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Abstract

Current semantic segmentation methods focus only on
mining “local” context, i.e., dependencies between pixels
within individual images, by context-aggregation modules
(e.g., dilated convolution, neural attention) or structure-
aware optimization criteria (e.g., IoU-like loss). However,
they ignore “global” context of the training data, i.e., rich
semantic relations between pixels across different images.
Inspired by recent advance in unsupervised contrastive rep-
resentation learning, we propose a pixel-wise contrastive
algorithm for semantic segmentation in the fully supervised
setting. The core idea is to enforce pixel embeddings be-
longing to a same semantic class to be more similar than
embeddings from different classes. It raises a pixel-wise
metric learning paradigm for semantic segmentation, by
explicitly exploring the structures of labeled pixels, which
were rarely explored before. Our method can be effortlessly
incorporated into existing segmentation frameworks with-
out extra overhead during testing. We experimentally show
that, with famous segmentation models (i.e., DeepLabV3,
HRNet, OCR) and backbones (i.e., ResNet, HRNet), our
method brings performance improvements across diverse
datasets (i.e., Cityscapes, PASCAL-Context, COCO-Stuff,
CamVid). We expect this work will encourage our commu-
nity to rethink the current de facto training paradigm in se-
mantic segmentation.

1. Introduction
Semantic segmentation, which aims to infer semantic la-

bels for all pixels in an image, is a fundamental problem
in computer vision. In the last decade, semantic segmenta-
tion has achieved remarkable progress, driven by the avail-
ability of large-scale datasets (e.g., Cityscapes [15]) and
rapid evolution of convolutional networks (e.g., VGG [63],
ResNet [32]) as well as segmentation models (e.g., fully
convolutional network (FCN) [51]). In particular, FCN [51]
is the cornerstone of modern deep learning techniques for
segmentation, due to its unique advantage in end-to-end

*The first two authors contribute equally to this work.

Figure 1: Main idea. Current segmentation models learn to map
pixels (b) to an embedding space (c), yet ignoring intrinsic struc-
tures of labeled data (i.e., inter-image relations among pixels from
a same class, noted with same color in(b)). Pixel-wise contrastive
learning is introduced to foster a new training paradigm (d), by ex-
plicitly addressing intra-class compactness and inter-class disper-
sion. Each pixel (embedding) i is pulled closer ( ) to pixels ( )
of the same class, but pushed far ( ) from pixels ( ) from
other classes. Thus a better-structured embedding space (e) is de-
rived, eventually boosting the performance of segmentation models.

pixel-wise representation learning. However, its spatial in-
variance nature hinders the ability of modeling useful con-
text among pixels (within images). Thus a main stream of
subsequent effort delves into network designs for effective
context aggregation, e.g., dilated convolution[80, 8, 9], spa-
tial pyramid pooling[84], multi-layer feature fusion[58, 47]
and neural attention [35, 24]. In addition, as the widely
adopted pixel-wise cross entropy loss fundamentally lacks
the spatial discrimination power, some alternative optimiza-
tion criteria are proposed to explicitly address object struc-
tures during segmentation network training [40, 2, 86].

Basically, these segmentation models (excluding [37])
utilize deep architectures to project image pixels into a
highly non-linear embedding space (Fig. 1(c)). However,
they typically learn the embedding space that only makes
use of “local” context around pixel samples (i.e., pixel de-
pendencies within individual images), but ignores “global”
context of the whole dataset (i.e., pixel semantic relations
across images). Hence, an essential issue has been long ig-
nored in the field: what should a good segmentation embed-
ding space look like? Ideally, it should not only 1) address
the categorization ability of individual pixel embeddings,
but also 2) be well structured to address intra-class compact-
ness and inter-class dispersion. With regard to 2), pixels
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from a same class should be closer than those from differ-
ent classes, in the embedding space. Prior studies [49, 60]
in representation learning also suggested that encoding in-
trinsic structures of training data (i.e., 2)) would facilitate
feature discriminativeness (i.e., 1)). So we speculate that,
although existing algorithms have achieved impressive per-
formance, it is possible to learn a better structured pixel em-
bedding space by considering both 1) and 2).

Recent advance in unsupervised representation learn-
ing [12, 31] can be ascribed to the resurgence of contrastive
learning – an essential branch of deep metric learning [39].
The core idea is “learn to compare”: given an anchor point,
distinguish a similar (or positive) sample from a set of dis-
similar (or negative) samples, in a projected embedding
space. Especially, in the field of computer vision, the con-
trast is evaluated based on image feature vectors; the aug-
mented version of an anchor image is viewed as a positive,
while all the other images in the dataset act as negatives.

The great success of unsupervised contrastive learning
and our aforementioned speculation together motivate us to
rethink the current de facto training paradigm in semantic
segmentation. Basically, the power of unsupervised con-
trastive learning roots from the structured comparison loss,
which takes the advantage of the context within the training
data. With this insight, we propose a pixel-wise contrastive
algorithm for more effective dense representation learning
in the fully supervised setting. Specifically, in addition to
adopting the pixel-wise cross entropy loss to address class
discrimination (i.e., property 1)), we utilize a pixel-wise
contrastive loss to further shape the pixel embedding space,
through exploring the structural information of labeled pixel
samples (i.e., property 2)). The idea of the pixel-wise con-
trastive loss is to compute pixel-to-pixel contrast: enforce
embeddings to be similar for positive pixels, and dissimilar
for negative ones. As the pixel-level categorical information
is given during training, the positive samples are the pixels
belonging to a same class, and the negatives are the pixels
from different classes (Fig. 1(d)). In this way, the global
property of the embedding space can be captured (Fig.1(e))
for better reflecting intrinsic structures of training data and
enabling more accurate segmentation predictions.

With our supervised pixel-wise contrastive algorithm,
two novel techniques are developed. First, we propose
a region memory bank to better address the nature of se-
mantic segmentation. Faced with huge amounts of highly-
structured pixel training samples, we let the memory store
pooled features of semantic regions (i.e., pixels with a same
semantic label from a same image), instead of pixel-wise
embeddings only. This leads to pixel-to-region contrast,
as a complementary for the pixel-to-pixel contrast strategy.
Such memory design allows us to access more representa-
tive data samples during each training step and fully explore
structural relations between pixels and semantic-level seg-
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Figure 2:Accuracy vs. model size on Cityscapes test [15]. Our
contrastive enables consistent performance improvements over
state-of-the-arts, i.e., DeepLabV3[9], HRNet[65], OCR[81], with-
out bringing any change to base networks during inference.

ments, i.e., pixels and segments belonging to a same class
should be close in the embedding space. Second, we pro-
pose different sampling strategies to make better use of in-
formative samples and let the segmentation model pay more
attention to those segmentation-hard pixels. Previous works
have confirmed that hard negatives are crucial for metric
learning [39, 60, 62], and our study further reveals the im-
portance of mining both informative negatives/positives and
anchors in this supervised, dense image prediction task.

In a nutshell, our contributions are three-fold:
• We propose a supervised, pixel-wise contrastive learning

method for semantic segmentation. It lifts current image-
wise training strategy to an inter-image, pixel-to-pixel
paradigm. It essentially learns a well structured pixel se-
mantic embedding space, by making full use of the global
semantic similarities among labeled pixels.

• We develop a region memory to better explore the large
visual data space and support to further calculate pixel-
to-region contrast. Integrated with pixel-to-pixel contrast
computation, our method exploits semantic correlations
among pixels, and between pixels and semantic regions.

• We demonstrate that more powerful segmentation models
with better example and anchor sampling strategies could
be delivered instead of selecting random pixel samples.
Our method can be seamlessly incorporated into exist-

ing segmentation networks without any changes to the base
model and without extra inference burden during testing
(Fig. 2). Hence, our method shows consistently improved
intersection-over-union segmentation scores over challeng-
ing datasets (i.e., Cityscapes [15], PASCAL-Context [53],
COCO-Stuff[5] and CamVid[3]), using state-of-the-art seg-
mentation architectures (i.e., DeepLabV3 [9], HRNet [65]
and OCR [81]) and standard backbones (i.e., ResNet [32],
HRNet [65]). The impressive results shed light on the
promises of metric learning in dense image prediction tasks.
We expect this work to provide insights into the critical role
of global pixel relationships in segmentation network train-
ing, and foster research on the open issues raised.
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2. Related Work
Our work draws on existing literature in semantic seg-

mentation, contrastive learning and deep metric learning.
For brevity, only the most relevant works are discussed.
Semantic Segmentation. FCN [51] greatly promotes the
advance of semantic segmentation. It is good at end-to-end
dense feature learning, however, only perceiving limited vi-
sual context with local receptive fields. As strong depen-
dencies exist among pixels in an image and these dependen-
cies are informative about the structures of the objects [70],
how to capture such dependencies becomes a vital issue for
further improving FCN. A main group of follow-up effort
attempts to aggregate multiple pixels to explicitly model
context, for example, utilizing different sizes of convolu-
tional/pooling kernels or dilation rates to gather multi-scale
visual cues [80, 84, 8, 9], building image pyramids to extract
context from multi-resolution inputs, adopting the Encoder-
Decoder architecture to merge multi-layer features [58, 47,
66], applying CRF to recover detailed structures [50, 87],
and employing neural attention [67, 29] to directly ex-
change context between paired pixels [10, 35, 36, 24]. Apart
from investigating context-aggregation network modules,
another line of work turns to designing context-aware opti-
mization objectives [40, 2, 86], i.e., directly verify segmen-
tation structures during training, to replace the pixel-wise
cross entropy loss.

Though impressive, these methods only address pixel de-
pendencies within individual images, neglecting the global
context of the labeled data, i.e., pixel semantic correlations
across different training images. Through a pixel-wise con-
trastive learning formulation, we map pixels in different cat-
egories to more distinctive features. The learned pixel fea-
tures are not only discriminative for semantic classification
within images, but also, more crucially, across images.
Contrastive Learning. Recently, the most compelling
methods for learning representations without labels have
been unsupervised contrastive learning [55, 34, 73, 13, 12],
which significantly outperformed other pretext task-based
alternatives [43, 26, 18, 54]. With a similar idea to exemplar
learning [19], contrastive methods learn representations in a
discriminative manner by contrasting similar (positive) data
pairs against dissimilar (negative) pairs. A major branch of
subsequent studies focuses on how to select the positive and
negative pairs. For image data, the standard positive pair
sampling strategy is to apply strong perturbations to create
multiple views of each image data [73, 12, 31, 34, 6]. Neg-
ative pairs are usually randomly sampled, but some hard
negative example mining strategies [41, 57, 38] were re-
cently proposed. In addition, to store more negative sam-
ples during contrast computation, fixed [73] or momentum
updated [52, 31] memories are adopted. Some latest studies
[41, 33, 71] also confirm label information can assist con-
trastive learning based image-level pattern pre-training.

We raise a pixel-to-pixel contrastive learning method for
semantic segmentation in the fully supervised setting. It
yields a new training protocol that explores global pixel re-
lations in labeled data for regularizing segmentation embed-
ding space. Though a few concurrent works also address
contrastive learning in dense image prediction [75, 7, 69],
the ideas are significantly different. First, they typically
consider contrastive learning as a pre-training step for dense
image embedding. Second, they simply use the local con-
text within individual images, i.e., only compute the con-
trast among pixels from augmented versions of a same im-
age. Third, they do not notice the critical role of metric
learning in complementing current well-established pixel-
wise cross-entropy loss based training regime (cf. §3.2).
Deep Metric Learning. The goal of metric learning is to
quantify the similarity among samples using an optimal dis-
tance metric. Contrastive loss [28] and triplet loss [60] are
two basic types of loss functions for deep metric learning.
With a similar spirit of increasing and decreasing the dis-
tance between similar and dissimilar data samples, respec-
tively, the former one takes pairs of sample as input while
the latter is composed of triplets. Deep metric learning [22]
has proven effective in a wide variety of computer vision
tasks, such as image retrieval [64] and face recognition [60].

Although a few prior methods address the idea of metric
learning in semantic segmentation, they only account for the
local content from objects [29] or instances [16, 1, 22, 42]. It
is worth noting [37] also explores cross-image information of
training data, i.e., leverage perceptual pixel groups for non-
parametric pixel classification. Due to its clustering based
metric learning strategy, [37] needs to retrieve extra labeled
data for inference. Differently, our core idea, i.e., exploit
inter-image pixel-to-pixel similarity to enforce global con-
straints on the embedding space, is conceptually novel and
rarely explored before. It is executed by a compact train-
ing paradigm, which enjoys the complementary advantages
of unary, pixel-wise cross-entropy loss and pair-wise, pixel-
to-pixel contrast loss, without bringing any extra inference
cost or modification to the base network during deployment.

3. Methodology
Before detailing our supervised pixel-wise contrastive

algorithm for semantic segmentation (§3.2), we first intro-
duce the contrastive formulation in unsupervised visual rep-
resentation learning and the notion of memory bank (§3.1).

3.1. Preliminaries
Unsupervised Contrastive Learning. Unsupervised vi-
sual representation learning aims to learn a CNN encoder
fCNN that transforms each training image I to a feature vec-
tor v = fCNN(I) ∈ RD, such that v best describes I . To
achieve this goal, contrastive approaches conduct training
by distinguishing a positive (an augmented version of an-
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Figure 3: Detailed illustration of our pixel-wise contrastive learning based semantic segmentation network architecture.

chor I) from several negatives (images randomly drawn
from the training set excluding I), based on the principle
of similarity between samples. A popular loss function for
contrastive learning, called InfoNCE [27, 55], takes the fol-
lowing form:

LNCE
I =− log

exp(v ·v+/τ)

exp(v ·v+/τ)+
∑

v−∈NI
exp(v ·v−/τ) , (1)

where v+ is an embedding of a positive for I , NI contains
embeddings of negatives, ‘·’ denotes the inner (dot) product,
and τ >0 is a temperature hyper-parameter. Note that all the
embeddings in the loss function are `2-normalized.
Memory Bank. As revealed by recent studies [73, 13, 31],
a large set of negatives (i.e., |NI |) is critical in unsupervised
contrastive representation learning. As the number of neg-
atives is limited by the mini-batch size, recent contrastive
methods utilize large, external memories as a bank to store
more navigate samples. Specifically, some methods [73] di-
rectly store the embeddings of all the training samples in
the memory, however, easily suffering from asynchronous
update. Some others choose to keep a queue of the last few
batches [68, 13, 31] as memory. In [13, 31], the stored em-
beddings are even updated on-the-fly through a momentum-
updated version of the encoder network fCNN.

3.2. Supervised Contrastive Segmentation

Pixel-Wise Cross-Entropy Loss. In the context of seman-
tic segmentation, each pixel i of an image I has to be clas-
sified into a semantic class c ∈ C. Current approaches typ-
ically cast this task as a pixel-wise classification problem.
Specifically, let fFCN be an FCN encoder (e.g., ResNet [32]),
that produces a dense feature I ∈ RH×W×D for I , from
which the pixel embedding i∈RD of i can be derived (i.e.,
i ∈ I). Then a segmentation head fSEG maps I into a cat-
egorical score map Y = fSEG(I) ∈ RH×W×|C|. Further let
y = [y1, · · ·, y|C|] ∈ R|C| be the unnormalized score vector
(termed as logit) for pixel i, derived from Y , i.e., y ∈ Y .
Given y for pixel i w.r.t its groundtruth label c̄ ∈ C, the
cross-entropy loss is optimized with softmax (cf. Fig. 3):

LCE
i = −1>c̄ log(softmax(y)), (2)

where 1c̄ denotes the one-hot encoding of c̄, the loga-
rithm is defined as element-wise, and softmax(yc) =

exp(yc)∑|C|
c′=1

exp(yc′ )
. Such training objective design mainly suffers

from two limitations. 1) It penalizes pixel-wise predictions
independently but ignores relationship between pixels [86].
2) Due to the use of softmax, the loss only depends on the
relative relation among logits and cannot directly supervise
on the learned representations [56]. These two issues were
rarely noticed; only a few structure-aware losses are de-
signed to address 1), by considering pixel affinity [40], op-
timizing intersection-over-union measurement [2], or maxi-
mizing the mutual information between the groundtruth and
prediction map [86]. Nevertheless, these alternative losses
only consider the dependencies between pixels within an
image (i.e., local context), regardless of the semantic corre-
lations between pixels across images (i.e., global structure).
Pixel-to-Pixel Contrast. In this work, we develop a pixel-
wise contrastive learning method that addresses both 1) and
2), through regularizing the embedding space and explor-
ing the global structures of training data. We first extend
Eq. (1) to our supervised, dense image prediction setting.
Basically, the data samples in our contrastive loss compu-
tation are training image pixels. In addition, for a pixel i
with its groundtruth semantic label c̄, the positive samples
are other pixels also belonging to the class c̄, while the neg-
atives are the pixels belonging to the other classes C\c̄. Our
supervised, pixel-wise contrastive loss is defined as:

LNCE
i =

1

|Pi|
∑

i+∈Pi

−log
exp(i·i+/τ)

exp(i·i+/τ) +
∑

i−∈Ni
exp(i·i−/τ) , (3)

where Pi andNi denote pixel embedding collections of the
positive and negative samples, respectively, for pixel i. Note
that the positive/negative samples and the anchor i are not
restricted to being from a same image. As Eq. (3) shows, the
purpose of such pixel-to-pixel contrast based loss design is
to learn an embedding space, by pulling the same class pixel
samples close and by pushing different class samples apart.

The pixel-wise cross-entropy loss in Eq. (2) and our con-
trastive loss in Eq. (3) are complementary to each other;
the former lets segmentation networks learn discriminative
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Figure 4: Visualization of features learned with (left) the pixel-
wise entropy loss (i.e.,LCE in Eq. (2)) and (right) our pixel contrast
based optimization objective (i.e., LSEG in Eq. (4)) on Cityscapes
val [15]. Features are colored according to class labels. As seen,
the proposedLSEG begets a well-structured semantic feature space.

pixel features that are meaningful for classification, while
the latter helps to regularize the embedding space with im-
proved intra-class compactness and inter-class separability
through explicitly exploring global semantic relationships
between pixel samples. Thus the overall training target is:

LSEG =
∑

i

(
LCE

i + λLNCE
i

)
, (4)

where λ > 0 is the coefficient. As shown in Fig. 4, the
learned pixel embeddings by LSEG become more compact
and well separated. This suggests that, by enjoying the
advantage of unary cross-entropy loss and pair-wise met-
ric loss, segmentation network can generate more discrim-
inative features, hence producing more promising results.
Quantitative analyses are later provided in §4.2 and §4.3.
Pixel-to-Region Contrast. As stated in §3.1, memory is
a critical technique that helps contrastive learning to make
use of massive data to learn good representations. However,
since there are vast numbers of pixel samples in our dense
prediction setting and most of them are redundant (i.e., sam-
pled from harmonious object regions), directly storing all
the training pixel samples, like traditional memory [12],
will greatly slow down the learning process. Maintaining
several last batches in a queue, like [68, 13, 31], is also not
a good choice, as recent batches only contain a limited num-
ber of images, reducing the diversity of pixel samples. Thus
we choose to maintain a pixel queue per category. For each
category, only a small number, i.e., V , of pixels are ran-
domly selected from each image in the latest mini-batch,
and pulled into the queue, with a size of T � V . In prac-
tice we find this strategy is very efficient and effective, but
the under-sampled pixel embeddings are too sparse to fully
capture image content. Therefore, we further build a region
memory bank that stores more representative embeddings
absorbed from image segments (i.e., semantic regions).

Specifically, for a segmentation dataset with a total of N
training images and |C| semantic classes, our region mem-
ory is built with size |C|×N×D, where D is the dimen-
sion of pixel embeddings. The (c̄, n)-th element in the re-

gion memory is a D-dimensional feature vector obtained
by average pooling all the embeddings of pixels labeled as
c̄ category in the n-th image. The region memory brings
two advantages: 1) store more representative “pixel” sam-
ples with low memory consumption; and 2) allow our pixel-
wise contrastive loss (cf. Eq.(3)) to further explore pixel-to-
region relations. With regard to 2), when computing Eq.(3)
for an anchor pixel i belonging to c̄ category, stored region
embeddings with the same class c̄ are viewed as positives,
while the region embeddings with other classes C\c̄ are neg-
atives. For the pixel memory, the size is |C|×T×D. There-
fore, for the whole memory (denoted asM), the total size
is |C|×(N+T )×D. We examine the design ofM in §4.2.
In the following sections, we will not distinguish pixel and
region embeddings inM, unless otherwise specified.
Hard Example Sampling. Prior research [60, 39, 41, 57,
38] found that, in addition to loss designs and the amount
of training samples, the discriminating power of the training
samples is crucial for metric learning. Considering our case,
the gradient of the pixel-wise contrastive loss (cf. Eq. (3))
w.r.t. the anchor embedding i can be given as:

∂LNCE
i

∂i
=− 1

τ |Pi|
∑

i+∈Pi

(
(1−pi+)·i

+−
∑

i−∈Ni

pi− ·i
−
)
, (5)

where pi+/− ∈ [0, 1] denotes the matching probability be-
tween a positive/negative i+/− and the anchor i, i.e., pi+/−=

exp(i·i+/−/τ)∑
i′∈Pi∪Ni

exp(i·i′/τ) . We view the negatives with dot products

(i.e., i · i−) closer to 1 to be harder, i.e., negatives which
are similar to the anchor i. Similarly, the positives with dot
products (i.e., i·i+) closer to −1 are considered as harder,
i.e., positives which are dissimilar to i. We can find that,
harder negatives bring more gradient contributions, i.e.,
pi− , than easier negatives. This principle also holds true for
positives, whose gradient contributions are 1− pi+. Kalan-
tidis et al. [38] further indicate that, as training progresses,
more and more negatives become too simple to provide sig-
nificant contributions to the unsupervised contrastive loss
(cf. Eq.(1)). This also happens in our supervised setting (cf.
Eq. (3)), for both negatives and positives. To remedy this
problem, we propose the following sampling strategies:

• Hardest Example Sampling. Inspired by hardest negative
mining in metric learning [4], we first design a “hardest
example sampling” strategy: for each anchor pixel em-
bedding i, only sampling top-K hardest negatives and
positives from the memory bankM, for the computation
of the pixel-wise contrastive loss (i.e., LNCE in Eq.(3)).

• Semi-Hard Example Sampling. Some studies propose to
make use of harder negatives, as optimizing with the hard-
est negatives for metric learning likely leads to bad local
minima [60, 74, 23]. Thus we further design a “semi-hard
example sampling” strategy: for each anchor embedding
i, we first collect top 10% nearest negatives (resp. top
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10% farthest positives) from the memory bankM, from
which we randomly then sample K negatives (resp. K
positives) for our contrastive loss computation.

• Segmentation-Aware Hard Anchor Sampling. Rather than
mining informative positive and negative examples, we
develop an anchor sampling strategy. We treat the catego-
rization ability of an anchor embedding as its importance
during contrastive learning. This leads to “segmentation-
aware hard anchor sampling”: the pixels with incorrect
predictions, i.e., c 6= c̄, are treated as hard anchors. For
the contrastive loss computation (cf. Eq. (3)), half of the
anchors are randomly sampled and half are the hard ones.
This anchor sampling strategy enables our contrastive
learning to focus more on the pixels hard for classifica-
tion, delivering more segmentation-aware embeddings.

In practice, we find “semi-hard example sampling” strat-
egy performs better than “hardest example sampling”. In
addition, after employing “segmentation-aware hard anchor
sampling” strategy, the segmentation performance can be
further improved. See §4.2 for related experiments.

3.3. Detailed Network Architecture

Our algorithm has five major components (cf. Fig.3):
• FCN Encoder, fFCN, which maps each input image I into

dense embeddings I = fFCN(I)∈RH×W×D. In our algo-
rithm, any FCN backbones can be used to implement fFCN
and we test two commonly used ones, i.e., ResNet [32]
and HRNet [65], in our experiments.

• Segmentation Head, fSEG, that projects I into a score map
Y =fSEG(I)∈RH×W×|C|. We conduct evaluations using
different segmentation heads in mainstream methods (i.e.,
DeepLabV3 [9], HRNet [65], and OCR [81]).

• Project Head, fPROJ, which maps each high-dimensional
pixel embedding i∈I into a 256-d `2-normalized feature
vector [12], for the computation of the contrastive loss
LNCE. fPROJ is implemented as two 1× 1 convolutional
layers with ReLU. Note that the project head is only ap-
plied during training and is removed at inference time.
Thus it does not introduce any changes to the segmenta-
tion network or extra computational cost in deployment.

• Memory Bank,M, which consists of two parts that store
pixel and region embeddings, respectively. For each train-
ing image, we sample V = 10 pixels per class. For each
class, we set the size of the pixel queue as T =10N . The
memory bank is also discarded after training.

• Joint Loss, LSEG (cf. Eq. (4)), that takes the power of
representation learning (i.e., LCE in Eq. (2)) and metric
learning (i.e., LNCE in Eq. (3)) for more distinct segmen-
tation feature learning. In practice, we find our method is
not sensitive to the coefficient λ (e.g., when λ ∈ [0.1, 1])
and empirically set λ as 1. For LNCE in Eq. (3), we set
the temperature τ as 0.1. For sampling, we find “semi-
hard example sampling” + “segmentation-aware hard an-

chor sampling” performs the best and set the numbers of
sampled instances (i.e., K) as 1,024 and 2,048 for pos-
itive and negative, respectively. For each mini-batch, 50
anchors are sampled per category (half are randomly sam-
pled and the other half are segmentation-hard ones).

4. Experiment
4.1. Experimental Setup
Datasets. Our experiments are conducted on four datasets:
• Cityscapes [15] has 5,000 finely annotated urban scene

images, with 2,975/500/1,524 for train/val/test.
The segmentation performance is reported on 19 chal-
lenging categories, such as person, sky, car, and building.

• PASCAL-Context [53] contains 4,998 and 5,105 images
in train and test splits, respectively, with precise an-
notations of 59 semantic categories.

• COCO-Stuff [5] consists of 10,000 images gathered
from COCO [48]. It is split into 9,000 and 1,000 images
for train and test. It provides rich annotations for 80
object classes and 91 stuff classes.

• CamVid [3] has 367/101/233 images for train/val/
test, with 11 semantic labels in total.

Training. As mentioned in §3.3, various backbones (i.e.,
ResNet [32] and HRNet [65]) and segmentation networks
(i.e., DeepLabV3 [9], HRNet [65], and OCR [81]) are ex-
ploited in our experiments to thoroughly validate the pro-
posed algorithm. We follow conventions [65, 81, 14, 76]
for training hyper-parameters. For fairness, we initialize all
backbones using corresponding weights pretrained on Ima-
geNet [59], with the remaining layers being randomly ini-
tialized. For data augmentation, we use color jitter, hori-
zontal flipping and random scaling with a factor in [0.5, 2].
We use SGD as our optimizer, with a momentum 0.9 and
weight decay 0.0005. We adopt the polynomial annealing
policy [9] to schedule the learning rate, which is multiplied
by (1− iter

total iter )power with power = 0.9. Moreover, for
Cityscapes, we use a mini-batch size of 8, and an initial
learning rate of 0.01. All the training images are augmented
by random cropping from 1024×2048 to 512×1024. For the
experiments on test, we follow [65] to train the model for
100K iterations. Note that we do not use any extra training
data (e.g., Cityscapes coarse [15]). For PASCAL-Context
and COCO-Stuff, we opt a mini-batch size of 16, an initial
learning rate of 0.001, and crop size of 520×520. We train
for 60K iterations over their train sets. For CamVid, we
train the model for 6K iterations, with batch size 16, learn-
ing rate 0.02 and original image size.
Testing. Following general protocol [65, 81, 61], we aver-
age the segmentation results over multiple scales with flip-
ping, i.e., the scaling factor is 0.75 to 2.0 (with intervals of
0.25) times of the original image size. Note that, during
testing, there is no any change or extra inference step intro-

67308



Pixel Contrast Backbone mIoU (%)

Baseline (w/o contrast) HRNetV2-W48 78.1
Intra-Image Contrast HRNetV2-W48 78.9 (+0.8)
Inter-Image Contrast HRNetV2-W48 81.0 (+2.9)

Table 1: Comparison of different contrastive mechanisms on
Cityscapes val [15]. See §4.2 for more details.

Memory Backbone mIoU (%)

Baseline (w/o contrast) HRNetV2-W48 78.1
Mini-Batch (w/o memory) HRNetV2-W48 79.8 (+1.7)

Pixel Memory HRNetV2-W48 80.5 (+2.6)
Region Memory HRNetV2-W48 80.2 (+2.1)

Pixel + Region Memory HRNetV2-W48 81.0 (+2.9)

Table 2: Comparison of different memory bank designs on
Cityscapes val [15]. See §4.2 for more details.

duced to the base segmentation models, i.e., the projection
head, fPROJ, and memory bank,M, are directly discarded.
Evaluation Metric. Following the standard setting, mean
intersection-over-union (mIoU) is used for evaluation.
Reproducibility. Our model is implemented in PyTorch
and trained on four NVIDIA Tesla V100 GPUs with a
32GB memory per-card. Testing is conducted on the same
machine. Our implementations are available at https:
//github.com/tfzhou/ContrastiveSeg.

4.2. Diagnostic Experiment

We first study the efficacy of our core ideas and essen-
tial model designs, over Cityscapes val [15]. We adopt
HRNet [65] as our base segmentation network (denoted as
“Baseline (w/o contrast)” in Tables 1-3). To perform ex-
tensive ablation experiments, we train each model for 40K
iterations while keeping other hyper-parameters unchanged.
Inter-Image vs. Intra-Image Pixel Contrast. We first in-
vestigate the effectiveness of our core idea of inter-image
pixel contrast. As shown in Table 1, additionally con-
sidering cross-image pixel semantic relations (i.e., “Inter-
Image Contrast”) in segmentation network learning leads
to a substantial performance gain (i.e., 2.9%), compared
with “Baseline (w/o contrast)”. In addition, we develop
another baseline, “Intra-Image Contrast”, which only sam-
ples pixels from same images during the contrastive loss
(i.e., LNCE in Eq. (5)) computation. The results in Ta-
ble 1 suggest that, although “Intra-Image Contrast” also
boosts the performance over “Baseline (w/o contrast)” (i.e.,
78.1%→78.9%), “Inter-Image Contrast” is more favored.
Memory Bank. We next validate the design of our mem-
ory bank. The results are summarized in Table 2. Based on
“Baseline (w/o contrast)”, we first derive a variant, “Mini-
Batch w/o memory”: only compute pixel contrast within
each mini-batch, without outside memory. It gets 79.8%
mIoU. We then provision this variant with pixel and region
memories separately, and observe consistent performance
gains (79.8% → 80.5% for pixel memory and 79.8% →

Sampling
Anchor Pos./Neg.

Backbone mIoU (%)

Baseline (w/o contrast) HRNetV2-W48 78.1
Random HRNetV2-W48 79.3 (+1.2)

Random Hardest HRNetV2-W48 79.4 (+1.3)
Semi-Hard HRNetV2-W48 80.1 (+2.0)

Seg.-aware
hard

Random HRNetV2-W48 80.2 (+2.1)
Hardest HRNetV2-W48 80.5 (+2.4)

Semi-Hard HRNetV2-W48 81.0 (+2.9)

Table 3: Comparison of different hard example sampling
strategies on Cityscapes val [15]. See §4.2 for more details.

80.2% for region memory). This verifies that i) leveraging
more pixel samples during contrastive learning leads to bet-
ter pixel embeddings; and ii) both pixel-to-pixel and pixel-
to-region relations are informative cues. Finally, after us-
ing both the two memories, a higher score (i.e., 81.0%) is
achieved, revealing i) the effectiveness of our memory de-
sign; and ii) necessity of comprehensively considering both
pixel-to-pixel contrast and pixel-to-region contrast.
Hard Example Mining. Table 3 presents a comprehensive
examination of various hard example mining strategies pro-
posed in §3.2. Our main observations are the following: i)
For positive/negative sampling, mining meaningful pixels
(i.e., “hardest” or “semi-hard” sampling), rather than “ran-
dom” sampling, is indeed useful; ii) Hence, “semi-hard”
sampling is more favored, as it improves the robustness of
training by avoiding overfitting outliers in the training set.
This corroborates related observations in unsupervised set-
ting [72] and indicates that segmentation may benefit from
more intelligent sample treatment; and iii) For anchor sam-
pling, “seg.-aware hard” strategy further improves the per-
formance (i.e., 80.1%→81.0%) over “random” sampling
only. This suggests that exploiting task-related signals in
supervised metric learning may help develop better segmen-
tation solutions, which has remained relatively untapped.

4.3. Comparison to State-of-the-Arts

Cityscapes [15]. Table 4 lists the scores on Cityscapes
test, under two widely used training settings [65] (trained
over train or train+val). Our method brings impres-
sive gains over 3 strong baselines (i.e., DeepLabV3, HR-
NetV2, and OCR), and sets a new state-of-the-art.
PASCAL-Context [53]. Table 5 presents comparison re-
sults on PASCAL-Context test. Our approach improves
the performance of base networks by solid margins (i.e.,
54.0→55.1 for HRNetV2, 56.2→57.2 for OCR). This is
particularly impressive considering the fact that improve-
ment on this extensively-benchmarked dataset is very hard.
COCO-Stuff [5]. Table 6 reports performance compari-
son of our method against seven competitors on COCO-
Stuff test. As we find that OCR+Ours yields a mIoU
of 41.0%, which leads to a promising gain of 0.5% over its
counterpart (i.e., OCR with a 40.5% mIoU). Besides, HR-
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Figure 5: Visual comparisons between OCR [81] and OCR+Ours (from left to right: Cityscapes, PASCAL-Context, COCO-Stuff).

Model Backbone mIoU (%)

Model learned on Cityscapes train
PSPNet17 [84] D-ResNet-101 78.4
PSANet18 [85] D-ResNet-101 78.6

PAN18 [44] D-ResNet-101 78.6
AAF18 [40] D-ResNet-101 79.1

DeepLabV317 [9] D-ResNet-101 78.1
DeepLabV3 + Ours D-ResNet-101 79.2 (+1.1)

HRNetV220 [65] HRNetV2-W48 80.4
HRNetV2+ Ours HRNetV2-W48 81.4 (+1.0)

Model learned on Cityscapes train+val
DFN18 [79] D-ResNet-101 79.3

PSANet18 [85] D-ResNet-101 80.1
SVCNet19 [17] D-ResNet-101 81.0

CPN20 [77] D-ResNet-101 81.3
DANet19 [24] D-ResNet-101 81.5

ACF19 [82] D-ResNet-101 81.8
DGCNet19 [83] D-ResNet-101 82.0

HANet20 [14] D-ResNet-101 82.1
ACNet19 [25] D-ResNet-101 82.3

DeepLabV317 [9] D-ResNet-101 79.4
DeepLabV3 + Ours D-ResNet-101 80.3 (+0.9)

HRNetV220 [65] HRNetV2-W48 81.6
HRNetV2+ Ours HRNetV2-W48 82.5 (+0.9)

OCR20 [81] HRNetV2-W48 82.4
OCR+ Ours HRNetV2-W48 83.2 (+0.8)

Table 4: Quantitative segmentation results on Cityscapes
test [15]. D-ResNet-101 = Dilated ResNet-101. See §4.3.

Model Backbone mIoU (%)

DANet19 [24] D-ResNet-101 52.6
SVCNet19 [17] D-ResNet-101 53.2

CPN20 [77] D-ResNet-101 53.9
ACNet19 [25] D-ResNet-101 54.1

DMNet19 [30] D-ResNet-101 54.4
RANet20 [61] ResNet-101 54.9

DNL20 [76] HRNetV2-W48 55.3

HRNetV220 [65] HRNetV2-W48 54.0
HRNetV2+ Ours HRNetV2-W48 55.1 (+1.1)

OCR20 [81] HRNetV2-W48 56.2
OCR+ Ours HRNetV2-W48 57.2 (+1.0)

Table 5: Quantitative segmentation results on PASCAL-Context
test [53]. D-ResNet-101 = Dilated ResNet-101. See §4.3.

NetV2+Ours outperforms HRNetV2 by 0.6%.
CamVid [3]. Table 7 shows that our method also leads to
improvements over HRNetV2 and OCR on CamVid test.
Qualitative Results. Fig. 5 depicts qualitative comparisons
of OCR+Ours against OCR over representative examples

Model Backbone mIoU (%)

SVCNet19 [17] D-ResNet-101 39.6
DANet19 [24] D-ResNet-101 39.7
SpyGR20 [46] ResNet-101 39.9
ACNet19 [25] ResNet-101 40.1

HRNetV220 [65] HRNetV2-W48 38.7
HRNetV2+ Ours HRNetV2-W48 39.3 (+0.6)

OCR20 [81] HRNetV2-W48 40.5
OCR+ Ours HRNetV2-W48 41.0 (+0.5)

Table 6: Quantitative segmentation results on COCO-Stuff
test [5]. D-ResNet-101 = Dilated ResNet-101. See §4.3.

Model Backbone mIoU (%)

DFANet19 [45] Xception 64.7
BiSeNet18 [78] D-ResNet-101 68.7
PSPNet17 [84] D-ResNet-101 69.1

HRNetV220 [65] HRNetV2-W48 78.5
HRNetV2+ Ours HRNetV2-W48 79.0 (+0.5)

OCR20 [81] HRNetV2-W48 80.1
OCR+ Ours HRNetV2-W48 80.5 (+0.4)

Table 7: Quantitative segmentation results on CamVid
test [3]. D-ResNet-101=Dilated ResNet-101. See §4.3.

from three datasets (i.e., Cityscapes, PASCAL-Context and
COCO-Stuff). As seen, our method is capable of producing
more accurate segments across various challenge scenarios.

5. Conclusion and Discussion

In this paper, we propose a new supervised learning
paradigm for semantic segmentation, enjoying the com-
plementary advantages of unary classification and struc-
tured metric learning. Through pixel-wise contrastive learn-
ing, it investigates global semantic relations between train-
ing pixels, guiding pixel embeddings towards cross-image
category-discriminative representations that eventually im-
prove the segmentation performance. Our method gener-
ates promising results and shows great potential in a variety
of dense prediction tasks, such as pose estimation [89, 21]
and body parsing [88, 20]. It also comes with new chal-
lenges, in particular regarding smart data sampling, metric
learning loss design, class rebalancing during training, and
multi-layer feature contrast. Given the massive number of
technique breakthroughs over the past few years, we expect
a flurry of innovation towards these promising directions.
Acknowledgment This work was supported by Zhejiang Lab’s
Open Fund (No. 2020AA3AB14) and CCF-Baidu Open Fund.
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