolution selection for ef-
ficient video recognition. arXiv preprint arXiv:2012.14950,
2020. 1, 2

[27] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding. In ICCV, pages
7083–7093, 2019. 2, 4, 6, 7

[28] Lili Meng, Bo Zhao, Bo Chang, Gao Huang, Wei Sun, Fred-
erick Tung, and Leonid Sigal. Interpretable spatio-temporal
attention for video action recognition. In ICCV Workshops,
pages 0–0, 2019. 2

[29] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna
Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, and

16257



Rogerio Feris. Ar-net: Adaptive frame resolution for effi-
cient action recognition. In ECCV, pages 86–104. Springer,
2020. 1, 2, 4, 6

[30] Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna
Sattigeri, Leonid Karlinsky, Kate Saenko, Aude Oliva, and
Rogerio Feris. Adafuse: Adaptive temporal fusion network
for efficient action recognition. In ICLR, 2021. 2, 4, 6, 7

[31] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Re-
current models of visual attention. In NeurIPS, pages 2204–
2212, 2014. 2

[32] Bowen Pan, Rameswar Panda, Camilo Fosco, Chung-Ching
Lin, Alex Andonian, Yue Meng, Kate Saenko, Aude Oliva,
and Rogerio Feris. Va-red 2: Video adaptive redundancy
reduction. arXiv preprint arXiv:2102.07887, 2021. 2

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, pages 4510–4520,
2018. 6

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 4

[35] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, pages 618–626, 2017.
4

[36] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torre-
sani, and Manohar Paluri. Learning spatiotemporal features
with 3d convolutional networks. In ICCV, pages 4489–4497,
2015. 1, 2

[37] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feis-
zli. Video classification with channel-separated convolu-
tional networks. In ICCV, pages 5552–5561, 2019. 2

[38] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In CVPR, pages 6450–
6459, 2018. 2

[39] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks: Towards good practices for deep action recogni-
tion. In ECCV, pages 20–36. Springer, 2016. 2, 7

[40] Xiaolong Wang and Abhinav Gupta. Videos as space-time
region graphs. In ECCV, pages 399–417, 2018. 7

[41] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang,
and Gao Huang. Glance and focus: a dynamic approach
to reducing spatial redundancy in image classification. In
NeurIPS, 2020. 2

[42] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and
Shilei Wen. Multi-agent reinforcement learning based frame
sampling for effective untrimmed video recognition. In
ICCV, pages 6222–6231, 2019a. 1, 2, 6

[43] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, Yi
Yang, and Shilei Wen. Dynamic inference: A new approach
toward efficient video action recognition. In CVPR Work-
shops, pages 676–677, 2020a. 2

[44] Zuxuan Wu, Hengduo Li, Caiming Xiong, Yu-Gang Jiang,
and Larry Steven Davis. A dynamic frame selection frame-

work for fast video recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2020b. 1, 2, 4, 6

[45] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S
Davis. Liteeval: A coarse-to-fine framework for resource
efficient video recognition. In NeurIPS, 2019b. 1, 2, 4, 6

[46] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV,
pages 305–321, 2018. 2

[47] Zhenda Xie, Zheng Zhang, Xizhou Zhu, Gao Huang, and
Stephen Lin. Spatially adaptive inference with stochastic
feature sampling and interpolation. In ECCV, pages 531–
548. Springer, 2020. 2

[48] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and
Gao Huang. Resolution adaptive networks for efficient infer-
ence. In CVPR, pages 2369–2378, 2020. 2

[49] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-
Fei. End-to-end learning of action detection from frame
glimpses in videos. In CVPR, pages 2678–2687, 2016. 2,
6

[50] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In ECCV,
pages 803–818, 2018. 7

[51] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, pages 2921–2929, 2016. 4

[52] Sijie Zhu, Taojiannan Yang, Matias Mendieta, and Chen
Chen. A3d: Adaptive 3d networks for video action recog-
nition. arXiv preprint arXiv:2011.12384, 2020. 2

[53] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen
Wei. Deep feature flow for video recognition. In CVPR,
pages 2349–2358, 2017. 1

[54] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas
Brox. Eco: Efficient convolutional network for online video
understanding. In ECCV, pages 695–712, 2018. 2, 7

16258


