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Abstract

Depth estimation is a long-lasting yet important task in
computer vision. Most of the previous works try to estimate
depth from input images and assume images are all-in-focus
(AiF), which is less common in real-world applications. On
the other hand, a few works take defocus blur into account
and consider it as another cue for depth estimation. In this
paper, we propose a method to estimate not only a depth
map but an AiF image from a set of images with different
focus positions (known as a focal stack). We design a shared
architecture to exploit the relationship between depth and
AiF estimation. As a result, the proposed method can be
trained either supervisedly with ground truth depth, or un-
supervisedly with AiF images as supervisory signals. We
show in various experiments that our method outperforms
the state-of-the-art methods both quantitatively and qual-
itatively, and also has higher efficiency in inference time.

1. Introduction

Depth estimation has been one of the most fundamental
computer vision problems in decades. Many downstream
tasks, such as augmented reality (AR), virtual reality (VR)
and autonomous driving, highly rely on this research topic.
Recently, it also enabled an increasing number of applica-
tions for smartphone photography, such as depth-of-field
adjustment, background substitution, and changing focus
after the picture is taken.

Consequently, depth sensing has become a fundamental
component for capturing devices. Active depth sensing solu-
tions such as Time-of-Flight (ToF) and structured light are
often expensive and power-consuming due to the need for
specialized hardware. Passive techniques, such as binocular
or multi-view stereo, are more cost and power-efficient but
prone to errors in textureless regions.

Deep learning based stereo matching methods tackle this

problem in a data-driven way by learning depth estimation
directly from input images. However, they require a large
amount of high-quality paired training data, which are time-
consuming and expensive to acquire. They also suffer when
the training data are imperfect: synthesized and unrealistic
input images, or inaccurately registered depth maps.

Some unsupervised learning approaches [9, 42] were pro-
posed to address this problem. They usually use image
reconstruction loss and consistency loss without the need for
ground truth depth data. They can also mitigate domain gaps
by training directly with real-world stereo images without
corresponding registered depth maps.

Another relatively under-explored cue for depth estima-
tion is defocus blur. The task of depth-from-focus (or de-
focus) aims to estimate the depth of a scene from a focal
stack, i.e., images taken at different focal positions by the
same camera. This allows consumer auto-focus monocular
cameras to estimate depth without additional hardware.

Conventional optimization based depth-from-focus ap-
proaches [37, 36, 26] estimate the level of sharpness for
each pixel and often suffer from textureless objects or aper-
ture problems. Deep learning techniques [11, 23] help to
overcome these issues but need ground truth depth data for
supervised learning. It’s difficult and time-consuming to
retrieve focal stacks with registered depth maps, let alone the
imperfect depth data obtained by hardware solutions such as
ToF sensors [11]. One could synthesize defocus blur on a
synthetic dataset with synthetic depth maps [23]. However,
it is still questionable whether the thin lens synthesis model
could represent real-world optics well.

In this paper, we propose a novel method to estimate
depth and an all-in-focus (AiF) image jointly from an input
focal stack. We exploit the relationship between these two
tasks and design a shared common network. Moreover, the
proposed network can be trained either supervisedly with
ground truth depth maps or unsupervisedly with only ground
truth AiF images. Compared to high-quality labeled depth,
acquiring AiF images is relatively easier because AiF images
can be captured with smaller apertures along with longer
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exposures. However, collecting the corresponding focal
stack of an AiF image might be difficult because of the
focus breathing phenomenon, where a camera’s field of view
changes as the lens moves. To address this problem, we use
synthetic data without such effects during training, and apply
a calibration process on real data during testing.

Our contribution is three-fold:

• When trained supervisedly, our method outperforms the
state-of-the-art methods in various comparisons, while
our method also runs faster.

• To our knowledge, the proposed method is the first
that can learn depth estimation unsupervisedly from
only AiF images and performs favorably against the
state-of-the-art methods.

• Domain gaps can be mitigated by our method with test-
time optimization on real-world data, especially when
ground truth depth data are not available.

2. Related Work
2.1. Depth from Focus

Depth estimation is a fundamental computer vision task
that aims to use different cues such as color, semantics,
stereo, or the difference in image sequences to predict or
fuse depth maps [5, 40]. Most of the previous works assume
that input images are all-in-focus, whereas in real-world
scenarios, images are usually considered to be defocused in
the background or with a shallow depth-of-field (DoF). Nev-
ertheless, some approaches elaborate on depth estimation
with defocused images. Conventional optimization based
approaches [37, 36] proposed to directly estimate depth from
focal stacks, and a variant approach [26] tries to generate
an index map in which every pixel is assigned to the focus
position leading to the maximal sharpness. Chen et al. [6]
found the relationship between relative blur and disparity,
and make use of it to enhance the robustness of matching.
Depth from focus sweep video [18] targets estimating depth
from images with successive focus positions. Recently, deep
learning based approaches [11, 24] could model the blurri-
ness more precisely and achieve much better depth quality.
On the other hand, some works [2, 4, 35] use deep learning
techniques to remove the defocus blur for single images.

2.2. Multi-focus Image Fusion

Although real-world images usually have defocus blur,
most computer vision applications are supposed to coop-
erate with all-in-focus (AiF) images. Therefore, more and
more attention is given on shallow-DoF image deblurring
and multi-focus image fusion. A multi-focus image fusion
approach [41] applies Laplacian to different scales of images.
Zhan et al. [43] proposed a guided filter to help edge preserv-
ing during multi-focus image fusion. Nejati et al. [27] learn

a sparse representation of relative sharpness measurement
and produce a pixel-level score map for decision through
pooling. An unsupervised learning approach [32] was pro-
posed to fuse either multi-exposure or multi-focus images
to generate a high dynamic range (HDR) or an AiF image.
Liu et al. [22] proposed to learn a focus map and a segmen-
tation map through deep neural networks, and fuse images
by integrating these maps.

2.3. Light Field

A light field camera captures spatially distributed light
rays. By re-rendering through digitized multi-view images,
variable aperture pictures can be generated after capturing.
With this characteristic, a post-capture refocusing can also
be accomplished by properly manipulating those light field
images [28]. As light field camera provides multi-view in-
formation from different poses, it could help many compu-
tational photography applications. As the number of views
grows, more information could be retrieved.

Light field images often suffer from low spatial resolu-
tion as the sampling resources are limited. Cheng et al. [7]
and Jin et al. [17] proposed to apply deep learning on con-
structing super-resolution images from light field images to
cover this situation. Depth estimation could also be achieved
by leveraging the abundant information from light field im-
ages [20, 12, 13, 8, 38, 21, 45, 29, 31]. Levoy et al. [20]
proposed to use the epipolar plane images (EPIs), which
contain both spatial and angular information, for depth esti-
mation from light field images. Heber et al. [12] proposed to
learn the end-to-end mapping between the 4D light field and
its corresponding 4D depth field accompanied with a high-
order regularization refinement. By following [12], they
then designed an encoder-decoder architecture to extract the
geometric information from light field images [13]. Some
works [15, 33] focus on providing light field datasets with
ground truth depth or AiF images for further use.

2.4. Realistic Data Synthesis

Deep learning significantly improves the quality of com-
puter vision tasks with a large amount of training data. How-
ever, collecting real-world data is often costly and time-
consuming. Therefore, many works instead target synthe-
sizing realistic data to provide sufficient data for training.
Barron et al. [3] proposed to synthesize defocus images by a
layer-wised rendering scheme with a z-buffer. Wadhwa et
al. [39] combine a person segmentation mask with a depth
map calculated from a dual-pixel camera to generated shal-
low depth-of-field images. Gur et al. [10] use a differentiable
point spread function, namely the PSF convolution layer, to
synthesize realistic defocus images and train a depth from de-
focus network to generate depth maps. Herrmann et al. [14]
proposed a learning-based approach for autofocus and re-
cently provided a real dataset for training. However, the
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dataset was not open to the public at the submission time.

3. Method

We describe the proposed method in this section. Sec. 3.1
gives an overview of our method. Then, a shared network
used for both of depth estimation and AiF image reconstruc-
tion is illustrated in Sec. 3.2. The attention mechanism that
bridges the two tasks is introduced in Sec. 3.3. We then
depict the core concept to turn AiF images into supervisory
signals for unsupervised depth estimation in Sec. 3.4. Fi-
nally, Sec. 3.5 shows the loss functions for training with
depth supervision and AiF supervision.

3.1. Overview

Depth from focus aims to recover the depth from a focal
stack through defocus cues. As shown in Fig. 1, given a focal
stack S ∈ RH×W×3×F of F images with gradually varying
focus positions P ∈ RH×W×1×F , our method produces
several attention representations through a shared network.
Then a depth map D ∈ RH×W×1 and an all-in-focus (AiF)
image I ∈ RH×W×3 of this scene can be generated with
these attention maps.

3.2. Network Architecture

DDFF [11] uses 2D ConvNets to address the sharpness
measurement problem, which is one of the main challenges
in depth from focus. On the other hand, DefocusNet [24] ap-
plies a global pooling layer as a communication tool between
several weights-sharing 2D ConvNets. Another objective
of this architecture is to allow focal stacks with arbitrary
sizes. However, some important information across the stack
dimension might not be effectively captured due to the limi-
tation of 2D convolution and simple global pooling.

For this reason, we adopt the Inception3D [1] as the
backbone of our model. As shown in Fig. 1, our model
is an encoder-decoder network consisting of 3D convolu-
tions. With the 3D convolution, defocus cues could be better
captured across frames and thus facilitate the tasks of depth
estimation and AiF image reconstruction. Moreover, our
model can also handle focal stacks with arbitrary sizes at-
tributed to the nature of 3D convolution.

3.3. Attention Mechanism

The output of our network is an intermediate attention
M ∈ RH×W×1×F . The underlying expectation of the inter-
mediate attention M is that it should reflect the probability
of each focus position leading to the maximal sharpness.
Then it can benefit both of depth estimation and AiF image
reconstruction.

For depth estimation, we propose to normalize the in-
termediate attention M into a depth attention Mdepth via a

softplus normalization:

Mdepth = ς(M), (1)

where

Mdepth
i,j,1,t =

ln (1 + exp (Mi,j,1,t))∑F
n=1 ln (1 + exp (Mi,j,1,n))

. (2)

The softplus function is a smooth version of ReLU.
The depth attention Mdepth can also be interpreted as

the probability distribution because the softplus function
ensures non-negativeness and normalizes Mdepth into a valid
probability distribution. Then the expected depth value of
each pixel can be derived via:

Di,j,1 = ΣF
t=1(M

depth ·P)i,j,1,t. (3)

For AiF image reconstruction, we perform similar proce-
dures except that the normalization function changes from
softplus to softmax. That is, the AiF attention MAiF is ob-
tained as:

MAiF = σ(M), (4)

where

MAiF
i,j,1,t =

exp (Mi,j,1,t)∑F
n=1 exp (Mi,j,1,n)

. (5)

The AiF attention MAiF can then be used for AiF image
reconstruction. The expected AiF image of each pixel is
expressed as:

Ii,j,k = ΣF
t=1(M

AiF · S)i,j,k,t. (6)

The reason why we adopt the softmax and softplus nor-
malizations separately for depth and AiF image estimation
is to tackle the problem of sparse focal stacks. By sparse,
we mean that the stack size is small, and the focus positions
inside the focal stack are not dense.

For AiF image reconstruction, it is best to select the
sharpest pixel along the stack dimension. Blending multiple
pixels inside a sparse stack usually does not help. There-
fore, we leverage the softmax function to pursue the peaking
phenomenon to extract the clearest pixels.

For depth estimation, the softmax normalization results in
severe quantization for sparse focal stacks because it simply
selects the nearest focal position of maximal sharpness. On
the other hand, the softplus normalization leads to a flatter
distribution so that more accurate depth can be predicted by
interpolating among sparse focal positions. Fig. 2 shows the
effects of this design choice.
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Figure 1: An overview of the proposed method. Given a stack of images with varying focus positions, i.e., focal stack,
our model first produces an intermediate attention map M. The intermediate attention map can be shared between depth
estimation and all-in-focus (AiF) image reconstruction. With different normalization functions, the attention map can be
further manipulated to generate either depth or AiF results.

Supervised Unsupervised

Sa
m

e

0 1 2 3 4 5 6 7 8 9

Stack dimension
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty Depth Attention
AiF Attention

0 1 2 3 4 5 6 7 8 9

Stack dimension
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Se
pe

ra
te

0 1 2 3 4 5 6 7 8 9

Stack dimension
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

0 1 2 3 4 5 6 7 8 9

Stack dimension
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 2: The effect of normalization on attention maps.
The first row shows that if we adopt the same softmax nor-
malization for depth and AiF attention, both of them tend
to be a flatter distribution in supervised learning and face
a peaking phenomenon in unsupervised learning (AiF su-
pervision). The second row shows that with separate nor-
malization as described in Sec. 3.3, each of depth and AiF
attention becomes a proper distribution in both supervised
and unsupervised learning.

3.4. Towards Unsupervised Depth Estimation

Similar to our method, DefocusNet [24] also combines
the tasks of depth estimation and AiF image reconstruction
via intermediate defocus maps. Their intermediate defocus
maps necessitate supervisory signals, which can be derived
by calculating the circle of confusions from the ground truth
depth. Furthermore, they also propose to use a DepthNet fol-
lowing the intermediate defocus maps to predict the output
depth. Therefore, their method can only be trained supervis-
edly when ground truth depth data are available.

Instead, we propose to use the intermediate attention M to

bridge the two tasks, which does not necessitate intermediate
supervisory signals from ground truth depth data. Moreover,
there are no learnable parameters after M. We only use fixed
normalization functions to generate the output depth and AiF
images. Therefore, even when ground truth depth data are
not available, we can still train the shared network to generate
the intermediate attention M only via supervisory signals
from ground truth AiF images. That is, our method can
be trained supervisedly or unsupvervisedly with or without
ground truth depth data.

3.5. Training Loss

For supervised depth estimation , our model is trained
with a simple L1 loss:

Lsupervised = Ldepth = E[∥D−Dgt∥1], (7)

where Dgt stands for the ground truth depth.
For unsupervised depth estimation, our model can also

be trained by a L1 loss with AiF supervison:

LAiF = E[∥I− Igt∥1], (8)

where Igt denotes the ground truth AiF image. Furthermore,
we also encourage our depth map to be locally smooth using
an edge-aware weighting as in [9]. The smoothness loss is
defined as:

Lsmooth = E[Wx

∣∣∣∣∂Di,j,1

∂x

∣∣∣∣+Wy

∣∣∣∣∂Di,j,1

∂y

∣∣∣∣], (9)

where

Wx = exp (−λ

3

∑
k

∣∣∣∣∂Ii,j,k∂x

∣∣∣∣)
Wy = exp (−λ

3

∑
k

∣∣∣∣∂Ii,j,k∂y

∣∣∣∣), (10)
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and λ is a hyper-parameter for the edge weighting based on
the ground truth AiF image. The total loss of our unsuper-
vised depth estimation is then:

Lunsupervised = LAiF + αLsmooth, (11)

where α indicates the importance of the smoothness loss.

4. Evaluation
In this section, we describe the datasets used in the ex-

periments, and report ablation studies and comparisons with
the state-of-the-art methods on depth from focus. In the
supplementary material, we present additional results for
AiF image reconstruction, and visual comparisons on DDFF
12-Scene [11], Middlebury Stereo Datasets [34], and the
DefocusNet dataset [24].

4.1. Datasets

Totally five datasets are used in the quantitative experi-
ments and visual comparisons. Their descriptions and statis-
tics are summarized in Table 1. For more details, please see
the supplementary material.

4.2. Evaluation Metrics

In this paper, we evaluate quantitative results with the fol-
lowing metrics: mean-absolute error (MAE), mean-squared
error (MSE), root-mean-squared error (RMSE), log root-
mean-squared error (logRMS), relative-absolute error (Abs.
rel.), relative-squared error (Sqr. rel.), bumpiness (Bump),
accuracy with δ = 1.25, per-image inference time (Secs.).

4.3. Implementation Details

We implement our method in PyTorch [30]. Our model
is trained from scratch using the Adam optimizer [19]
(β1 = 0.9, β2 = 0.999), with a learning rate of 10−4. For
DDFF 12-Scene [11], 4D Light Field Dataset [15], FlyingTh-
ings3D [25], and the DefocusNet dataset [24], we use 10,
10, 15, and 5 as the input stack sizes, respectively. In un-
supervised learning, the weight of smoothness loss α is set
to 0.002 in all experiments. We apply random spatial trans-
formations (flipping, cropping, rotation) and random color
jittering (brightness, contrast, and gamma) for data augmen-
tation during training. The training patch size is 256× 256
after random cropping except for DDFF 12-Scene [11]. Be-
cause the image size of DDFF 12-Scene is 224× 224, which
is larger than 256× 256, we do not apply random cropping
on this dataset. All the experiments are conducted with a
single NVIDIA GTX 1080 GPU.

4.4. Ablation Studies

To understand the performance of each proposed com-
ponents in our method, we conduct various ablation studies
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Figure 3: The effect of focal stack size. Each line indicates
a stack size setting during training. Specifically, 10 and
Arbitrary respectively represent training with a fixed size of
10 and training with arbitrary sizes, and Same refers to using
the same setting as test stacks.

on 4D Light Field Dataset [16]. All models are supervised
trained with disparity maps if not specified.

Architecture. Table 2 shows the comparison between 2D
and 3D convolutions and with/without the proposed atten-
tion mechanism. The 3D convolution performs better than
2D convolution as the 3D convolution is able to capture and
aggregate features across both spatial and stack dimensions.
The design of attention bridges the tasks of depth estimation
and AiF image reconstruction, and thus enables the possibil-
ity of unsupervised depth estimation as described in Sec. 3.4
while maintaining roughly the same prediction quality.

Focal stack size. Our network can handle arbitrary input
stack sizes due to the nature of 3D convolution. Fig. 3 shows
a comparison on different input stack sizes. We train the
models in three different ways: 1) 10: training with a fixed
input stack size of 10. 2) Arbitrary: training with arbitrary
input stack sizes randomly sampled from 2 to 10. 3) Same:
training with the same size as test stacks.

The model trained with a fixed stack size performs poorly
while testing with different stack sizes. As expected, the
model trained with the same stack size as test data performs
the best as the input setting for training and testing are consis-
tent. However, the model trained with arbitrary input stack
sizes performs favorably against the ones trained with the
same stack size as test data. This demonstrates the robustness
of our method across different input stack sizes.

Fig. 4 shows the visual comparison of different input stack
sizes, generated with the model trained with arbitrary input
stack sizes. It is obvious that the quality of the estimated
disparity map improves as the stack size increases.

Unsupervised learning using all-in-focus images. On the
basis of the attention mechanism described in Sec. 3.3, our
method is able to be trained with either ground truth dispar-
ity maps (supervised) or ground truth AiF images (unsuper-
vised). Table 3 and Fig. 5 respectively show the quantitative
and qualitative results for both of our supervised and unsu-
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Table 1: Summary of the evaluation datasets.

Dataset Image source Cause of defocus Disparity/Depth GT AiF GT

DefocusNet [24] Synthetic Blender rendering Depth
DDFF 12-Scene [11] Real Light-field composition Depth
4D Light Field Dataset [16] Synthetic Light-field composition Disparity ✓
Middlebury Stereo Datasets [34] Real Disparity rendering Disparity ✓
Mobile Depth [37] Real Real Stitching by MRF

Table 2: Ablation study on network architecture. The 3D
convolution leads to better performance on disparity estima-
tion because of its ability to capture features for both spatial
and stack dimensions. Although the design of attention does
not increase the performance explicitly, it bridges the tasks
of depth estimation and AiF image reconstruction and thus
enables the unsupervised learning for depth estimation.

Architecture Attention MAE↓ MSE↓ RMSE↓ Bump.↓

3D
✓ 0.0788 0.0472 0.2014 1.5776

0.0851 0.0461 0.1984 2.3168

2D
✓ 0.1070 0.0577 0.2259 2.1435

0.1179 0.0576 0.2291 2.3168

RGB stack size 3 stack size 5 stack size 9 GT

Figure 4: Visual comparison on different focal stack sizes.
The quality of the estimated disparity map improves as the
stack size increases.

pervised models. As shown in Table 3, with a large input
stack size of 37 and the smoothness loss, the performance of
unsupervised learning is able to approximate that of super-
vised learning with a smaller stack size of 10 .

However, the results of unsupervised learning with a
smaller stack size suffer from the quantization problem as
described in Sec. 3.4. As shown in Fig. 5, after adding the
smoothness loss, the output disparity map becomes locally
smooth and perform better qualitatively.

4.5. Comparisons to the State-of-the-art Methods

After ablation on different components of the proposed
method, we conduct comparisons with the state-of-the-art
methods on various datasets in this section.
DDFF 12-Scene. Table 4 shows the quantitative compari-
son on DDFF 12-Scene [11]. All methods are supervisedly
trained on this dataset with ground truth depth. The pro-
posed method performs favorably against the state-of-the-art

Table 3: Ablation study on supervision. The results of
supervised learning perform better than the ones from unsu-
pervised learning (AiF supervision). Unsupervised learning
often generates disparity maps that suffer from the quan-
tization effect and lead to poor results. After adding the
smoothness loss, the output disparity maps become locally
smooth and perform better quantitatively.

Supervised Stack size Lsmooth MAE↓ MSE↓ RMSE↓

Yes 10 0.0788 0.0472 0.2014
No 10 0.2425 0.1174 0.3401
No 37 0.2099 0.1039 0.3202
No 10 ✓ 0.1671 0.0746 0.2698
No 37 ✓ 0.1116 0.0584 0.2311

GT
Supervised Yes No No No No
Stack size 10 37 10 37
Lsmooth ✓ ✓

Figure 5: Visual comparison on different supervision set-
tings. The results of supervised learning are better than the
ones from unsupervised learning (AiF supervision). The out-
put disparity maps from unsupervised learning suffer from
the quantization effect. By adding the smoothness loss, the
disparity results become locally smooth and perform favor-
ably against the ones from supervised learning qualitatively.

methods under all metrics. Furthermore, our method runs
faster than another deep learning based method DDFF [11] .

4D Light Field Dataset. Compared to DDFF 12-Scene [11],
4D Light Field Dataset [16] provides the ability to simu-
late shallower DoF images as its larger baseline leads to
a larger synthetic aperture. Table 5 shows the quantitative
comparison with state-of-the-art methods. All of them are
trained with this dataset. Our supervised model achieves the
best MSE (0.0472), which outperforms the state-of-the-art
method DefocusNet [24] (0.0593). Furthermore, our unsu-
pervised model even performs better than most of the other
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Table 4: Quantitative comparison on DDFF 12-Scene. Note that RMSE is not presented due to the mismatched results from
the benchmark website and the paper of DDFF [11]. For DefocusNet [24], we only show the original metric reported in their
paper, which is MSE. RedRedRed text indicates the best, and blue text indicates the second-best performing method.

Method MSE ↓ log RMS ↓ Abs. rel. ↓ Sqr. rel. ↓ Bump. ↓ δ = 1.25 ↑ δ = 1.252 ↑ δ = 1.253 ↑

Ours 8.6e−48.6e−48.6e−4 0.290.290.29 0.250.250.25 0.010.010.01 0.63 68.3368.3368.33 87.4087.4087.40 93.96
DefocusNet [24] 9.1e−4 - - - - - - -
DDFF [11] 9.7e−4 0.32 0.29 0.010.010.01 0.59 61.95 85.14 92.98
PSPNet [44] 9.4e−4 0.290.290.29 0.27 0.010.010.01 0.55 62.66 85.90 94.4294.4294.42
Lytro 2.1e−3 0.31 0.26 0.010.010.01 1.02 55.65 82.00 93.09
PSP-LF [44] 2.7e−3 0.45 0.46 0.03 0.540.540.54 39.70 65.56 82.46
DFLF [11] 4.8e−3 0.59 0.72 0.07 0.65 28.64 53.55 71.61
VDFF [26] 7.3e−3 1.39 0.62 0.05 0.79 8.42 19.95 32.68

RGB VDFF [26] PSPNet [44] DDFF [11] DefocusNet [24] Ours (S) Ours (US) GT

Figure 6: Visual comparison on 4D Light Field Dataset. S: supervised. US: unsupervised (AiF-supervision).

Table 5: Quantitative comparison on 4D Light Field
Dataset. Our supervised model outperforms the state-of-
the-art method DefocusNet. Furthermore, our unsupervised
model (with AiF supervision) even performs better than most
of the other supervised methods. Please see Fig. 6 for the vi-
sual comparison. (∗ represents that the model is pre-trained
on DDFF 12-Scene.)

Method Supervised MSE ↓ RMSE ↓ Bump. ↓

Ours Yes 0.04720.04720.0472 0.20140.20140.2014 1.58
DefocusNet [24] Yes 0.0593 0.2355 2.69
*DDFF [11] Yes 0.19 0.42 1.92
*PSPNet [44] Yes 0.37 0.53 1.211.211.21
VDFF [26] Yes 1.3 1.15 1.58

Ours No 0.0746 0.2398 2.58

supervised methods, except for DefocusNet.
Fig. 6 shows the qualitative results of 4D Light Field

Dataset [16]. Our supervised model delivers sharper depth
boundaries and less noise in textureless regions. Meanwhile,
our unsupervised model also achieves visually comparable
results with the supervised DefocusNet [24].

DefocusNet. The DefocusNet dataset [24] is a synthetic

Table 6: Quantitative comparison on the DefocusNet
dataset. Our supervised model outperforms the state-of-the-
art method DefocusNet. Please refer to the supplementary
material for the full metric results.

Method MAE↓ MSE↓ RMSE↓
Ours 0.0549 0.0127 0.1043
DefocusNet [24] 0.0637 0.0175 0.1207

dataset using physically based rendering (PBR) shaders.
Since only a subset of this dataset has been released and
there are no AiF images, we can only conduct supervised
learning on the provided subset. The quantitative results of
our method and DefocusNet [24] are shown in Table 6. Note
that the results of DefocusNet are retrained on the provided
subset with the released code and setting.

Mobile Depth. The Mobile Depth dataset [37] is a real-
world dataset of focal stacks captured with mobile phone
and cameras. Due to the lack of training data in this dataset,
all compared models are trained on FlyingThings3D [25],
and the input focal stacks are synthesized by the rendering
technique used in Barron et al. [3].

As shown in Fig. 7, the output depth maps of our super-
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Table 7: Analysis on generalization ability across different datasets. We train our models and DefocusNet [24] on
FlyingThings3D [25] with synthesized focal stacks by the rendering technique used in Barron et al. [3], and test these models
on Middlebury Stereo Datasets [34] and the DefocusNet dataset. The results show that both of our supervised and unsupervised
(with AiF supervision) models have better generalization ability than DefocusNet.

Method Supervised Test Dataset MAE↓ MSE↓ RMSE↓ absRel↓ sqrRel↓ Sec.↓

Ours Yes Middlebury 3.82493.82493.8249 58.569858.569858.5698 5.93555.93555.9355 2.47762.47762.4776 45.588645.588645.5886 0.0287
Ours No Middlebury 5.4499 99.6029 8.2606 3.8954 80.7120 0.02830.02830.0283

DefocusNet [24] Yes Middlebury 7.4084 157.4397 9.0794 3.4698 63.6797 0.3798

Ours Yes DefocusNet 0.1827 0.0795 0.2607 72.4664 40.4281 0.021
Ours No DefocusNet 0.18160.18160.1816 0.06270.06270.0627 0.23800.23800.2380 59.445959.445959.4459 14.022714.022714.0227 0.019590.019590.01959

DefocusNet [24] Yes DefocusNet 0.3200 0.1478 0.3722 138.2917 70.0229 0.0527

vised model are smoother and exhibit less ambiguity than
DefocusNet [24]. But the results of our unsupervised model
(with AiF supervision) are worse than DefocusNet. Nonethe-
less, since our method allows training without ground truth
depth, we can perform test-time optimization on this dataset
with only AiF images. After test-time optimization, our
unsupervised model performs better than DefocusNet, and
both of our supervised and unsupervised models perform
favorably against Mobile Depth. We also show the output
AiF images in the supplementary material.

Generalization ability analysis. Middlebury Stereo
Datasets[34] is a real-world dataset of stereo images along
with ground truth disparity maps. We use this dataset to
analyze the generalization ability of our method. To this end,
we firstly let our models and DefocusNet [24] be trained
on FlyingThings3D [25] with synthesized focal stacks by
the rendering technique used in Barron et al. [3], and then
test these models on Middlebury Stereo Datasets as well as
the DefocusNet dataset. The quantitative results are shown
in Table 7. One can see that both of our supervised and
unsupervised (with AiF supervision) models achieve better
generalization than DefocusNet on these two datasets.

Running time. As indicated in Table 7, our method is faster
than the state-of-the-art method DefocusNet [24]. The main
reason might be that our model does not have a bottleneck
like the global pooling layer in DefocusNet.

5. Conclusion
We have proposed a method to jointly estimate the depth

map and the all-in-focus (AiF) image from an input focal
stack with a shared network. By the design of the proposed
attention mechanism, the shared network can be trained
either supervisedly, or unsupervisedly with AiF images. Our
method can further mitigate domain gaps even in the absence
of ground truth depth. Experimental results show that our
method outperforms the state-of-the-art methods while also
having higher efficiency in inference time.

AiF GT DefocusNet [24] Ours (S) Ours (US)

Mobile [37] Ours (S) * Ours (US) *

AiF GT DefocusNet [24] Ours (S) Ours (US)

Mobile [37] Ours (S) * Ours (US) *

Figure 7: Visual comparison on the Mobile Depth
dataset. With test-time optimization, our models perform
better than DefocusNet [24] and favorably against Mobile
Depth [37] qualitatively. (S: supervised. US: unsupervised
(AiF supervision). *: test-time optimization.)
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on defocus: Bridging the synthetic to real domain gap for
depth estimation. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pages 1068–1077. IEEE, 2020.
2, 3, 4, 5, 6, 7, 8

[25] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation.
In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. arXiv:1512.02134. 5, 7,
8
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Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019. 5

[31] Jiayong Peng, Zhiwei Xiong, Yicheng Wang, Yueyi Zhang,
and Dong Liu. Zero-shot depth estimation from light field
using a convolutional neural network. IEEE Transactions on
Computational Imaging, 6:682–696, 2020. 2

[32] K. Ram Prabhakar, V. Sai Srikar, and R. Venkatesh Babu.
Deepfuse: A deep unsupervised approach for exposure fusion
with extreme exposure image pairs. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pages 4724–4732. IEEE Computer
Society, 2017. 2

[33] Parikshit Sakurikar, Ishit Mehta, Vineeth N. Balasubramanian,
and P. J. Narayanan. Refocusgan: Scene refocusing using
a single image. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss, editors, European Conference
on Computer Vision ECCV 2016: Computer Vision – ECCV
2016, pages 842–857. Springer, 2016. 2

[34] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg
Krathwohl, Nera Nesic, Xi Wang, and Porter Westling. High-
resolution stereo datasets with subpixel-accurate ground truth.
In Xiaoyi Jiang, Joachim Hornegger, and Reinhard Koch, edi-
tors, Pattern Recognition - 36th German Conference, GCPR
2014, Münster, Germany, September 2-5, 2014, Proceedings,
volume 8753 of Lecture Notes in Computer Science, pages
31–42. Springer, 2014. 5, 6, 8

[35] Pratul P. Srinivasan, Rahul Garg, Neal Wadhwa, Ren Ng, and
Jonathan T. Barron. Aperture supervision for monocular depth
estimation. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 6393–6401. IEEE Computer
Society, 2018. 2

[36] Jaeheung Surh, Hae-Gon Jeon, Yunwon Park, Sunghoon Im,
Hyowon Ha, and In So Kweon. Noise robust depth from focus
using a ring difference filter. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pages 2444–2453. IEEE
Computer Society, 2017. 1, 2

[37] Supasorn Suwajanakorn, Carlos Hernández, and Steven M.
Seitz. Depth from focus with your mobile phone. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3497–
3506. IEEE Computer Society, 2015. 1, 2, 6, 7, 8

[38] Yu-Ju Tsai, Yu-Lun Liu, Ming Ouhyoung, and Yung-Yu
Chuang. Attention-based view selection networks for light-
field disparity estimation. In The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 12095–12103. AAAI Press,
2020. 2

[39] Neal Wadhwa, Rahul Garg, David E. Jacobs, Bryan E. Feld-
man, Nori Kanazawa, Robert Carroll, Yair Movshovitz-Attias,
Jonathan T. Barron, Yael Pritch, and Marc Levoy. Synthetic
depth-of-field with a single-camera mobile phone. ACM
Trans. Graph., 37(4):64:1–64:13, 2018. 2

[40] Ning-Hsu Wang, Bolivar Solarte, Yi-Hsuan Tsai, Wei-Chen
Chiu, and Min Sun. 360sd-net: 360° stereo depth estimation
with learnable cost volume. In 2020 IEEE International
Conference on Robotics and Automation, ICRA 2020, Paris,
France, May 31 - August 31, 2020, pages 582–588. IEEE,
2020. 2

[41] Wencheng Wang and Faliang Chang. A multi-focus im-
age fusion method based on laplacian pyramid. J. Comput.,
6(12):2559–2566, 2011. 2

[42] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Deep3d:
Fully automatic 2d-to-3d video conversion with deep convo-

12630



lutional neural networks. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part IV, volume
9908 of Lecture Notes in Computer Science, pages 842–857.
Springer, 2016. 1

[43] Kun Zhan, Jicai Teng, Qiaoqiao Li, and Jinhui Shi. A novel
explicit multi-focus image fusion method. J. Inf. Hiding
Multim. Signal Process., 6(3):600–612, 2015. 2

[44] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In 2017
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 6230–6239. IEEE Computer Society, 2017. 7

[45] Wenhui Zhou, Enci Zhou, Yuxiang Yan, Lili Lin, and Andrew
Lumsdaine. Learning depth cues from focal stack for light
field depth estimation. In 2019 IEEE International Confer-
ence on Image Processing (ICIP), pages 1074–1078. IEEE,
2019. 2

12631


