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Abstract

Event cameras are ideally suited to capture HDR vi-
sual information without blur but perform poorly on static
or slowly changing scenes. Conversely, conventional im-
age sensors measure absolute intensity of slowly chang-
ing scenes effectively but do poorly on high dynamic range
or quickly changing scenes. In this paper, we present
an event-based video reconstruction pipeline for High Dy-
namic Range (HDR) scenarios. The proposed algorithm in-
cludes a frame augmentation pre-processing step that de-
blurs and temporally interpolates frame data using events.
The augmented frame and event data are then fused using
a novel asynchronous Kalman filter under a unifying un-
certainty model for both sensors. Our experimental results
are evaluated on both publicly available datasets with chal-
lenging lighting conditions and fast motions and our new
dataset with HDR reference. The proposed algorithm out-
performs state-of-the-art methods in both absolute intensity
error (48% reduction) and image similarity indexes (aver-
age 11% improvement).

1. Introduction
Event cameras offer distinct advantages over conven-

tional frame-based cameras: high temporal resolution, high
dynamic range (HDR) and minimal motion blur [24]. How-
ever, event cameras provide poor imaging capability in
slowly varying or static scenes, where despite some efforts
in ‘gray-level’ event cameras that measure absolute inten-
sity [35, 6], most sensors predominantly measure only the
relative intensity change. Conventional imaging technol-
ogy, conversely, is ideally suited to imaging static scenes
and measuring absolute intensity. Hybrid sensors such as
the Dynamic and Active Pixel Vision Sensor (DAVIS) [4]
or custom-built systems [53] combine event and frame-
based cameras, and there is an established literature in video
reconstruction fusing conventional and event camera data
[43, 32, 31, 53]. The potential of such algorithms to en-
hance conventional video to overcome motion blur and in-
crease dynamic range has applications from robotic vision

(a) Input LDR Image (b) E2VID [39]

(c) CF [43] (d) Our AKF Reconstruction
Figure 1. An example with over exposure and fast camera mo-
tion causing blur taken from the open-source event camera dataset
IJRR [29]. Image (a) is the low dynamic range (LDR) and blurry
input image. Image (b) is the result of state-of-the-art method
E2VID [39] (uses events only). Image (c) is the result of filter-
based image reconstruction method CF [43] that fuses events and
frames. Our AKF (d) generates sharpest textured details in the
overexposed areas.

systems (e.g., autonomous driving), through film-making to
smartphone applications for everyday use.

In this paper, we propose an Asynchronous Kalman
Filter (AKF) to reconstruct HDR video from hybrid
event/frame cameras. The key contribution is based on
an explicit noise model we propose for both events and
frames. This model is exploited to provide a stochastic
framework in which the pixel intensity estimation can be
solved using an Extended Kalman Filter (EKF) algorithm
[17, 18]. By exploiting the temporal quantisation of the
event stream, we propose an exact discretisation of the EKF
equations, the Asynchronous Kalman Filter (AKF), that is
computed only when events occur. In addition, we propose
a novel temporal interpolation scheme and apply the estab-
lished de-blurring algorithm [31] to preprocess the data in
a step called frame augmentation. The proposed algorithm
demonstrates state-of-the-art hybrid event/frame image re-
construction as shown in Fig. 1.
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We compare our proposed algorithm with the state-of-
the-art event-based video reconstruction methods on the
popular public datasets ACD [43], CED [46] and IJRR [29]
with challenging lighting conditions and fast motions.
However, existing public datasets using DAVIS event cam-
eras do not provide HDR references for quantitative evalu-
ation. To overcome this limitation, we built a hybrid sys-
tem consisting of a high quality RGB frame-based camera
mounted alongside a pure event camera to collect high qual-
ity events, and HDR groundtruth from multiple exposures
taken from the RGB camera. Thus, we also evaluate the
qualitative and quantitative performance of our proposed al-
gorithm on our proposed HDR hybrid event/frame dataset.
Our AKF achieves superior performance to existing event
and event/frame based image reconstruction algorithms.

In summary, our contributions are:

• An Asynchronous Kalman Filter (AKF) for hybrid
event/frame HDR video reconstruction
• A unifying event/frame uncertainty model
• Deblur and temporal interpolation for frame augmen-

tation
• A novel real-world HDR hybrid event/frame dataset

with reference HDR images and a simulated HDR
dataset for quantitative evaluation of HDR perfor-
mance.

2. Related Work
Recognising the limited ability of pure event cameras

(DVS) [24] to detect slow/static scenes and absolute bright-
ness, hybrid event/frame cameras such as the DAVIS [4]
were developed. Image frames and events are captured
through the same photodiode allowing the two complemen-
tary data streams to be exactly registered [5]. This has
led to significant research effort into image reconstruction
from hybrid event/frame and pure event cameras including
SLAM-based methods [21, 37], filters [43, 44], de-blurring
[32, 31], machine learning approaches [39, 45, 49].

Video and image reconstruction methods may be
grouped into (i) per-event asynchronous algorithms that
process events upon arrival [5, 52, 43] and (ii) batch (syn-
chronous) algorithms that first accumulate a significant
number (e.g., 10k) of events before processing the batch in
one go [33, 39, 45]. While batch methods have achieved
high accuracy, they incur additional latency depending on
the time-interval of the batch (e.g., 50ms). Asynchronous
methods, if implemented on appropriate hardware, have
the potential to run on a timescale closer to that of events
< 1ms. A further distinction may be made between pure
event reconstruction methods and hybrid event/frame meth-
ods that use a mix of (registered) events and image frames.
Pure event reconstruction: Images and video reconstruc-
tion using only events is a topic of significant interest in the
community that can shed light on the information content
of events alone. Early work focused on a moving event

camera in a static scene, either pure rotations [7, 20] or
full 6-DOF motion [21, 37]. Hand-crafted approaches were
proposed including joint optimisation over optic flow and
image intensity [2], periodic regularisation based on event
timestamps [40] and temporal filtering [43, 44]. Recently,
learned approaches have achieved surprisingly high quality
video reconstruction [38, 39, 45, 49] at significantly higher
computational cost vs. hand-crafted methods.

Event/frame reconstruction: The invention of the DAVIS
[4] and its ability to capture frames alongside events (and
even IMU measurements) has widened the community’s
perspective from pure event cameras to hybrid sensors and
how best to combine modalities. An early algorithm in-
terpolated between frames by adding events scaled by the
contrast threshold until a new frame is received [5]. The
contrast threshold is typically unknown and variable so [5]
includes a method to estimate it based on surrounding im-
age frames from the DAVIS. Pan et al. [32, 31] devised
the event double integral (EDI) relation between events and
a blurry image, along with an optimisation approach to
estimate contrast thresholds to reconstruct high-speed de-
blurred video from events and frames. High-speed video
can also be obtained by warping still images according
to motion computed via events [47, 26], or by letting a
neural network learn how to combine frames and events
[34, 54, 33, 25, 15]. Recognising the limited spatial resolu-
tion of the DAVIS, Han et al. [12] built a hybrid event/frame
system consisting of an RGB camera and a DAVIS240 event
camera registered via a beam-splitter. An event guided
HDR imaging pipeline was used to fuse frame and event
information [12].

Continuous-time temporal filtering is an approach that
exploits the near-continuous nature of events. Scheerlinck
et al. [43, 44] proposed an asynchronous complementary fil-
ter to fuse events and frames that can equivalently be run as
a high-pass filter if the frame input is set to zero (i.e., using
events only). The filters are based on temporal smoothing
via a single fixed-gain parameter that determines the ‘fade
rate’ of the event signal.

Multi-exposure image fusion (MEIF): The most common
approach in the literature to compute HDR images is to
fuse multiple images taken with different exposures. Ma et
al. [27] proposed the use of structural patch decomposi-
tion to handle dynamic objects in the scene. Kalantari and
Ramamoorthi [16] proposed a deep neural network and a
dataset for dynamic HDR MEIF. More recent work also
deals with motion blur in long exposure images [50, 23].
These methods directly compute images that do not re-
quire additional tone mapping to produce nice looking im-
ages [36]. However, all these works require multiple im-
ages at different exposures of the same scene and cannot
be applied to the real-time image reconstruction scenarios
considered in this paper.
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3. Sensor Model and Uncertainty
3.1. Event Camera Model

Event cameras measure the relative log intensity change
of irradiance of pixels. New events eip are triggered when
the log intensity change exceeds a preset contrast threshold
c. In this work, we model events as a Dirac delta or impulse
function δ [1] to allow us to apply continuous-time systems
analysis for filter design. That is,

ep(t) =

∞∑
i=1

(cσip + ηip)δ(t− tip), (1)

ηip ∼ N (0, Qp(t)) ,

where tip is the time of the ith event at the p = (px,py)T

pixel coordinate, the polarity σip ∈ {−1,+1} represents the
direction of the log intensity change, and the noise ηip is an
additive Gaussian uncertainty at the instance when the event
occurs. The noise covarianceQp(t) is the sum of three con-
tributing noise processes; ‘process’ noise, ‘isolated pixel’
noise, and ‘refractory period’ noise. That is

Qp(t) :=

∞∑
i=1

(
Qproc.

p (t) +Qiso.
p (t) +Qref.

p (t)
)
δ(t− tip).

(2)

We further discuss the three noise processes in the next sec-
tion.

3.1.1 Event Camera Uncertainty

Stochastic models for event camera uncertainty are difficult
to develop and justify [10]. In this paper, we propose a num-
ber of simple heuristics to model event noise as the sum of
three pixel-by-pixel additive Gaussian processes.
Process noise: Process noise is a constant additive uncer-
tainty in the evolution of the irradiance of the pixel, anal-
ogous to process noise in a Kalman filtering model. Since
this noise is realised as an additive uncertainty only when an
event occurs, we call on the principles of Brownian motion
to model the uncertainty at time tip as a Gaussian process
with covariance that grows linearly with time since the last
event at the same pixel. That is

Qproc.
p (tip) = σ2

proc.(t
i
p − ti−1

p ),

where σ2
proc. is a tuning parameter associated with the pro-

cess noise level.
Isolated pixel noise: Spatially and temporally isolated
events are more likely to be associated to noise than events
that are correlated in group. The noisy background activity
filter [9] is designed to suppress such noise and most event
cameras have similar routines that can be activated. Instead,
we model an associated noise covariance by

Qiso.
p (tip) = σ2

iso. min{tip − t∗N(p)},

where σ2
iso. is a tuning parameter and t∗N(p) is the latest

time-stamp of any event in a neighbourhood N(p) of p.
If there are recent spatio-temporally correlated events then
Qiso.

p (tip) is negligible, however, the covariance grows lin-
early, similar to the Brownian motion assumption for the
process noise, with time from the most recent event.
Refractory period noise: Circuit limitations in each pixel
of an event camera limit the response time of events to a
minimum known as the refractory period ρ > 0 [55]. If
the event camera experience fast motion in highly textured
scenes then the pixel will not be able to trigger fast enough
and events will be lost. We model this by introducing a
dependence on the uncertainty associated with events that
are temporally correlated such that

Qref.
p (tip) =

{
0 if tip − ti−1

p > ρ,
σ2

ref. otherwise,

where σ2
ref. is a tuning parameter and ρ is an upper bound on

the refractory period.

3.2. Conventional Camera Model
The photo-receptor in a CCD or CMOS circuit from a

conventional camera converts incoming photons into charge
that is then converted to a pixel intensity by an analogue-to-
digital converter (ADC). In a typical camera, the camera re-
sponse is linearly related to the pixel irradiance for the cor-
rect choice of exposure, but can become highly non-linear
where pixels are overexposed or underexposed [28]. In par-
ticular, effects such as dark current noise, CCD saturation,
and blooming destroy the linearity of the camera response at
the extreme intensities [22]. In practice, these extreme val-
ues are usually trimmed, since the data is corrupted by sen-
sor noise and quantisation error. However, the information
that can be gained from this data is critically important for
HDR reconstruction. The mapping of the scaled sensor irra-
diance (a function of scene radiance and exposure time) to
the camera response is termed the Camera Response Func-
tion (CRF) [11, 41]. To reconstruct the scaled irradiance
Ip(τk) at pixel p at time τk from the corresponding raw
camera response IFp (τk) one applies the inverse CRF

Ip(τk) = CRF−1(IFp (τk)) + µ̄kp, (3)

µ̄kp ∼ N (0, R̄p(τk)),

where µ̄kp is a noise process that models noise in Ip(τk)

corresponding to noise in IFp mapped back through the in-
verse CRF. This inverse mapping of the noise is critical in
correctly modelling the uncertainty of extreme values of the
camera response.

3.2.1 Conventional Camera Uncertainty

The noise of Ip(τk) comes from uncertainty in the raw
camera response IFp (τk) mapped through the inverse of the
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Camera Response Function (CRF). The uncertainty asso-
ciated with sensing process IFp (τk) is usually modelled as
a constant variance Gaussian process [48, 42] although for
low light situations this should properly be a Poisson pro-
cess model [13]. The quantisation noise is uniform over
the quantisation interval related to the number of bits used
for intensity encoding. Since the CRF compresses the sen-
sor response for extreme intensity values, the quantisation
noise will dominate in these situations. Conversely, for cor-
rect exposure settings, the quantisation noise is insignificant
and a Gaussian sensing process uncertainty provides a good
model [13]. Inverting this noise model through the inverse
of the CRF function then we expect the variance R̄p(τk) in
(3) to depend on intensity of the pixel: it should be large for
extreme intensity values and roughly constant and small for
well exposed pixels.

The CRF can be estimated using an image sequence
taken under different exposures [8, 11, 41]. For long ex-
posures, pixels that would have been correctly exposed be-
come overexposed and provide information on the nonlin-
earity of the CRF at high intensity, and similarly, short ex-
posures provide information for the low intensity part of the
CRF. We have used this approach to estimate the CRF for
the APS sensor on a DAVIS event camera and a FLIR cam-
era. In the experiment, we use the raw image intensity as
the measured camera response.

Following [41], the exposure time is linearly scaled to
obtain the scaled irradiance in the range of raw camera re-
sponse. In this way, the camera response function CRF(·)
is experimentally determined as a function of the scaled ir-
radiance I . The Certainty function f c(·) is defined to be the
sensitivity of the CRF with respect to the scaled irradiance

f c :=
dCRF

dI
, (4)

and it is renormalised so that the maximum is unity [41].
Note that different cameras can have dissimilar camera re-
sponses for the same irradiance of the sensor.

Remapping the I axis of the Certainty function f c(·) to
camera response IF defines the Weighting function fw(·)
(Fig 2.a) as a function of camera response [41]

fw :=
dCRF

dI
◦ CRF−1, (5)

where ◦ defines function composition.
Inspired by [41], we define the covariance of noise asso-

ciated with raw camera response as

R̄p := σ2
im.

1

fw(IF )
, (6)

where σ2
im. is a tuning parameter related to the base level of

noise in the image (see Fig. 2.b. for σ2
im. = 1). Note that

we also introduce a saturation to assign a maximum value
to the image covariance function (Fig. 2.b).

(a) Weighting function (b) Image covariance function
Figure 2. Weighting function fw(·) and image covariance func-
tion R̄p for the APS camera in a DAVIS event/frame camera (blue)
and the FLIR camera (red) used in the experimental studies.

In addition to the base uncertainty model for Ip(τk), we
will also need to model the uncertainty of frame informa-
tion in the interframe period and in the log intensity scale
for the proposed algorithm. We use linear interpolation to
extend the covariance estimate from two consecutive frames
Ip(τk) and Ip(τk+1) by

R̄p(t) :=
( t− τk
τk+1 − τk

)
R̄p(τk+1) +

( τk+1 − t
τk+1 − τk

)
R̄p(τk).

(7)

We define the continuous log image intensity function by
taking the log of Ip. However, the log function is not sym-
metric and mapping the noise from Ip will bias the log in-
tensity. Using Taylor series expansion, the biased log inten-
sity is approximately

LFp (τk) ≈ log
(
Ip(τk) + I0

)
− R̄p(τk)

2(Ip(τk) + I0)2
+ µkp,

µkp ∼ N (0, Rp(τk)),

(8)

where I0 is a fixed offset introduced to ensure intensity val-
ues remain positive and Rp(τk) is the covariance of noise
associated with the log intensity. The covariance is given by

Rp(t) =
R̄p(t)

(Ip(τk) + I0)2
. (9)

Generally, when Ip(τk) is not extreme then
R̄p(t)

2(Ip(τk)+I0)2
� log

(
Ip(τk) + I0

)
and LFp (τk) ≈

log
(
Ip(τk) + I0

)
.

4. Method
The proposed image processing architecture is shown in

Fig. 3. There are three modules in the proposed algorithm; a
frame augmentation module that uses events to augment the
raw frame data to remove blur and increase temporal reso-
lution, the Asynchronous Kalman Filter (AKF) that fuses
the augmented frame data with the event stream to generate
HDR video, and the Kalman gain module that integrates the
uncertainty models to compute the filter gain.
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Figure 3. Block diagram of the image processing pipeline discussed in §4.
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are computed. The event stream is used to

interpolate between the two deblurred frames to improve temporal
resolution.

4.1. Frame Augmentation
Deblur: Due to long exposure time or fast motion, the in-
tensity images LF may suffer from severe motion blur. We
use the double integral model (EDI) from [32] to sharpen
the blurry low frequency images to obtain a deblurred im-
age LDp (τk − T/2) at the beginning, and LDp (τk+1 + T/2)
at the end, of the exposure of each frame (Fig. 4). The two
sharpened images are used in the interpolation module.
Interpolation: The goal of the interpolation module is to
increase the temporal resolution of the frame data. This
is important to temporally align the information in the im-
age frames and event data, which helps to overcome the
ghosting effects that are visible in other recent work where
the image frames are interpolated using zero order hold
[43, 44].

To estimate intensity at the ith event timestamp at pixel
p, we integrate forward from a deblurred image LDp (τk −
T/2) taken from the start of the exposure (Fig. 4). The for-
ward interpolation is

LA−p (t) = LDp (τk − T/2) +

∫ t

τk−T/2
e(γ)dγ, (10)

where LA−p denotes the augmented image. Similarly, we
interpolate backwards from the end of exposure k + 1 to
obtain

LA+
p (t) = LDp (τk+1 + T/2)−

∫ τk+1+T/2

t

e(γ)dγ. (11)

Ideally, if there are no missing or biased events and the
frame data is not noisy, then the forwards and backwards
interpolation results LA−p (tip) and LA+

p (tip) computed with
the true contrast threshold should be equal. However, noise
in either the event stream or in the frame data will cause
the two interpolations to differ. We reconcile these two es-
timates by per-pixel calibration of the contrast threshold in
each interpolation period. Define the scaling factor of the
contrast threshold

ckp :=
LDp (τk+1 + T/2)− LDp (τk − T/2)∫ τk+1+T/2

τk−T/2 e(γ)dγ
. (12)

This calibration can be seen as using the shape provided by
the event integration between deblurred frames and scaling
the contrast threshold to vertically stretch or shrink the in-
terpolation to fit the deblurred frame data (Fig. 4). This is
particularly effective at compensating for refractory noise
where missing events are temporally correlated to the re-
maining events. Using the outer limits of the exposure for
the deblurred image maximises the number of events (per-
pixel) in the interpolation period and improves the estima-
tion of ckp.

Within each exposure (frame k) there is a forward and
backward estimate available with different per-pixel con-
trast thresholds associated with interpolating from frame
k− 1 to k, k to k+ 1. We smoothly interpolate between es-
timates in the exposure period to define the final augmented
frame

LAp (t) =



(
τk+T/2−t

T

)
LA−p (t) +

(
t−τk+T/2

T

)
LA+
p (t)

if t ∈ [τk − T/2, τk + T/2),
LA+
p (t)

if t ∈ [τk + T/2, τk+1 − T/2).
(13)

4.2. Asynchronous Kalman Filter (AKF)

In this section, we introduce the Kalman filter that in-
tegrates the uncertainty models of both event and frame
data to compute the filter gain dynamically. We propose a
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continuous-time stochastic model of the log intensity state

dLp = ep(t)dt+ dwp,

LAp (tip) = Lp(tip) + µip,

where dwp is a Wiener process (continuous-time stochastic
process) and µip is the log intensity frame noise (8) in con-
tinuous time associated with the models introduced in §3.1
and §3.2. Here LAp (tip) is the augmented image (see LA(t)
in Fig. 3) and the notation serves also as the measurement
equation where Lp(tip) is the true (log) image intensity.

The ordinary differential equation (ODE) of the pro-
posed filter state estimate is

˙̂
Lp(t) = ep(t)−Kp(t)[L̂p(t)− LAp (t)], (14)

where Kp(t) is the Kalman gain defined below (18).
The Kalman-Bucy filter that we implement is posed in
continuous-time and updated asynchronously as each event
arrives. At each new event timestamp tip, the filter state is
updated as

L̂p(tip) = L̂p(ti−p ) + ep(tip). (15)

Within a time-interval t ∈ [tip, t
i+1
p ) where there are no new

events or frames we solve the following ODE as a discrete
update

˙̂
Lp(t) = −Kp(t)[L̂p(t)− LAp (t)] for t ∈ [tip, t

i+1
p ). (16)

Substituting the Kalman gain Kp(t) from (18) and (20), the
analytic solution of (16) between frames or events is

L̂p(t) =
[L̂p(tip)− LAp (tip)] · P−1

p (tip)

P−1
p (tip) +R−1

p (t) · (t− tip)
+ LAp (t). (17)

The detailed derivation of L̂p(t) is shown in the supplemen-
tary material §6.

4.3. Asynchronous Kalman Gain
The Asynchronous Kalman filter computes a pixel-by-

pixel gain Kp(t) derived from estimates of the state and
sensor uncertainties. The Kalman gain is given by [17, 18]

Kp(t) = Pp(t)R−1
p (t), (18)

where Pp(t) > 0 denotes the covariance of the state esti-
mate in the filter andRp(t) (9) is the log-intensity frame co-
variance of pixel p. The standard Riccati equation [19, 56]
that governs the evolution of the filter state covariance [18]
is given by

Ṗp = −P 2
pR
−1
p (t) +Qp(t),

where Qp(t) (2) is the event noise covariance. Here the
choice of event noise model (2) as a discrete noise that oc-
curs when the update of information occurs means that the

Riccati equation can also be solved during the time interval
t ∈ [tip, t

i+1
p ) and at new event timestamp ti+1

p separately.
In the time interval t ∈ [tip, t

i+1
p ) (no new events or

frames occur), the state covariance Pp(t) is asynchronously
updated by the ordinary differential equation

Ṗp(t) = −P 2
p(t) ·R−1

p (t). (19)

ComputingRp(t) from (6)-(9) on this time interval then the
solution of (19) is

Pp(t) =
1

P−1
p (tip) +R−1

p (t) · (t− tip)
,

for t ∈ [tip, t
i+1
p ). (20)

At the new event timestamp ti+1
p , the state covariance Pp(t)

is updated from the timestamp t(i+1)−
p such that

Pp(ti+1
p ) = Pp(t(i+1)−

p ) +Qp(ti+1
p ). (21)

The explicit solution of Kalman filter gain is obtained by
substituting (20) and (21) to (18). See derivation of Pp(t) in
the supplementary material §5. The solution is substituted
into (14) to obtain (17).

5. Hybrid Event/Frame Dataset
Evaluating HDR reconstruction for hybrid event/frame

cameras requires a dataset including synchronised events,
low dynamic range video and high dynamic range refer-
ence images. The dataset associated with the recent work
by [12] is patent protected and not publicly available. Pub-
lished datasets lack high quality HDR reference images, and
instead rely on low dynamic range sensors such as the APS
component of a DAVIS for groundtruth [49, 58, 29]. Fur-
thermore, these datasets do not specifically target HDR sce-
narios. DAVIS cameras used in these datasets also suffer
from shutter noise (noise events triggered by APS frame
readout) due to undesirable coupling between APS and
DVS components of pixel circuitry [4].

To address these limitations, we built a hybrid
event/frame camera system consisting of two separate high
quality sensors, a Prophesee event camera (VGA, 640×480
pixels) and a FLIR RGB frame camera (Chameleon3 USB3,
2048×1536 pixels, 55FPS, lens of 4.5mm/F1.95), mounted
side-by-side. We calibrated the hybrid system using a blink-
ing checkerboard video and computed camera intrinsic and
extrinsic matrices following [14, 57]. We synchronised the
two cameras by sending an external signal from the frame
camera to trigger timestamped zero magnitude events in the
event camera.

We obtained an HDR reference image for quantitative
evaluation of a sequence via traditional multi-exposure im-
age fusion followed by an image warp to register the ref-
erence image with each frame. The scene in the proposed
dataset is chosen to be static and far away from the camera,
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(a) DAVIS frame (b) E2VID [39] (c) CF [43] (d) AKF(ours)
Figure 5. Comparison of state-of-the-art event-based video reconstruction methods on sequences with challenging lighting conditions and
fast motions, drawn from the open-source datasets ACD [43], CED [46] and IJRR [29]. CF [43] fails to capture details under extreme light-
ing conditions and suffers from a ‘shadowing effect’ (white or black shadows trailing behind dark or bright moving objects). E2VID [39]
and AKF are able to reconstruct the blurry right turn sign in the high-speed, low-light Night drive dataset and the overexposed regions
in the Shadow and Outdoor running dataset. But without frame information, E2VID [39] fails to compute the static background
of Shadow, and only provides washed-out reconstructions in all three sequences. AKF outperforms the other methods in all challenging
scenarios. Additional image and video comparisons are provided in the supplementary material.

so that SURF feature matching [3] and homography estima-
tion are sufficient for the image registration.

We also provide an artificial HDR (AHDR) dataset that
was generated by simulating a low dynamic range (LDR)
camera by applying an artificial camera response function
and using the original images as HDR references. We syn-
thesised LDR images in this manner to provide additional
data to verify the performance of our algorithm.

6. Experiments
We compared our proposed Asynchronous Kalman Filter

(AKF) with three state-of-the-art event-based video recon-
struction methods: E2VID [39] and ECNN [49] are neural
networks that use only events to reconstruct video, while
CF [43] is a filter-based method that combines events and
frames. In Fig. 5, we evaluate these methods on some chal-
lenging sequences from the popular open-source event cam-
era datasets ACD [43], CED [46] and IJRR [29]. We also
evaluate these methods on the proposed HDR and AHDR
dataset in Fig. 6 and Table 1.
Evaluation: We quantitatively evaluated image reconstruc-
tion quality with the HDR reference in the proposed dataset
using the following metrics: Mean squared error (MSE),
structural similarity Index Measure (SSIM) [51], and Q-
score [30]. SSIM measures the structural similarity between
the reconstructions and references. Q-score is a metric tai-
lored to HDR full-reference evaluation. All metrics are
computed on the un-altered reconstruction and raw HDR
intensities.

Implementation details: The settings for our AKF are as
follows. The event noise covariance Qp (2) is initialised
to 0.01. The tuning parameter σ2

im. (6) is set to 7 × 107

for the FLIR camera and 7× 105 for the DAVIS240C cam-
era to account for higher relative confidence associated with
the intensity value of the FLIR camera. The event noise
covariance tuning parameters (2) are set to: σ2

ref. = 0.01,
σ2

proc = 0.0005 and σ2
iso. = 0.03.

Main Results: The open-source event camera datasets
ACD [43], CED [46] and IJRR [29] are popularly used
in several event-based video reconstruction works. With-
out HDR references, we only visually evaluate on the chal-
lenging HDR scenes from these datasets in Fig. 1 and
5. Night drive investigates extreme low-light, fast-
speed, night driving scenario with blurry and underex-
posed/overexposed DAVIS frames. Shadow evaluates the
scenario of static background, dynamic foreground objects
with overexposed region. Outdoor running evaluates
the outdoor overexposed scene with event camera noise.
Both AKF and E2VID [39] are able to capture HDR objects
(e.g., right turn sign in Night drive), but E2VID [39]
fails to capture the background in Shadow because the
stationary event camera provides no information about the
static background. In Outdoor running, it is clear that
E2VID [39] is unable to reproduce the correct high dynamic
range intensity between the dark road and bright left build-
ing and sky background. Our AKF algorithm is able to
resolve distant buildings despite the fact that they are too
bright and washed out in the LDR DAVIS frame. The cut-
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Figure 6. Typical results from the proposed HDR and AHDR dataset. Our HDR dataset includes referenced HDR images generated by
fusing several images of various exposures. Our AHDR dataset is simulated by saturating the values of well-exposed real images, taking
out most of the details. The original images are used as HDR references. E2VID [39] uses events only. The input images used in the CF
[43] and AKF are low dynamic range. CF [43] leads to shadows on moving object edges. E2VID [39] performs poorly on the dark trees in
the HDR dataset and the road/sky in the AHDR dataset. Our AKF correctly computes the underexposed and overexposed trees in the HDR
dataset and reconstructs the mountain road clearly in the artificially saturated regions.

Table 1. Comparison of state-of-the-art event-based video reconstruction methods E2VID [39], ECNN [49] and CF [43] on the proposed
HDR and AHDR dataset. Metrics are evaluated over the full dataset of 9 sequences. Our AKF outperforms the compared methods on all
metrics. Detailed evaluation on each sequence can be found in the supplementary material. Higher SSIM and Q-score and lower MSE
indicate better performance.

Metrics MSE (×10−2) ↓ SSIM [51] ↑ Q-score [30] ↑
Methods E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours)

HDR 7.76 11.43 6.22 1.71 0.616 0.31 0.66 0.89 4.32 3.41 3.01 4.83

AHDR 11.56 21.23 5.28 4.18 0.50 0.04 0.62 0.75 5.24 3.36 4.78 5.54

off frequency of CF [43], which corresponds to the Kalman
gain of our AKF is a single constant value for all pixels.
This causes CF [43] to exhibits ‘shadowing effect’ on ob-
ject edges (on the trailing edge of road sign and buildings).
AKF overcomes the ‘shadowing effect’ by dynamically ad-
justing the per-pixel Kalman gain based on our uncertainty
model. Our frame augmentation also sharpens the blurry
DAVIS frame and reduces temporal mismatch between the
high data rate events and the low data rate frames. AKF
reconstructs the sharpest and most detailed HDR objects in
all challenging scenes.

Table 1 shows that our AKF outperforms other methods
on the proposed HDR/AHDR dataset on MSE, SSIM and
Q-score. Unsurprisingly, our AKF outperforms E2VID [39]
and ECNN [49] since it utilises frame information in ad-
dition to events. CF [43] performs worse compared to
E2VID [39] and ECNN [49] in some cases despite utilis-
ing frame information in addition to events. AKF outper-
forms state-of-the-art methods in the absolute intensity er-
ror MSE with a significant reduction of 48% and improve
the image similarity metrics SSIM and Q-score by 11% on
average. The performance demonstrates the importance of
taking into account frame and event noise and preprocess-
ing frame inputs compared to CF [43].

Fig. 6 shows qualitative samples of input, reconstructed
and reference images from the proposed HDR/AHDR
dataset. In the first row of Fig. 6, the proposed HDR dataset
Trees includes some underexposed trees (left-hand side)

and two overexposed trees (right-hand side). In the second
row, our AHDR sequence Mountain is artificially satu-
rated (pixel values higher than 160 or lower than 100 of an
8-bit image), removing most of the detail. E2VID [39] re-
constructs the two right-hand trees correctly, although the
relative intensity of the tree is too dark. E2VID [39] also
performs poorly in the dark area in Trees on the bot-
tom left corner and skies/road in Mountain where it lacks
events. CF [43] exhibits ‘shadowing effect’ on object edges
(trees and mountain road), which is significantly reduced in
AKF by dynamically adjusting the per-pixel Kalman gain
according to events and frame uncertainty model.

7. Conclusion
In this paper, we introduced an asynchronous Kalman-

Bucy filter to reconstruct HDR videos from LDR frames
and event data for fast-motion and blurry scenes. The
Kalman gain is estimated pixel-by-pixel based on a unify-
ing event/frame uncertainty model over time. In addition,
we proposed a novel frame augmentation algorithm that can
also be widely applied to many existing event-based appli-
cations. To target HDR reconstruction, we presented a real-
world, hybrid event/frame dataset captured on registered
frame and event cameras. We believe our asynchronous
Kalman filter has practical applications for video acquisi-
tion in HDR scenarios using the extended power of event
cameras in addition to conventional frame-based cameras.
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[38] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide
Scaramuzza. Events-to-video: Bringing modern computer
vision to event cameras. In IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2019.

[39] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide
Scaramuzza. High speed and high dynamic range video with
an event camera. IEEE Trans. Pattern Anal. Mach. Intell.,
2020.

[40] Christian Reinbacher, Gottfried Graber, and Thomas Pock.
Real-time intensity-image reconstruction for event cameras
using manifold regularisation. In British Mach. Vis. Conf.
(BMVC), 2016.

[41] Mark A Robertson, Sean Borman, and Robert L Stevenson.
Estimation-theoretic approach to dynamic range enhance-
ment using multiple exposures. Journal of Electronic Imag-
ing, 12(2):219–229, 2003.

[42] Fabrizio Russo. A method for estimation and filtering of
Gaussian noise in images. IEEE Transactions on Instrumen-
tation and Measurement, 52(4):1148–1154, 2003.

[43] Cedric Scheerlinck, Nick Barnes, and Robert Mahony.
Continuous-time intensity estimation using event cameras.
In Asian Conf. Comput. Vis. (ACCV), 2018.

[44] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Asyn-
chronous spatial image convolutions for event cameras.
IEEE Robot. Autom. Lett., 4(2):816–822, Apr. 2019.

[45] Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick
Barnes, Robert Mahony, and Davide Scaramuzza. Fast im-
age reconstruction with an event camera. In IEEE Winter
Conf. Appl. Comput. Vis. (WACV), 2020.

[46] Cedric Scheerlinck, Henri Rebecq, Timo Stoffregen, Nick
Barnes, Robert Mahony, and Davide Scaramuzza. CED:
Color event camera dataset. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 0–0, 2019.

[47] Prasan Shedligeri and Kaushik Mitra. Photorealistic image
reconstruction from hybrid intensity and event-based sensor.
J. Electron. Imaging, 28(06):1, Dec. 2019.

[48] Dong-Hyuk Shin, Rae-Hong Park, Seungjoon Yang, and
Jae-Han Jung. Block-based noise estimation using adaptive
Gaussian filtering. IEEE Transactions on Consumer Elec-
tronics, 51(1):218–226, 2005.

[49] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza,
Tom Drummond, Nick Barnes, Lindsay Kleeman, and
Robert Mahony. Reducing the Sim-to-Real gap for event
cameras. In Eur. Conf. Comput. Vis. (ECCV), 2020.

[50] Guangxia Wang, Huajun Feng, Qi Li, and Yueting Chen.
Patch-based approach for the fusion of low-light image pairs.
In 2018 IEEE 3rd International Conference on Signal and
Image Processing (ICSIP), pages 81–85. IEEE, 2018.

[51] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: From error visibil-
ity to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, Apr. 2004.

[52] Ziwei Wang, Yonhon Ng, Pieter van Goor, and Robert Ma-
hony. Event camera calibration of per-pixel biased contrast
threshold. In Australasian Conf. Robot. Autom. (ACRA),
2019.

[53] Zihao W Wang, Peiqi Duan, Oliver Cossairt, Aggelos Kat-
saggelos, Tiejun Huang, and Boxin Shi. Joint filtering of in-
tensity images and neuromorphic events for high-resolution
noise-robust imaging. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1609–1619, 2020.

[54] Zihao W. Wang, Weixin Jiang, Aggelos Katsaggelos, and
Oliver Cossairt. Event-driven video frame synthesis. In Int.
Conf. Comput. Vis. Workshops (ICCVW), 2019.

[55] Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. A dy-
namic vision sensor with 1% temporal contrast sensitivity
and in-pixel asynchronous delta modulator for event encod-
ing. IEEE Journal of Solid-State Circuits, 50(9):2149–2160,
2015.

[56] Valentin F Zaitsev and Andrei D Polyanin. Handbook of ex-
act solutions for ordinary differential equations. CRC press,
2002.

[57] Zhengyou Zhang. A flexible new technique for camera cali-
bration. IEEE Transactions on pattern analysis and machine
intelligence, 22(11):1330–1334, 2000.

[58] Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd
Pfrommer, Vijay Kumar, and Kostas Daniilidis. The multive-
hicle stereo event camera dataset: An event camera dataset
for 3D perception. IEEE Robot. Autom. Lett., 3(3):2032–
2039, July 2018.

457


