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Abstract

Domain adaptation for semantic segmentation aims to
improve the model performance in the presence of a distri-
bution shift between source and target domain. Leverag-
ing the supervision from auxiliary tasks (such as depth esti-
mation) has the potential to heal this shift because many
visual tasks are closely related to each other. However,
such a supervision is not always available. In this work,
we leverage the guidance from self-supervised depth esti-
mation, which is available on both domains, to bridge the
domain gap. On the one hand, we propose to explicitly
learn the task feature correlation to strengthen the target
semantic predictions with the help of target depth estima-
tion. On the other hand, we use the depth prediction dis-
crepancy from source and target depth decoders to approx-
imate the pixel-wise adaptation difficulty. The adaptation
difficulty, inferred from depth, is then used to refine the
target semantic segmentation pseudo-labels. The proposed
method can be easily implemented into existing segmenta-
tion frameworks. We demonstrate the effectiveness of our
approach on the benchmark tasks SYNTHIA-to-Cityscapes
and GTA-to-Cityscapes, on which we achieve the new state-
of-the-art performance of 55.0% and 56.6%, respectively.
Our code is available at https://qin.ee/corda.

1. Introduction

The task of semantic segmentation requires models to
assign pixel-level category labels to given scenes. While
deep learning models have achieved good performance on
benchmark datasets with the help of a large amount of high
quality annotated training data [!, 48], they still face the
real-world challenge of the domain shift between training
and test data because of the variance in illumination, appear-
ance, viewpoints, backgrounds, etc. Unsupervised domain
adaptation (UDA) can potentially heal this domain gap by
aligning the domain distributions [40], or recursively refin-
ing the target pseudo-labels [55].
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Figure 1. We propose to use self-supervised depth estima-
tion (green) to improve semantic segmentation performance under
the unsupervised domain adaptation setup. We explicitly learn the
task feature correlation (orange) between semantics and depth and
use it to improve the target semantics. We use the adaptation dif-
ficulty (blue) approximated by depth prediction discrepancy of the
target image from two domain-specific depth decoders to refine
our target semantic pseudo-label. The proposed correlation-aware
domain adaptation method can largely improve the segmentation
performance in the target domain.

In recent years, motivated by the success of multi-task
learning [49, 44], auxiliary tasks (such as depth estima-
tion) have been increasingly used to help the adaptation. As
auxiliary tasks are often coupled with the semantics, they
have been proved to be beneficial for the main segmentation
task [19]. Existing works [41, 3] typically utilize the easy-
to-access depth information from a synthetic source domain
to train an auxiliary depth network but do not take target
depth into account because of its inaccessibility. Inspired by
recent progress on self-supervised depth estimation, where
depth can be trained from stereo pairs [7, 8] or video se-
quences [54], we propose to make use of self-supervised
depth estimates for the domains (the source domain and/or
target domain) on which ground-truth depth is not available.

The additional self-supervised depth estimation can fa-
cilitate us to explicitly learn the correlation between tasks to
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improve the final semantic segmentation performance. The
learning of the correlation is motivated by the fact that the
correlation between tasks is more invariant across domains
than the individual modalities. As mentioned by previous
works [3], sky is always faraway, roads and sideways are
always flat. These domain-robust correlations between se-
mantics and depth have the potential to largely improve the
target semantic segmentation performance in the presence
of a domain shift.

To this end, we propose to exploit such a correlation in
two ways. On the one hand, we propose to explicitly learn
the task feature correlation between depth and semantics.
This is achieved by using domain-shared multi-modal dis-
tillation modules to model the interaction and complemen-
tarity between semantics and depth features. The corre-
lation learned from the source domain can be shared and
transferred to the target domain to improve target segmen-
tation performance. On the other hand, we make use of
the correlation to refine the target semantic pseudo-labels.
We approximate the adaptation difficulty by calculating the
discrepancy between the predictions of the domain-specific
depth decoders. As depth and semantics are coupled, we
make the assumption that the estimated adaptation diffi-
culty can be transferred from depth to semantics. We pro-
pose to use this relation to guide the semantic segmentation
pseudo-label refinement on the target domain. Combining
the two ways of correlation exploitation leads to our pro-
posed Correlation-Aware Domain Adaptation (CorDA) ap-
proach. We illustrate the two ways to utilize the correlation
in Figure 1.

It is also worth mentioning that our strategies can be im-
plemented easily. The self-supervised depth estimation can
be learned from easy-to-access image sequences or stereo
images and the proposed correlation learning module can
be readily incorporated into existing UDA networks for se-
mantic segmentation. We demonstrate the effectiveness of
our proposed approach on the benchmark tasks SYNTHIA-
to-Cityscapes and GTA-to-Cityscapes, on which we achieve
new state-of-the-art segmentation performance.

Our contributions are summarized as follows:

* We propose a novel UDA framework which effectively
utilizes self-supervised depth estimation available on
both domains to improve semantic segmentation.

* Specifically, we explicitly learn the correlation be-
tween modalities and share it across domains. Further-
more, we refine the semantic pseudo-labels by using
the adaptation difficulty approximated by depth pre-
diction discrepancy.

* Despite of the simplicity, our proposed approach
achieves new state-of-the-art segmentation per-
formance on the benchmark tasks SYNTHIA-to-
Cityscapes and GTA-to-Cityscapes.

2. Related Work

Unsupervised domain adaptation Unsupervised do-
main adaptation (UDA) [27, 28] aims to improve the tar-
get model performance in the presence of a domain shift
between the labeled source and unlabeled target domain.
Many UDA methods have been proposed to alleviate the do-
main shift. One common motivation is to align the source
and target distribution [6]. This can be achieved in several
different ways. AdaptSegNet [37] and Advent [40] allevi-
ates the domain shift by adversarially aligning the distribu-
tions in the output space or feature space. Another popular
direction is to align the input pixels of source and target
images via generative adversarial networks [13] or Fourier
transforms [47]. In recent years, especially in the field of
UDA for semantic segmentation, pseudo-label refinement
under a self-training frameworks has achieved competitive
results. By iteratively using gradually-improving target
pseudo-labels to train the network, the performance on the
target domain can be further improved. Following this mo-
tivation, CBST [55] improved the self-training performance
by using class-specific thresholds. PyCDA [21] found that
including pseudo-labels in different scales can further im-
prove model performance. [53] used the uncertainty of se-
mantic predictions to refine the pseudo-labels. Using pro-
totypes [50] to refine pseudo-labels has also shown promis-
ing results. Recently, DACS [36] demonstrated strong re-
sults by combining self-training with ClassMix [25], which
mixes source and target images during the training.

Use of geometric information in semantic segmenta-
tion Additional geometric information has been recently in-
creasingly used to help learning the semantics [29] because
geometric and semantic information are highly correlated.
In the UDA setup, there are several works which pioneered
this direction. SPIGAN [19] translates source images into
the style of targets to reduce the domain gap. An auxil-
iary depth regression task is used in SPIGAN to regularize
the generator, and better capture the semantics for the trans-
lated image. DADA [41] uses an auxiliary depth prediction
branch to predict the depth for both domains. The predic-
tions are later fused together with semantic predictions and
fed into the domain discriminator. GIO-Ada [3] makes use
of the depth information in both input-space translation and
output-level adaptation, where a discriminator is applied on
the concatenation of depth and semantic predictions. Exist-
ing works often use the additional depth information from
the synthetic data in the source domain. The supervision
from target geometric information is largely unexplored.

Multi-task distillation Our work is also closely related
to multi-task learning (MTL) [38], where multiple tasks are
predicted by a single network. Modern multi-task learn-
ing methods [44, 52, 39] aim at distilling the information
from different tasks. This is often achieved by using a
shared backbone network and task-specific heads. Initial
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task predictions are first made to learn task-specific interme-
diate features. These task-specific feature representations
are then combined via a multi-modal distillation unit, before
performing the final task predictions. Most multi-task learn-
ing works focus on the fully-supervised case where there
exist no domain shift and the ground truths for all tasks are
directly provided. We focus on the UDA setup where tar-
get ground truth is not provided for both main and auxiliary
tasks. MTL under such a setup is understudied. Motivated
by the success of these methods we modify and generalize
the PAD-Net [44] to capture the correlation between modal-
ities across domains in order to facilitate the efficient joint
learning of semantics and depth in the UDA setup. The idea
of the multi-modality learning was also explored in other
related areas such as object detection [22, 18, 26].
Self-supervised learning Our work is also related to
self-supervised learning in a broad sense. Self-supervised
learning has recently achieved strong performance in learn-
ing meaningful representations in various vision tasks [10,
]. In the UDA for classification context, self-supervised
learning has been shown to be able to improve generaliza-
tion ability in the target domain by learning to predict aux-
iliary tasks [45, 33, 35]. However, The auxiliary tasks used
by these works are relatively arbitrary (such as rotation pre-
diction) and do not exploit the correlation between the main
task and auxiliary task. In this work, we exploit the possibil-
ity of using depth estimation to improve the semantic seg-
mentation performance under the UDA framework. In con-
trast to works combining (semi-)supervised semantic seg-
mentation with self-supervised depth estimation [15, 14],
we explicitly deal with the challenge of the domain shift.

3. Methodology

In the UDA setup, we are given labeled data from
the source domain and unlabeled training samples from
the target domain. As annotations for synthetic data are
comparably easy to generate, labeled synthetic data is of-
ten used as source .S and unlabeled target data is treated
as target 7. Formally, in the source domain, we have
Dg = {(x7,y7,dy),...,(x3,y5 d%)} as the set of la-
beled training data, where xf is the i-th sample, yis is the
corresponding label for semantic segmentation, df is the
label for an optional auxiliary task (such as depth estima-
tion), and 7 is the total number of labeled source samples.
The optional auxiliary task is not used in the classic UDA
training setup. Similarly, target real training data can be
represented as Dy = {(x7,d¥),..., (xL dL)} where x!
is the i-th unlabeled training sample, d} is the label for
an optional auxiliary task, and m is the number of unla-
beled samples. The task of UDA for semantic segmenta-
tion is to train a model which performs well on test images
Dyesy = {xtt ... x!s} from the target domain 7. We
consider depth estimation as the auxiliary task.

Precise depth information is often not provided in the
real-world target dataset. Existing works therefore often
only use the source depth information from the virtual envi-
ronment. Unfortunately, this limits the possibility of learn-
ing the comprehensive correlation between modalities and
domains. To overcome this limitation, in this work, we
propose to use self-supervised depth estimates as pseudo
ground truth on the target domain d?. The use of self-
supervised depth enables us to exploit the correlation be-
tween modalities to further improve the UDA performance
as shown in Figure 1. First, we learn the domain-robust
task feature correlation between semantics and depth fea-
tures on the source domain and transfer it with the target
domain as described in Section 3.2. In our implementation,
in order to avoid a two-stage training, we used a continu-
ous transfer by having a shared module during the learning
process. Second, we approximate the adaptation difficulty
by calculating the discrepancy between the predictions of
source and target depth decoder. As depth and semantics
are naturally coupled, we use the adaptation difficulty to re-
fine the semantic pseudo labels as described in Section 3.3.

3.1. Self-Supervised Depth Estimation

The self-supervised depth estimation can be trained from
stereo pairs [7, 8] or video sequences [54]. Both are rela-
tively easy to obtain and, therefore, often already part of
real-world datasets. By using off-the-shelf solutions such as
Semi-Global Matching [12] and MonoDepth2 [9], pseudo
depth information can be easily generated. The generated
depth is used as the fixed pseudo depth ground truth for the
training of our proposed model. A detailed explanation on
the generation process is provided in Section 4 and more ex-
tensively in the supplementary. If depth information is un-
available in the source domain, such as for GTAS [30], the
same generation procedure can be applied as well. These
additional depth estimates can now facilitate the learning of
correlation between semantics and depth in both domains.

3.2. Correlation-Aware Architecture

In order to exploit the domain-robust correlation be-
tween the depth and the semantic information, we adapt
recent developments of multi-task learning [44, 39] to our
correlation-aware UDA framework. Figure 2 depicts the
framework of the proposed approach. Both domains share
a common convolutional backbone network to encode im-
ages into deep features. This can be achieved by any mod-
ern deep CNN model. Then, domain-specific depth heads
and a shared semantic prediction head are used to gener-
ate intermediate multi-modal predictions. In the next step,
a domain-shared task feature correlation module is used to
explicitly learn the correlation between depth and seman-
tics and incorporate the complementary information from
the other task to strengthen final segmentation predictions.
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Figure 2. The network architecture of our proposed Correlation-Aware Domain Adaptation (CorDA), in which we combine the proposed
task feature correlation module and the pseudo-label refinement based on adaptation difficulty transfer. The semantic and depth features
are processed by the domain-shared feature correlation module to explicitly learn the domain-robust correlation between them and provide
complementary information for the other modality. In addition, as shown in the right-most side of the figure, during the training process,
the semantic pseudo-labels are re-weighted based on the adaptation difficulty approximated by the depth prediction discrepancy.

Domain-specific intermediate predictions Intermedi-
ate predictions are first generated to enable the later learning
of the correlation between semantic and depth information.
By applying convolution bottlenecks on the backbone fea-
tures, we acquire semantic features and depth features of
256 channels. Semantic and depth prediction heads are ap-
plied to provide the intermediate predictions. We use two
separate depth heads for source and target domains as depth
supervision from both domains are available with the help
of self-supervised depth estimation. Since there is no strong
supervision available for target semantic predictions, we
share the semantic heads for both domains. Predictions are
re-scaled to the input resolution by bilinear interpolation.
Following [4 1], we use the reverse Huber loss for depth:

e if le,| <c
berHu(e.) = LZL’Q ‘Z‘f ’ (1)
= otherwise,

where c is the threshold which is set to % of the maximum
depth difference. We use the cross entropy loss for the se-
mantic loss calculation. This leads us to the following loss
components for the intermediate prediction losses:

H W
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where ¥;,,;+ are the semantic intermediate predictions. y7Tis
the one-hot semantic pseudo-label for target domain. Both
v ., and g1 . are the intermediate semantic predictions
from the same shared semantic decoder. d° and d7 are
the intermediate depth predictions from the separate source
and target depth decoders. w is a pixel-wise pseudo-label
weight which we will introduce in Section 3.3. Follow-
ing [3, 41], inverse depth is adopted for the depth learning
losses. For all our experiments, the ground-truth depth is
either from the simulator or from pre-calculated depth esti-
mations. The tilde in £ indicates that this is the loss function
for the intermediate predictions.

Shared task feature correlation module The seman-
tic and depth features from the last step are then fed into a
domain-shared task feature correlation module to learn the
correlation between semantics and depth. This is achieved
by incorporating two spatial attentions, which capture the
mutual relationship between depth and semantics. The de-
sign of the feature correlation module is largely inspired
by works in the field of multi-task learning [39, 44], where
similar attention modules were used to help the joint learn-
ing of multiple tasks. Existing works extract the correlation
from multiples scales and different modalities. We build
our module based on PAD-Net [44] because of its simplic-
ity and effectiveness. Specifically, given the semantic fea-
tures Fy.q and the depth features Fyepp, the distilled fea-

tures F7, , Fi7. 1), are calculated by:

Ffy = Foeg + (Wi @ Fuepin) © o(Wi @ Faepin) (6)
thepth = Flepth + (VVs1 ® Fseg) © U(WSQ ® Flieg), (7
where ® denotes the convolution operation and ® denotes

the element-wise multiplication. ¢ is the sigmoid function
for the normalization of the attention map. W denotes the
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learnable weights for the convolution. We notice that this
self-attention variant performs better in our experiments.

The benefits of the task feature correlation module are
twofold. On the one hand, the attention captures the com-
plementary information from the other modality and ig-
nores the irrelevant information. Thus, we explicitly learn
the correlation between the two modalities. On the other
hand, by designing to share the attentions from the source
domain to the target domain, we aim to learn a more robust
and more generalizable correlation.

Domain-specific final decoders Given the distilled se-
mantic features £, and the distilled depth features Fg, ;..
we can now provide the final predictions for the entire net-
work. Similar to the intermediate predictions, we use a
shared semantic decoder for both domains to perform fi-
nal predictions using F, as input. The depth decoders of
source and target domain remain independent. The overall
loss function for the entire network, thus, results in:

L= ES + ET + aSZdSepth + OéT‘Egepth

seg seg

S T S pS T pT
+ ‘Cseg + ‘Cseg +a ‘Cdepth +a ‘Cdeptha

®)

where o® and o are the hyperparameters for the depth

loss. The loss functions for the final predictions have the
same formulations as their intermediate counterparts.

Summary of the architecture The architecture of the
proposed framework, thus, contains domain-specific depth
decoders and a shared task feature correlation module to ex-
plicitly learn the correlation between the depth and seman-
tics. The final semantic predictions ¢’ for the target images
can then be generated by the semantic decoder.

3.3. Pseudo-Label Refinement with Adaptation Dif-
ficulty

As target semantic supervision is unavailable in the UDA
setup, it is common for self-training approaches [56, 21]
to use target semantic predictions 7 as semantic pseudo-
labels ¢ for the training. However, pseudo-labels can be
noisy and over-confident [56], thus it is important to filter
out unreliable ones. Existing works refine pseudo-labels by
exploiting prediction uncertainty [53] and class-wise con-
fidence [56]. Our method is complementary to them. We
leverage the availability of self-supervised depth and task
correlations to refine the semantic pseudo-labels.

With domain-specific depth decoders, we can approxi-
mate the difficulty of domain adaptation by calculating the
discrepancy between the predictions of source and target
depth decoders on the target image. As depth and semantics
are naturally coupled, we assume that the estimated adap-
tation difficulty can be transferred from depth to semantics.
We exploit this relation to refine the semantic pseudo labels.

Specifically, given a target image input x”, we calculate
the final depth predictions of the target image using both the

source depth decoder f° and the target depth decoder f7.
We compare the pixel-wise prediction discrepancy between
the depth estimated by both the source and target decoder.
The discrepancy is then used as an indicator for the pixel-
wise adaptation difficulty. We hypothesize that the adap-
tation difficulty can be transferred from depth to semantics
because of the coupled relationship of semantic and depth.
Pixels where the depth prediction discrepancy is high indi-
cate a larger domain gap for this region, thus, should be as-
signed a lower weight for the semantic pseudo-labels. The
following equation is used to assign weights for the seman-
tic pseudo-labels on the target domain:

A = abs(f5(xT) — f7(x")
9
w:relu(l—(%)7 ®
where d” is the pseudo ground truth of the target depth
and the pixel-wise weight w is applied on target semantic
pseudo labels in £, and £, . as shown in Equation 3.
The prediction difference is normalized by the pseudo
ground truth d” in order to make the prediction difference
more comparable across pixels with different distances with
respect to the camera. The pixel-wise weight w is designed
to be in the range O to 1. If the source and target depth de-
coders give identical predictions for a pixel in the target im-
age, this indicates that the domain gap in this region is very
small, and the predicted semantic pseudo-label is likely to
be correct. Thus, we assign 1 to the semantic pseudo-label
for this pixel. If the depth prediction difference is large, then
the domain gap is large, thus, it is hard to predict the seman-
tics correctly. In this case, the weight w becomes closer to
0, and the semantic pseudo-label for this region has little
contribution to the semantic training loss.

3.4. Summary

Combining the proposed correlation-aware architecture
with the task feature correlation transfer and the pseudo-
label refinement with adaptation difficulty leads to our
Correlation-Aware Domain Adaptation (CorDA) frame-
work. As shown in Figure 2, we use a correlation-aware
architecture, which incorporates a shared feature correla-
tion module and domain-specific depth decoders. During
the entire training process, the semantic pseudo-labels are
re-weighted using the pixel-wise domain gap indicator in-
troduced in our depth-guided difficulty refinement.

The proposed method can be readily integrated into any
UDA framework for semantic segmentation. To show that
our method is complementary to existing frameworks, we
use DACS [36] as our base framework as it offers a simple
but strong baseline. DACS mixes source and target images
and uses a fixed threshold to filter the pseudo-labels.
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4. Experiments

We evaluate our proposed approach on the benchmark
tasks SYNTHIA-to-Cityscapes and GTA-to-Cityscapes.

Cityscapes The Cityscapes dataset [5] is a real-world
dataset containing driving scenarios of European cities. It
contains fine semantic segmentations with 19 classes and
consists of 2,975 training images as well as 500 validation
images. Following the experimental protocol used by [3],
the original images which have a fixed spatial resolution
of 2048 x 1024 pixels are down-sized to 1024 x 512. We
use the publicly-available stereo depth estimation from [34].
These depth estimations were originally generated using
the Semi-Global Matching [12] with stereoscopic inpaint-
ing [42]. In the ablation study, we also evaluate the possi-
bility of using self-supervised monocular depth estimation
as pseudo ground truth for Cityscapes. It is provided by a
Monodepth2 [9] model trained on the Cityscapes training
image sequences. We use the Cityscapes training set with-
out labels as target domain for the adaptation and report our
results on the validation set. We always report the Intersec-
tion Over Union (IoU) for per class performance as well as
the mean Intersection over Union (mloU) over all classes.

SYNTHIA The SYNTHIA dataset [31] is a synthetic
dataset of road scenes collected from a virtual environ-
ment. Following the setup used by [4], 3], we adopt the
SYNTHIA-RAND-CITYSCAPES split using Cityscapes-
style annotations (16 overlapping classes). The dataset con-
sists of 9,400 synthetic images. We use the simulated depth
provided by the dataset as our source depth supervision.

GTAS The GTAS dataset [30] is generated from a game
environment. It contains 24,966 images which are labeled
using Cityscapes-style annotation (19 classes). We use
Monodepth2 [9] to generate the depth information for the
GTAS dataset. The monodepth2 model is trained solely on
the image sequences from GTAS5 dataset. We will release
our monocular depth estimation datasets.

Table 1. Ablation study of different components in our pro-
posed framework on the SYNTHIA-to-Cityscapes adaptation task.
Stereo depth estimation is used for the target data. mloU* denotes
performance over 13 classes excluding wall, fence, and pole as it
is also widely used in the literature.

o =
€| 52|88
Method | 28| &€ | mloU* | mloU
A A =
a
Baseline [36] 54.8 48.3
SimpleAux v 559 49.6
CorDA (F) v v 62.4 54.2
CorDA (FD) v v v 62.8 55.0

Implementation details For our correlation-aware archi-
tecture, we adopt ResNet-101 [11] as the shared encoder
and DeepLabv?2 [1] as task decoder. The semantic and depth
feature bottlenecks are residual blocks with two 3x3 and
four 1x1 convolution operations. Our training procedure is
based on DACS [36] and enhanced by our pseudo-label re-
finement with adaptation difficulty. Following [36], batch
size is set as 2. The learning rate starts from 2.5 x 10~* and
follows a polynomial decay with exponent of 0.9. Images
from the source domain are scaled to 1280 x 760. The res-
olution of 1024 x 512 is used for the target domain as input
for training. Random crops of size 512 x 512 are used as
an additional augmentation. We set the weights for source
depth loss to o® = 0.01 and target depth loss weight to
aT = 0.001. All models are trained for 250,000 iterations.
We report our performance at the end of the training.

4.1. Results on SYNTHIA — Cityscapes

We first evaluate the effectiveness of the proposed model
on the SYNTHIA-to-Cityscapes task. We report the mloU
performance on the common 16 classes.

Ablation study: individual modules The main contri-
bution of our proposed framework is to utilize the self-
supervised depth to effectively learn the shared correlation
between tasks and domains. To validate our motivation, we
conduct an ablation study on each of these components. We
first include DACS as a strong baseline, which is already
able to capture semantics relatively well without the help of
geometric information. We then additionally use the self-
supervised depth and add the depth prediction auxiliary task
(without using the task feature correlation module) for both
source and target depth to check whether a naive approach
can provide improvement to the DACS baseline. Then, we
evaluate our proposed domain-shared task feature correla-
tion module to verify the contribution of explicitly learn-
ing the correlation between modalities. Finally, we add our
pseudo-label refinement based on the adaptation difficulty.
This final setup corresponds to our proposed framework.
As shown in Table 1, directly using source and tar-
get depth information as auxiliary tasks (denoted as Sim-
pleAux in the Table) without making any modifications on
the architecture and training process can already lead to a
small improvement over the DACS baseline and gives us
49.6% mloU. This verifies the common belief that addi-
tional depth information can be helpful for learning seman-
tics. However, the improvement is not significant, most
likely because this naive way of simultaneously learning
two tasks can not guarantee a good generalization ability
for both tasks [17, 44]. By explicitly modelling the corre-
lation between depth and semantics using the correlation-
aware architecture with task feature correlation CorDA (F),
we can make better use of the depth information and sig-
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Table 2. Semantic segmentation results for the SYNTHIA-to-Cityscapes adaptation task.

excluding those marked with *.

mloU* denotes performance over 13 classes

S| = = 5 E = = g 5 @ ] 0

Method |2 2 3 3 2 3 B ) 5 Z % s 5 £ é £ | mloU* | mloU
Source [30] 363 146 688 92 02 244 56 91 690 794 525 113 498 95 110 207 | 337 | 295
OutputAdapt [37] 843 427 715 - - - 47 70 779 825 543 210 723 322 189 323 | 467 | -
ADVENT [40] 85.6 422 797 87 04 259 54 8.1 804 84.1 579 238 733 364 142 330 48.0 41.2
CBST [55] 680 209 763 108 14 339 228 295 776 783 606 283 816 235 188 398 | 489 | 426
R-MRNet [53] 87.6 419 831 147 1.7 362 313 199 8l.6 80.6 630 21.8 862 407 236 53.1 54.9 479
SIM [473] 830 440 803 - - - 171 158 805 818 599 331 702 37.3 285 458 | 521 -
FDA [47] 793 350 732 - - 199 240 617 826 614 31.1 839 408 384 51.1 52.5 -
Yang et al. [46] 851 445 810 - - - 164 152 80.0 848 594 319 732 410 326 447 | 531 -
IAST [24] 819 415 833 177 46 323 309 288 834 850 655 308 865 382 331 527 57.0 49.8
DACS [36] 80.6 251 819 215 29 372 227 240 837 908 676 383 829 389 285 476 | 548 | 483
SPIGAN [ 0] V|71 298 714 37 03 332 64 156 812 789 527 131 759 255 100 205 | 424 | 368
GIO-Ada [3] v | 783 292 769 114 03 265 108 172 817 819 458 154 680 159 75 304 43.0 37.3
DADA [41] v 892 448 814 68 03 262 86 111 818 840 547 193 797 407 140 388 | 498 | 426
CTRL [32] v | 864 425 804 200 1.0 277 105 133 806 826 61.0 237 81.8 429 21.0 447 51.5 45.0
CorDA (mono) v 1902 475 856 245 3.0 382 41.6 365 859 917 703 424 860 429 347 504 62.0 54.5
CorDA (stereo) | v | 933 616 853 196 5.1 378 366 428 849 904 697 418 856 384 326 539 | 628 | 550

nificantly reduce the domain gap. This leads to an 4.6%
absolute improvement, yielding 54.2% mloU on the target
domain. If we remove the correlation learning modules and
keep the extra feature and semantic bottlenecks, the per-
formance drops back to 51.7% mloU. This clearly demon-
strates the importance of learning the correlation between
the two modalities. In addition, by comparing the predic-
tion discrepancy between source and target depth decoders,
we integrate our pseudo-label refinement with adaptation
difficulty module into the network, which leads to our fi-
nal proposed framework CorDA (FD). This gives us further
0.8% of absolute performance improvement. From Table 1,
we can observe that both the correlation-aware architec-
ture with task feature correlation and pseudo-label refine-
ment with adaptation difficulty are beneficial for improving
the semantic segmentation performance. The results clearly
validate contributions of each of the proposed components.

Ablation study: choice of pseudo depth ground truth
As mentioned in earlier sections, the depth information
used as pseudo ground truth can come from a variety of
sources, such as self-supervised monocular depth estima-
tion or stereoscopic depth estimation. In this ablation study,
we compare the impact of the choice of the source of depth
information and investigate the robustness of our proposed
method against different types of depth estimation. We
again use SYNTHIA-to-Cityscapes as our evaluation task.
We change the pseudo depth ground truth of Cityscapes
from the before stereoscopic estimation to monocular depth
estimation from Monodepth2. As shown in Table 2, the
performance of our complete model CorDA is relatively
similar with the two depth options. The use of monocu-
lar depth yields 54.5% mloU, while the stereoscopic depth
yields 55.0% mloU. Model performance with monocular
depth is slightly lower because the stereo depth usually has
higher estimation quality. In both cases, the performance
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Figure 3. Semantic segmentation results on GTA-to-Cityscapes.

is very competitive and much stronger than the baseline.
This indicates that the proposed method is relatively robust
to the choice of pseudo depth ground truth and is able to
capture the correlation between semantics and depth infor-
mation, regardless of whether it is a monocular or stereo
estimation. We would like to highlight that for both stereo
and monocular depth estimations, only stereo pairs or im-
age sequences from the same dataset are used to train and
generate the pseudo depth estimation model. As no data
from external datasets is used, and stereo pairs and image
sequences are relatively easy to obtain, our proposal of us-
ing self-supervised depth have the potential to be effectively
realized in real-world applications.

Comparison to the state-of-the-art approaches We
compare the performance of our final proposed model to
state-of-the-art methods on the SYNTHIA-to-Cityscapes
unsupervised domain adaptation task in Table 2. By exploit-
ing the supervision from self-supervised depth estimation
and learning the correlation between semantics and depth,
the proposed method achieves 55.0% mloU (stereo depth)
on this task. This yields a large margin of 6.7% absolute
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Table 3. Experiment results (mloU in %) on the GTAS-to-Cityscapes task. Our method CorDA uses monocular depth estimation for GTAS

and stereo depth estimation for Cityscapes.

= — ) = = g ] = A
Method § % % E E é B §° gb g Z % 2 3 E E § é % mloU
Source only [37] | 75.8 16.8 772 125 21.0 255 30.1 20.1 813 246 703 53.8 264 499 172 259 65 253 36.0| 36.6
ROAD [4] 76.3 36.1 69.6 28.6 224 28.6 293 148 823 353 729 544 178 789 277 303 40 249 126 | 394
OutputAdapt [37] | 86.5 36.0 79.9 234 233 239 352 148 834 333 756 585 27.6 737 325 354 39 30.1 28.1 | 424
ADVENT [40] 87.6 214 820 348 262 285 356 23.0 845 351 762 586 30.7 848 342 434 04 284 353 | 448
CBST [55] 91.8 53.5 80.5 327 21.0 340 289 204 839 342 809 53.1 240 827 303 359 160 259 428 | 459
BDL [20] 91.0 447 842 346 276 302 360 360 850 436 830 586 316 833 353 49.7 33 288 356 485
MRKLD-SP [56] | 90.8 46.0 79.9 27.4 233 423 462 409 835 192 59.1 635 30.8 835 36.8 520 28.0 36.8 46.4 | 49.2
Kim et al. [16] 929 55.0 853 342 31.1 349 407 340 852 40.1 87.1 61.0 31.1 825 323 429 03 364 46.1 | 502
CAG-UDA [51] |904 51.6 83.8 342 27.8 384 253 484 854 382 781 586 346 847 219 427 411 293 372 | 502
FDA [47] 925 533 824 265 276 364 40.6 389 823 39.8 780 62.6 344 849 341 531 169 277 464 | 505
PIT [23] 87.5 434 788 312 302 363 399 420 79.2 37.1 793 654 375 832 46.0 456 257 23.5 49.9 | 50.6
IAST [24] 93.8 57.8 851 395 267 262 431 347 849 329 880 626 290 873 392 49.6 232 347 39.6| 515
DACS [36] 89.9 39.7 879 30.7 395 385 464 528 88.0 44.0 888 672 358 845 457 502 00 273 340 52.1
CorDA 947 63.1 87.6 30.7 40.6 402 478 516 876 47.0 89.7 66.7 359 90.2 489 575 00 398 56.0 | 56.6

improvement compared to the previous state-of-the-art pub-
lished work DACS [36]. We would like to highlight that, by
using either monocular or stereo depth estimations, our pro-
posed method steadily outperforms the other approaches by
a large margin. This again shows the importance of learning
the correlation between semantic and depth.

We additionally compare our method to four existing
works which also utilizes available depth information dur-
ing training. Unlike these works which use adversarial
training to make use of the additional depth from source
domain, we explicitly learn the correlation between modal-
ities in both domains without any adversarial component.
This makes the training more stable and exploits the corre-
lation more effectively. As shown in the table, the proposed
CorDA outperforms these methods by a large margin. Nev-
ertheless, our method is complementary and can be poten-
tially combined with these existing adversarial methods.

4.2. Results on GTA— Cityscapes

To further demonstrate the effectiveness of the proposed
CorDA framework and the importance of explicitly learn-
ing the correlation between depth and semantics, we com-
pare our method to a wide range of 12 competitive works on
the GTAS5-to-Cityscapes task. The experimental results are
summarized in Table 3. We use monocular depth estimation
as pseudo depth ground truth for GTAS (as no stereo pairs
are available due to the limitation of the dataset) and stereo
depth estimation for Cityscapes. The results demonstrate
that our framework is robust to different sources of depth
estimations and a competitive CorDA model can be suc-
cessfully trained using different types of depth estimations
for the two domains. Our method yields an absolute im-
provement of 4.5% mloU over DACS, and achieves 56.6%
mloU. This outperforms competing methods with a signif-
icant margin. As shown by sample predictions in Figure 3,
the prediction quality is largely improved on easily confus-
able classes such as sidewalk and road.

Choice of Pre-trained Weight To ensure a fair com-
parison with DACS, the same pretrained weights (Ima-
geNet+COCO) was used in previous experiments. An alter-
native is to use ImageNet-only pretrained weights. To eval-
uate the impact of the pretrained weight choice on CorDA,
we reran the benchmark experiments with stereo Cityscapes
depth estimation using the ImageNet-only weights. In
this setup, CorDA achieves 54.6% (16 classes) and 56.4%
mloU for SYNTHIA- and GTA-to-Cityscapes, respectively.
This performance is very similar to the results with Im-
ageNet+COCO weight, and still outperforms competing
methods with a large margin.

5. Conclusions

In this work, we introduced a new domain adaptation
framework for semantic segmentation which effectively
leverages the guidance from self-supervision of auxiliary
task to bridge domain gaps. The proposed method explic-
itly learns the correlation between semantics and auxiliary
tasks to better transfer this domain-shared knowledge to the
target domain. To achieve this, a domain-shared task fea-
ture correlation module is used. We further made use of the
adaptation difficulty, approximated by the prediction dis-
crepancy from the domain depth decoders, to refine our seg-
mentation predictions. By integrating our approach into an
existing self-training framework, we achieved state-of-the-
art performance on the two benchmark tasks SYNTHIA-
to-Cityscapes and GTA-to-Cityscapes. The results verified
our motivation and demonstrated the importance of captur-
ing the correlation between modalities to improve semantic
segmentation performance.
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