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Abstract

Dense video captioning aims to generate multiple as-
sociated captions with their temporal locations from the
video. Previous methods follow a sophisticated “localize-
then-describe” scheme, which heavily relies on numerous
hand-crafted components. In this paper, we proposed a sim-
ple yet effective framework for end-to-end dense video cap-
tioning with parallel decoding (PDVC), by formulating the
dense caption generation as a set prediction task. In prac-
tice, through stacking a newly proposed event counter on the
top of a transformer decoder, the PDVC precisely segments
the video into a number of event pieces under the holis-
tic understanding of the video content, which effectively in-
creases the coherence and readability of predicted captions.
Compared with prior arts, the PDVC has several appealing
advantages: (1) Without relying on heuristic non-maximum
suppression or a recurrent event sequence selection network
to remove redundancy, PDVC directly produces an event
set with an appropriate size; (2) In contrast to adopting
the two-stage scheme, we feed the enhanced representa-
tions of event queries into the localization head and cap-
tion head in parallel, making these two sub-tasks deeply
interrelated and mutually promoted through the optimiza-
tion; (3) Without bells and whistles, extensive experiments
on ActivityNet Captions and YouCook2 show that PDVC is
capable of producing high-quality captioning results, sur-
passing the state-of-the-art two-stage methods when its lo-
calization accuracy is on par with them. Code is available
at https://github.com/ttengwang/PDVC.

1. Introduction
As an emerging branch of video understanding, video

captioning has received an increasing attention in the re-
cent past [2, 12, 13, 21, 32, 10, 15, 19, 20], aiming to
generate a natural sentence to describe one main event of
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Figure 1: The defacto two-stage pipeline vs. the proposed PDVC.
The two-stage “localize-then-describe” pipeline requires a dense-
to-sparse proposal generation and selection process before cap-
tioning, which contains hand-crafted components and can not ef-
fectively exploit the potential mutual benefits between localization
and captioning. PDVC adopts the vision transformer to learn at-
tentive interaction of different frames, where the learnable event
queries are embedded to capture the relevance between the frames
and the events. Two prediction heads run in parallel over query
features, leveraging the mutual benefits between two tasks and im-
proving their performance together.

a short video. However, since realistic videos are usually
long, untrimmed, and composed of a variety of events with
irrelevant background contents, the above single-sentence
captioning methods tend to generate sentences of blandness
with less information. To circumvent the above dilemma,
dense video captioning (DVC) [5, 7, 25, 29, 37] is devel-
oped for automatically localizing and captioning multiple
events in the video, which could reveal detailed visual con-
tents and generate the coherent and complete descriptions.

Intuitively, dense video captioning can be divided into
two subtasks, termed event localization and event caption-
ing. As shown in Fig. 1, the previous methods usually
solve this problem by a two-stage “localize-then-describe”
pipeline. It firstly predicts a set of event proposals with ac-
curate boundaries. By extracting fine-grained semantic cues
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and visual contexts of the proposal, the detailed sentence
description is finally decoded by the caption generator. The
above scheme is straightforward but suffers from the fol-
lowing issues: 1) By considering the captioning as the
downstream task, the performance of such a scheme highly
relies on the quality of the generated event proposals, which
limits the mutual promotion of these two sub-tasks. 2) The
performance of proposal generators in previous methods de-
pends on careful anchor design [5, 31, 7, 24, 9, 34] and pro-
posal selection post-processing (e.g., non-maximum sup-
pression [5, 31, 7, 24, 9, 34]). These hand-crafted compo-
nents introduce additional hyper-parameters that highly rely
on manual thresholding strategies, hindering the progress
toward a fully end-to-end captioning generation.

To tackle the above issues, this paper proposes a pure
end-to-end dense Video Captioning framework with Paral-
lel Decoding termed PDVC. As shown in Fig. 1, instead of
invoking the two-stage scheme, we directly feed the inter-
mediate representation used for proposal generation into a
captioning head that is parallel to the localization head. By
doing so, PDVC aims to directly exploit inter-task associ-
ation at the feature level. The intermediate feature vectors
and the target events could be matched in a one-to-one cor-
respondence, making the feature representations more dis-
criminative to identify a specific event.

In practice, we consider the dense video captioning task
as a set prediction problem. The proposed PDVC directly
decodes the frame features, which are extracted from a Vi-
sion Transformer, into an event set with their locations and
corresponding captions by applying two parallel prediction
heads, i.e., localization head and captioning head. Since
the appropriate size of the event set is an essential indica-
tor for dense captioning quality [9, 48], a newly proposed
event counter is also stacked on the top of the Transformer
decoder to further predict the number of final events. By
introducing such a simple module, PDVC could precisely
segment the video into a number of event pieces under the
holistic understanding of the video content, avoiding the in-
formation missing as well as the replicated caption genera-
tion caused by unreliable event number estimation.

We evaluate our model on two large-scale video bench-
marks, ActivityNet Captions and YouCook2. Even with
a lightweight caption head (vanilla LSTM), our method
can achieve comparable performance against state-of-the-
art methods which adopts well-designed attention-based
LSTM [24, 34] or Transformer [31]. In addition, we show
quantitatively and qualitatively that the generated propos-
als gain benefit from the paralleling decoding design. Even
with a weakly supervised setting (without location annota-
tions), we show our model can implicitly learn the location-
aware features from captions.

To summarize, the major contributions of this paper are
three folds. 1) We propose a novel end-to-end dense video

captioning framework named PDVC by formulating DVC
as a parallel set prediction task, significantly simplifying the
traditional pipeline which highly depends on hand-crafted
components. 2) We further improve PDVC with a novel
event counter to estimate the number of events in the video,
greatly increasing the readability of generated captions by
avoiding the unrealistic event number estimation. 3) Exten-
sive experiments on ActivityNet Captions and YouCook2
show state-of-the-art performance over existing methods.

2. Related Work

Temporal event proposals. Temporal event propos-
als (TEP), also called temporal action proposals, aims to
predict temporal segments containing event instances in
untrimmed videos. Mainstream approaches can be divided
into two categories: anchor-based and boundary-based.
Anchor-based methods [51, 49, 56, 47] pre-define a vast
number of anchors at different scales with regular intervals,
followed by the evaluation network to score each anchor.
However, the pre-defined scales and intervals can not cover
all temporal patterns, especially in videos with variable tem-
poral scales. The boundary-based methods [59, 55, 54, 53]
combine salient frames with high confidences to form pro-
posals in a local-to-global manner. Both types of methods
contain hand-crafted designs (e.g., NMS and rule-based la-
bel assignment), which require careful manual threshold se-
lection and are not a strictly end-to-end method.

Dense video captioning. Dense video captioning is a multi-
task problem that combines event localization and event
captioning. Krishna et al. [5] propose the first dense video
captioning model, containing a multi-scale proposal module
for localization and an attention-based LSTM for context-
aware caption generation. Some of the following work
aims to enrich the event representations by context model-
ing [24, 28], event-level relationships [34], or multi-modal
feature fusion [35, 36], enabling more accurate and infor-
mative captioning generation.

One of the limitations of the above approaches is that
the localization module can not benefit from the captioning
module. Some researchers try to explore the interaction be-
tween two sub-tasks. Li et al. [7] introduce a proxy task,
i.e., predicting language rewards of generated sentences, as
an additional optimization goal of the localization module.
Zhou et al. [31] propose a differential masking mechanism
to link the gradient flow from captioning loss to proposals’
boundaries, enabling a joint optimization of two tasks. We
argue that neither a binary mask vector [31] nor a scalar
descriptiveness score [7] carries enough informative gradi-
ents of linguistic cues to guide the internal feature represen-
tation in the proposal module during the back-propagation
training. Instead, the proposed PDVC exploits the inter-
task interactions by enforcing the two sub-tasks share the
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Figure 2: Overview of the proposed method. Firstly, we adopt a pre-trained video feature extractor and a transformer encoder to obtain a
sequence of frame-level features. A transformer decoder and three prediction heads are then proposed to predict the locations, captions,
and the number of events given learnable event queries. We provide two types of caption heads, which are based on vanilla LSTM and
deformable soft-attention enhanced LSTM, respectively. In the testing stage, we select the top detected events by ranking the captioning
score and localization score, with no need to remove redundancy by non-maximum suppression.

same intermediate features. Moreover, we adopt one-to-one
matching between intermediate feature vectors and target
event instances to obtain the discriminative features for cap-
tioning, significantly different from previous methods with
a many-to-one anchor assignment strategy.

Another promising direction focuses on the coherence of
generated captions. Early work [5, 7, 31, 24] usually gen-
erates a large number of proposal-caption pairs (10 times
more than the number of ground-truth events) for a high
recall, where massive redundancy greatly reduces the read-
ability and coherence of generated captions. SDVC [9] is
the first to tackle this problem by introducing a “localize-
select-describe” pipeline. Given the output proposals pro-
duced by a TEP model, they develop an RNN-based event
sequence generation network (ESGN) to select a small set
of proposals, reducing the predicted proposal number from
100 to 2.85 on average. Though promising performance
is achieved, SDVC is not an end-to-end model, making a
multi-step training strategy necessary. The recurrent nature
also restricts the application of ESGN to handle long videos
with a large number of events. We parallelize localization,
selection, and captioning tasks in a single end-to-end frame-
work, largely simplifying the pipeline while enabling gen-
erating accurate and coherent captions.

Transformer-based detector. Transformer [17] is an
encoder-decoder architecture based on an attention mecha-
nism for natural language processing. Benefit from the sig-
nificant ability to capture long-range relationships, Trans-
former has been successfully applied and shows promising
performance in computer vision [46, 57, 50, 58, 45]. Detec-
tion Transformer (DETR) [39] is a newly emerging solution

to object detection, which considers object detection as a set
prediction task and does not rely on any hand-crafted com-
ponents. Though it offers promising performance, DETR
suffers from the high training time due to the slow conver-
gence of global attention mechanism. Deformable Trans-
former [38] is proposed to speed up the network training
and gain better performance by attending to sparse spatial
locations of images and incorporating multi-scale feature
representation. Inspired by the simple design and promising
performance of DETR-style detectors in the image domain,
we extend Deformable Transformer into a more challenging
dense video captioning task in the video domain.

3. Method

To simplify the dense video captioning pipeline and ex-
plore the mutual benefits between localization task and cap-
tioning task, we directly detect a set of temporally-localized
captions with an appropriate size {(tsj , tej , Sj)}Nset

j=1 , where
tsj , tej , Sj represent the starting time, ending time, and the
caption of an event, respectively. The set size Nset is also
predicted by PDVC.

Specifically, a deformable transformer with an encoder-
decoder structure is adopted to capture the inter-frame,
inter-event, and event-frame interactions by attention mech-
anism and produce a set of event query features. Then, two
parallel prediction heads predict the boundaries and cap-
tions for each event query simultaneously. An event counter
predicts the event number Nset from a global view. The fi-
nal results are obtained by select top Nset events with high
confidence to ensure a complete and coherent story. Fig. 2
shows the overview of the proposed PDVC.
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3.1. Preliminary: Deformable Transformer

Deformable Transformer [38] is an encoder-decoder ar-
chitecture based on multi-scale deformable attention (MS-
DAtt). MSDAtt mitigates the slow convergency problem of
the self-attention [17] in Transformer when processing im-
age feature maps, by attending to a sparse set of sampling
points around reference points. Given multi-scale feature
maps X = {xl}Ll=1 where xl ∈ RC×H×W , a query el-
ement qj and a normalized reference point pj ∈ [0, 1]2,
MSDAtt outputs a context vector by the weighted sum of
K×L sampling points across feature maps at L scales:

MSDAtt(qj ,pj ,X) =

L∑
l=1

K∑
k=1

AjlkWxl
p̃jlk

p̃jlk = ϕl(pj) + ∆pjkl,

(1)

where p̃jkl and Ajkl are the position and the attention
weight of k-th sampled key at l-th scale for j-th query ele-
ment, respectively. W is the projection matrix for key el-
ements. ϕl projects normalized reference points into the
feature map at l-th level. ∆pjkl are sampling offsets w.r.t.
ϕl(pj). Both Ajkl and ∆pjkl are obtained by linear projec-
tion onto the query element. Note that the original MSDAtt
applies multi-head attention mechanism, while here we il-
lustrate the single-head version for better understanding.

Deformable Transformer replaces the self-attention
modules in the Transformer encoder and the cross-attention
modules in the Transformer decoder with deformable atten-
tion modules, enabling a fast convergence rate and better
representation ability in object detection.

3.2. Feature Encoding

To capture rich spatio-temporal features in a video, we
first adopt a pre-trained action recognition network (e.g.,
C3D [16], TSN [22]) to extract the frame-level features.
We re-scale the feature map’s temporal dimension to a fixed
number T by interpolation to facilitate batch processing.
Then, to better utilize multi-scale features for predicting
multi-scale events, we add L temporal convolutional lay-
ers (stride=2, kernel size=3) to get feature sequences across
multiple resolutions, from T to T/2L. The multi-scale
frame features with their positional embedding [17] are
fed into the deformable transformer encoder, extracting the
frame-frame relationship across multiple scales. The output
frame features are denoted as {f l}Ll=1.

3.3. Parallel Decoding

The decoding network contains a deformable trans-
former decoder and three parallel heads, a captioning head
for caption generation, a localization head to predict events’
boundaries with confidence scores, and an event counter
to predict a suitable event number. The decoder aims
to directly query the event-level features from frame fea-
tures conditioned on N learnable embedding (termed event

queries) {qj}Nj=1, and their corresponding scalar referent
points pj . Note that pj is predicted by a linear projection
with a sigmoid activation over qj . The event queries and
reference points serve as the initial guess of the events’ fea-
tures and locations (center points), and they will be refined
iteratively at each decoding layer, as in [38]. The output
query features and the reference point are denoted as q̃j , p̃j .

Localization head. Localization head performs box pre-
diction and binary classification for each event query. Box
prediction aims to predict the 2D relative offsets (center
and length) of the ground-truth segment w.r.t. the reference
point. Binary classification aims to generate the foreground
confidence of each event query. Both box prediction and bi-
nary classification are implemented by multi-layer percep-
tron. After that, we obtain a set of tuples {tsj , tej , clocj }Nj=1 to
represent the detected events, where clocj is the localization
confidence of the event query q̃j .

Captioning head. We provide two captioning heads, a
lightweight one and a standard one. The lightweight head
simply feeds q̃j into a vanilla LSTM at each timestamp.
The word wjt is predicted by an FC layer followed by a
softmax activation over the hidden state hjt of LSTM.

However, the lightweight captioning head only receives
an event-level representation q̃j , lacking the interactions
between linguistic cues and frame features. Soft atten-
tion (SA) [26, 24, 9] is a widely-used module in video cap-
tioning, which can dynamically determine the importance
of each frame when generating a word. Traditional two-
stage methods [24, 9] aligns the event segments and their
captions by restricting the attention area being within the
event boundaries, but our captioning head can not access
events’ boundaries, increasing the optimization difficulty to
learn relationships between the linguistic word and frames.
To alleviate this problem, we propose the deformable soft
attention (DSA) to enforce the soft attention weights fo-
cus on a small area around the reference points. Specifi-
cally, when generating the t-th word wt, we first generate K
sampling points from each f l conditioned on both language
query hjt and event query q̃j , following Eqn. 1, where hjt

denotes the hidden state in LSTM. Then we consider K×L
sampling points as the key/value and [hjt, q̃j ] as the query
in soft attention. Since the sampling points are distributed
around the reference point p̃j , the output features zjt of
DSA are restricted to attend on a relatively small region.
The LSTM takes as input the concatenation of the context
features zjt, event query features q̃j and previous words
wj,t−1. The probability for next word wjt is obtained by an
FC layer with softmax activation over hjt. With the evolv-
ing of LSTM, we obtain a sentence Sj = {wj1, ..., wjMj},
where Mj is the sentence length.

Event counter. Considering that an appropriate event num-
ber is an essential indicator for dense captioning quality:
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too many events cause replicated captions and bad read-
ability; too few detected events mean information missing
and incomplete story. The event counter aims to detect the
event number of the video. It contains a max-pooling layer
and an FC layer with softmax activation, which first com-
press the most salient information of event queries {q̃j} to
a global feature vector, and then predict a fix-size vector
rlen, where each value refers to the possibility of a specific
number. During the inference stage, predicted event num-
ber is obtained by Nset = argmax(rlen). The final outputs
are obtained by selecting the top Nset events with accurate
boundaries and good captions from N event queries. The
confidence of each event query is calculated by:

cj = clocj +
µ

Mj
γ

Mj∑
t=1

log(ccapjt ) (2)

where ccapjt is the probability of the generated word. We ob-
serve that the average word confidence is not a convincing
measurement of sentence-level confidence since the cap-
tioning head tends to produce overestimated confidence for
short sentences. Thus, we add a modulation factor γ to rec-
tify the influence of caption length. µ is the balance factor.

Set prediction loss. During training, PDVC produces a set
of N events with their locations and captions. To match
predicted events with ground truths in a global scheme, we
use the Hungarian algorithm following [39] to find the best
bipartite matching results. The matching cost is defined as
C = αgiouLgiou+αclsLcls, where Lgiou represents the gen-
eralized IOU [61] between predicted temporal segments and
ground-truth segments, Lcls represents the focal loss [60]
between the predicted classification score and the ground-
truth label. The matched pairs are selected to calculate the
set prediction loss, which is the weighted sum of gIOU loss,
classification loss, countering loss, and caption loss:

L = βgiouLgiou + βclsLcls + βecLec + βcapLcap (3)
where Lcap measures the cross-entropy between the pre-
dicted word probability and the ground truth normalized by
the caption length, Lec is also the cross-entropy loss be-
tween the predicted count distribution and the ground truth.

Note that we follow [39, 38] to add prediction heads to
each layer of the transformer decoder. The final loss is the
summation of the set prediction losses of all layers.

PDVC for paragraph captioning. Paragraph caption-
ing [33, 42, 27] is a simplified version of dense video cap-
tioning, which focuses on generating a coherent paragraph
and does not need to predict the temporal location of each
sentence. PDVC can easily extend to paragraph caption-
ing by removing the localization function and taking the
pre-extracted proposals as input event queries. Specifically,
we consider the linear embeddings of proposals’ position as
the event queries and use the proposals’ center as reference
points. Then PDVC is trained with caption loss only.

4. Experiments

4.1. Experimental Settings

Datasets. We use two large-scale benchmark datasets,
ActivityNet Captions [5], and YouCook2 [30] to evaluate
the effectiveness of the proposed PDVC. ActivityNet Cap-
tions contains 20k long untrimmed videos of various human
activities. On average, each video lasts 120s and is anno-
tated with 3.65 temporally-localized sentences. We follow
the standard split with 10009/4925/5044 videos for train-
ing, validation, and test. YouCook2 has 2000 untrimmed
videos of cooking procedures with an average duration of
320s. Each video has 7.7 annotated segments with associ-
ated sentences. We use the official split with 1333/457/210
videos for training, validation, and test.

Evaluation metrics. We evaluate our method in three as-
pects: 1) For localization performance, we use the average
precision, average recall across IOU at {0.3, 0.5, 0.7, 0.9}
and their harmonic mean, F1 score. 2) For dense captioning
performance, we follow the official evaluation tool provided
by ActivityNet Challenge 2018, which calculates the aver-
age precision (measured by BLEU4 [11], METEOR [6],
and CIDEr [18]) of the matched pairs between generated
captions and the ground truth across IOU thresholds of {0.3,
0.5, 0.7, 0.9}. However, the official scorer does not consider
the storytelling quality, i.e., how well the generated cap-
tions can cover the video’s whole story. We further adopt
SODA c [48] for an overall evaluation. 3) For paragraph
captioning performance, we form a paragraph by sorting
generated captions according to their starting time and re-
port the paragraph-level captioning performance. Note that
ActivityNet Captions has two sets of annotations for the val-
idation set. For SODA c, we evaluate it by two sets inde-
pendently and report their average score.

Implementation details. For ActivityNet Captions, we use
a C3D [16] pre-trained on Sports1M [52] to extract frame-
level features. To fairly compare with state-of-the-art meth-
ods, we also test our model based on TSN [22] features pro-
vided by [31], and I3D+VGGish features provided by [36].
For YouCook2, we use the same TSN features as in [31].

We use a two-layer deformable transformer with multi-
scale (4 levels) deformable attention. The deformable trans-
former uses a hidden size of 512 in MSDAtt layers and
2048 in feed-forward layers. The number of event queries is
10/100 for ActivityNet Captions/YouCook2. We implement
a lightweight PDVC (termed PDVC light) with the vanilla
LSTM captioner and the standard PDVC with the LSTM-
DSA captioner. The LSTM hidden dimension in captioning
heads is 512. For the event counter, we choose the maxi-
mum count as 10/20 for ActivityNet Captions/YouCook2.
In Eqn. 2, the length modulation factor γ is set to 2, and
the trade-off ratio µ is set to 0.3/1.0 for PDVC light/PDVC.
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Method
Recall Precision

F1
0.3 0.5 0.7 0.9 avg 0.3 0.5 0.7 0.9 avg

MFT [40] 46.18 29.76 15.54 5.77 24.31 86.34 68.79 38.30 12.19 51.41 33.01
SDVC [9] 93.41 76.40 42.40 10.10 55.58 96.71 77.73 44.84 10.99 57.57 56.56

PDVC light 88.78 71.74 45.70 17.45 55.92 96.83 78.01 41.05 14.69 57.65 56.77
PDVC 89.47 71.91 44.63 15.67 55.42 97.16 78.09 42.68 14.40 58.07 56.71

Table 1: Event localization on the ActivityNet Captions validation set.

Method
Predicted proposals

B4 M C SODA c

MT [31] 0.30 3.18 6.10 -
ECHR [34] - 3.82 - -
PDVC light 0.89 4.56 23.07 4.34
PDVC 0.80 4.74 22.71 4.42

Table 2: Dense captioning on YouCook2.

Method Features
Ground-truth proposals Predicted proposals

B4 M C B4 M C SODA c

DCE [5] C3D 1.60 8.88 25.12 0.17 5.69 12.43 -
TDA-CG [24]∗ C3D - 9.69 - 1.31 5.86 7.99 -
DVC [7] C3D 1.62 10.33 25.24 0.73 6.93 12.61 -
SDVC [9] C3D - - - - 6.92 - -
Efficient [37] C3D - - - 1.35 6.21 13.82 -
ECHR [34] C3D 1.96 10.58 39.73 1.29 7.19 14.71 3.22
PDVC light C3D 2.61 10.48 47.83 1.51 7.11 26.21 5.17
PDVC C3D 2.64 10.54 47.26 1.65 7.50 25.87 5.26

MT [31]∗ TSN 2.71 11.16 47.71 1.15 4.98 9.25 -
PDVC TSN 3.07 11.27 52.53 1.78 7.96 28.96 5.44

MDVC [35]∗† I3D+VGGish 1.98 11.07 42.67 1.01 6.86 7.77 -
BMT [36]∗† I3D+VGGish 1.99 10.90 41.85 1.88 7.43 11.94 -
PDVC† I3D+VGGish 3.12 11.26 53.65 1.96 8.08 28.59 5.42

Table 3: Dense captioning on the ActivityNet Captions validation set. B4/M/C is
short for BLEU4/METEOR/CIDEr. ∗ indicates results re-evaluated by the same eval-
uation toolkit. † means results with part of the dataset (9% videos missing).

Method Features B4 M C

Ground-truth proposals
HSE [41] V 9.84 13.78 18.78
MART [42] V+F 10.33 15.68 23.42
VTrans [31] V+F 9.75 15.64 22.16
Trans-XL [43] V+F 10.39 15.09 21.67
GVD [44] V+F+O 11.04 15.71 21.95
GVDsup [44] V+F+O 11.30 16.41 22.94
AdvInf [33] V+F+O 10.04 16.60 20.97
PDVC V+F 11.80 15.93 27.27

Predicted proposals
MFT [40] V+F 10.29 14.73 19.12
PDVC V+F 10.24 15.80 20.45

Table 4: Paragraph captioning on the Activi-
tyNet Captions ae-val set [44]. V/F/O refers to
visual/flow/object features.

The cost ratios in the bipartite matching are αgiou:αcls=2:1
and the loss ratios are βgiou:βcls:βec:βcap=2:1:1:1. We use
Adam [4] optimizer with an initial learning rate of 5e-5 and
the mini-batch size of 1 video.

4.2. Comparison with State-of-the-art Methods

Localization performance. The comparison of event lo-
calization quality is shown in Table 1. SDVC and MFT
generate event proposals by a sophisticated “localize-select-
describe” workflow. In contrast, PDVC removes the hand-
crafted designs in the traditional proposal modules and di-
rectly outputs the proposals in a parallel manner, which
is more efficient to deal with long sequences than recur-
rent counterparts. We surpass MFT by a large margin
and achieve similar (slightly better) performance to SDVC,
which shows the effectiveness of parallel set prediction in
our method. Besides, the choice of the captioning head can
slightly influence the balance of precision and recall.

Dense captioning performance. In Table 3, we list
the performance of state-of-the-art models with cross-
entropy training1 on ActivityNet Captions. With ground-

1A few methods [9, 34] incorporates Reinforcement Learning (RL) [14]
after the cross-entropy training to further boost the performance. Note
that we do not compare with these methods since RL training requires a

truth proposals, PDVC achieves considerable improvement
over the state-of-the-art on BLEU4 and CIDEr, which
shows a deformable transformer plus an LSTM captioner
can give good caption quality. With predicted propos-
als, PDVC with C3D features achieves the best per-
formance on BLEU4/METEOR/CIDEr/SODA c, giving a
22.22%/4.31%/75.87%/63.35% relative improvement over
state-of-the-art scores. We find that PDVC with ground-
truth proposals does not show much superiority over ECHR
on METEOR but surpasses ECHR with predicted propos-
als, indicating the generated proposals of PDVC are much
better. Even with a lightweight LSTM as a captioner,
PDVC light can surpass most two-stage approaches on
BLEU4/CIDEr/SODA c. The reason mainly comes from
the parallel decoding of the captioning head and localiza-
tion head, which helps to generate proposals with high de-
scriptiveness and discriminative internal representation.

Table 2 shows the dense captioning performance on the
YouCook2 validation set. Our method achieve state-of-the-
art performance with a considerable performance gain over
other methods on all metrics.

more complex captioning network (e.g., Hierarchical RNN [27]) and extra-
long training time, which is opposite to the design philosophy of PDVC.
Moreover, RL training tends to produce longer sentences with repeated
phrase [23], lowering the coherence and readability of generated captions.
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Paragraph captioning performance. Table 4 shows the
comparison between PDVC and state-of-the-art paragraph
captioning methods. With ground-truth proposals, PDVC
with a deformable transformer plus an attention-based
LSTM can surpass several transformer-based captioning
models, like MART, VTrans, and Trans-XL, indicating the
strong representation ability of deformable attention in the
encoder-decoder and the LSTM-DSA. It is promising for
PDVC to get a further performance boost by incorporating
a transformer captioner. We leave this for future work.

Even with predicted proposals, we observe PDVC has
a comparable performance with previous methods with
ground-truth proposals, indicating that query features con-
tain rich information covering main segments in videos.
While most previous paragraph captioning methods require
ground-truth annotation at testing, our model reduces the
captioning module’s dependence on accurate proposals by
parallel decoding, raising the possibility of generating good
paragraphs without human annotations of the test video.

Efficiency. We compare the inference time of PDVC
against two-stage methods TDA-CG [24], MT [31] under
the same hardware environment in Table 5. Our methods
are more efficient since: 1) Only a few event proposals with
their captions are predicted in parallel; 2) We do not require
a dense-to-sparse proposal selection like NMS; 3) MSDAtt
is an efficient operator due to the sparse sampling.

4.3. Interaction between Localization & Captioning

In this part, we go deeper into the mutual effect between
two subtasks. It is straightforward that localization can
aid captioning since the localization supervision guides the
query features to specific ground-truth regions, which con-
tains rich semantics matching the target captions. There-
fore, we focus on how captioning task affects proposals’
quality, which is less explored in the previous literature.

Captioning supervision helps generate proposals with
descriptiveness. To better study the quality of proposals
generated by PDVC, we use the same pre-trained event cap-
tioning model [26] to evaluate the descriptiveness of gener-
ated proposals of different models. We also reimplemented
two mainstream proposal generation modules SST and
SST+ESGN for comparison. Both SST and SST+ESGN are
trained with localization loss only, while PDVC is trained
with both localization and captioning loss. As shown in Ta-
ble 6, PDVC achieves a slightly lower F1 score but the best
descriptiveness score among the four models.

We match each generated proposal with one ground-
truth segment with the highest overlap. Fig. 3 demonstrates
the statistics of matching results. Surprisingly, incorporat-
ing caption supervision yields a considerable boost in cap-
tion quality of high-precision proposals (i.e., IOU>0.9).
The reason may be that the captioning head is trained based

Method BAF-CG [24] MT [31] PDVC light PDVC

Time(secs) 2.39 2.05 0.09 0.16

Table 5: Inference speed. We report average inference time
(secs/video) of 100 sampled videos with a single Tesla V100 GPU.

Method Loss #p Rec. Pre. F1 B4 M C

SST [1] loc. 3.00 42.00 60.99 49.74 0.98 6.70 17.34
SST+ESGN [9] loc. 2.79 53.80 61.37 57.33 1.09 6.80 19.67
Ours loc only loc. 3.26 56.35 58.69 57.49 0.98 6.71 19.36
Ours (PDVC) loc.+cap. 3.03 55.42 58.07 56.71 1.24 7.03 21.91

Table 6: Proposal quality with different loss types. Rec./Pre./F1
measures the localization performance, while B4/M/C measures
dense captioning performance. #p is the number of proposals.
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Figure 3: Caption quality vs. IOU. We omit the pairs with IOU<
0.3 (less than 2% of all pairs).

on event query features corresponding to accurate propos-
als, so PDVC learns to enhance the descriptiveness of the
high-precision proposals. The last subfigure shows the IOU
distribution of matched pairs. Most proposals produced
by SST are not very accurate (mainly with 0.5<IOU<0.8).
When further incorporating ESGN for adaptively proposal
selection, the majority of proposals are with 0.6<IOU<0.9.
Ours and Ours loc only achieve a similar IOU distribution
to SST+ESGN, but do not introduce any hand-crafted com-
ponents like anchor generation and NMS.

Generally speaking, descriptiveness is positively corre-
lated to the precision of proposals with an ideal captioner.
However, the performance of existing captioners is still far
from satisfactory, which means they generate wrong or bor-
ing captions for some proposals. To reduce improper cap-
tions of the final results, it is essential to generate not only
location-accurate but caption-aware proposals. Our model
provides an effective solution to explore the mutual benefits
between localization and captioning by parallel decoding.

Captioning supervision helps learn location-aware fea-
tures. Another advantage of parallel decoding is that we
can directly remove the localization head to study the be-
havior of captioning head. We train an event proposal gen-
eration module based on merely captioning supervision, by
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Epoch 1 Epoch 4 Epoch 7 Epoch 10 Epoch 13 Ground-truthInitialization
P:  8.25
R: 13.10

P: 13.11
R: 26.84

P: 12.50
R: 25.02

P: 13.08
R: 26.85

P: 14.24
R: 30.32

P: 13.56
R: 24.14

Figure 4: The distribution of predicted proposals without localization supervision. We plot the predicted proposals of 200 randomly
sampled videos in the YouCook2 validation set. Horizontal and vertical axes represent the re-scaled center position and re-scaled length of
proposals, respectively. Each sub-figure contains 30 clusters with different colors corresponds to 30 input event queries. R and P refer to
recall and precision of the 30 generated proposals, respectively.

Transformer Captioning head
M SODA c

Vanilla Deformable LSTM SA DSA
√ √

6.10 3.06√ √
7.11 5.17√ √ √
6.15 3.40√ √ √
7.50 5.26

(a) Ablating the deformable operations

#q counter Rec. Pre. M SODA c

5
√

57.46 57.10 6.96 5.02
10

√
55.92 57.65 7.11 5.17

30
√

53.35 59.08 7.18 4.90
100

√
51.88 59.27 7.33 4.59

10 × 77.67 44.88 6.62 4.30

(b) Varying query number & event counter

γ Rec. Pre. M SODA c

0.0 48.67 47.35 5.78 5.23
0.5 50.63 50.08 6.59 5.25
1.0 51.52 53.31 7.35 5.02
2.0 55.92 57.65 7.11 5.17
3.0 55.72 57.87 6.90 5.19

(c) Varying γ

Table 7: Ablation studies on the ActivityNet Captions validation set. Subfigure (b) and (c) are based on PDVC light.

making some modifications to the original PDVC to stabi-
lize training, such as fixing the sampling offsets in the de-
coder and using the captioning cost in bipartite matching.
More details can be found in the supplementary material.
After iterative refinement in the decoder, we directly regard
the reference points corresponding to event queries in the
last decoder layer as event proposals. Fig. 4 shows the po-
sition distribution of predicted proposals on YouCook2. We
also report quantitative results such as recall and precision.

As the training epoch increases, proposals’ center tends
to spread uniformly, and the proposals’ length tends to fo-
cus on a relatively small value. Though a noticeable gap
exists between the distributions of predicted proposals and
ground-truth proposals, we see that the predicted propos-
als are gradually approaching the ground truth during train-
ing. The recall/precision at epoch 13 is 30.32/14.24, which
is better than that at initialization (24.14/13.56). Based on
the above findings, we argue that our method can implicitly
capture the location-aware features from caption supervi-
sion, helping the optimization of the event localization.

4.4. Ablation Studies

Deformable components. As shown in Table 7a, when
removing deformable operations from deformable trans-
former or LSTM-DSA, the performance degrades consid-
erably. We conclude that: 1) Adding locality into trans-
former helps to extract temporally-sensitive features for
localization-aware tasks; 2) Focusing on a small segment
around the proposals rather than the whole video helps the
optimization of the event captioning.

Query number & event counter. As shown in Table 7b,

only a few queries are sufficient for good performance. Too
many queries lead to high precision and METEOR, but low
Recall and SODA c. We choose an appropriate query num-
ber for striking a balance of recall and precision. The final
event number also controls the balance of precision and re-
call. The event counter can predict a reasonable number
of event instances, making the generated captions reveal a
whole story in the video.

Length modulation. Table 7c shows that modulating the
caption length (γ>1) obtains a better trade-off between
METEOR & SODA c and Precision & Recall than aver-
aging (γ=1) or summing (γ=0) the word scores.

5. Conclusion
This paper presents PDVC, an end-to-end dense video

captioning framework with parallel decoding, which formu-
lates dense video captioning as a set prediction task. PDVC
directly produces a set of temporally-localized sentences
without a dense-to-sparse proposal generation and selection
process, significantly simplifying the traditional “localize-
then-describe” pipeline. Prediction heads for event local-
ization and event captioning run in parallel to exploit the
inter-task mutual benefits. Experiments on two benchmark
datasets show that PDVC can generate high-quality captions
and surpass state-of-the-art methods.
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