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Abstract

In this paper, we abandon the dominant complex lan-
guage model and rethink the linguistic learning process in
the scene text recognition. Different from previous meth-
ods considering the visual and linguistic information in two
separate structures, we propose a Visual Language Mod-
eling Network (VisionLAN), which views the visual and lin-
guistic information as a union by directly enduing the vision
model with language capability. Specially, we introduce the
text recognition of character-wise occluded feature maps in
the training stage. Such operation guides the vision model
to use not only the visual texture of characters, but also the
linguistic information in visual context for recognition when
the visual cues are confused (e.g. occlusion, noise, etc.).
As the linguistic information is acquired along with visual
features without the need of extra language model, Vision-
LAN significantly improves the speed by 39% and adap-
tively considers the linguistic information to enhance the
visual features for accurate recognition. Furthermore, an
Occlusion Scene Text (OST) dataset is proposed to eval-
uate the performance on the case of missing character-
wise visual cues. The state of-the-art results on several
benchmarks prove our effectiveness. Code and dataset are
available at https://github.com/wangyuxin87/
VisionLAN .

1. Introduction

As a fundamental and pivotal task, scene text recog-
nition (STR) aiming to read the text content from natu-
ral images has attracted great interest in computer vision
[15, 31, 32, 42, 46]. By taking the text image as input
and textual prediction as output, some early methods regard
the text recognition as a symbol classification task [31, 19].

*Corresponding author

Figure 1. Comparison between previous methods and ours. Top
left: the architecture of previous methods. Top right: the ex-
tra introduced computation cost for capturing linguistic informa-
tion when the word length increases. Bottom: the proposed Vi-
sionLAN endues the vision model with ability to initiatively cap-
ture the linguistic information in visual context during the training
stage. In the testing stage, only the vision model is used for pre-
diction.

However, it is hard to recognize images with confused vi-
sual cues (e.g. occlusion, noise, etc.), which are beyond vi-
sual discrimination. As the scene text image contains two-
level contents: visual texture and linguistic information, in-
spired by the Natural Language Processing (NLP) methods
[23, 5], recent STR works have shifted their research fo-
cus to acquiring linguistic information to assist recognition
[47, 46, 28, 45]. Thus, the two-step architecture of vision
and language models (top left of Fig. 1) is popular in recent
methods. Specifically, the vision model only focuses on vi-
sual texture of characters without considering the linguistic
information. Then, the language model predicts the rela-
tionship between characters through the linguistic learning
structure (RNN [32], CNN [7] and Transformer [45]).

Though these methods achieve promising results, there
are still two problems: 1) the extra huge computation
cost. The computation cost of language model increases
significantly with the word length getting longer (linear
growth for RNN [32]/ CNN [7] and quadratic growth for
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Transformer [45] in Fig. 1). Furthermore, many methods
adopt a deep bi-directional reasoning architecture [38, 45,
32] to capture more robust linguistic information, which
further doubles the computation burden and greatly limits
their efficiency in the real application. 2) The difficulty of
aggregating two independent information. It is difficult
to comprehensively consider and effectively fuse the visual
and linguistic information from two separate structures for
accurate recognition [7, 46]. In this paper, we attribute these
two problems to the lack of language ability in the vision
model, which only focuses on the visual texture of charac-
ters without initiatively learning linguistic information [45].
As shown in bottom of Fig. 1, inspired by the human cog-
nitive process that the language capability can be acquired
[21, 11], we use vision model as the basic network, and
guide it to reason the occluded character during the training
stage. Thus, vision model is trained to initiatively learn lin-
guistic information in the visual context. In the test stage,
vision model adaptively considers the linguistic information
in the visual space for feature enhancement when the visual
cues are confused (e.g. occlusion, noise, etc.), which ef-
fectively supplements the features of occluded characters,
and correctly highlights the discriminating visual cues of
confused characters (shown in Fig. 5). To the best of our
knowledge, this is the first work to give vision model the
ability to perceive language in scene text recognition. We
call this new simple architecture as Visual Language Mod-
eling Network (VisionLAN).

The pipeline of VisionLAN is shown in Fig. 2. Vi-
sionLAN contains three parts: backbone network, Masked
Language-aware Module (MLM) and Visual Reasoning
Module (VRM). In the training stage, visual features V
are firstly extracted from the backbone network. Then
MLM takes the visual features V and character index P
as inputs, and automatically generates the character mask
map Maskc at corresponding position through a Weakly-
supervised Complementary Learning. MLM aims to simu-
late the case of missing character-wise visual cues by oc-
cluding visual messages in V with Maskc. In order to
consider the linguistic information during the visual texture
modeling, we propose a VRM with the ability to capture
long-range dependencies in the visual space. VRM takes
the occluded feature map Vm as input, and is guided to make
the word-level prediction. In the test stage, we remove the
MLM and only use VRM for recognition. As the linguistic
information is acquired along with visual features without
the need of extra language model, VisionLAN introduces
ZERO computation cost for capturing linguistic informa-
tion (top right in Fig. 1) and significantly improves the
speed by 39% (Sec. 4.4). Compared with previous methods,
the proposed VisionLAN obtains more robust performance
on the occluded and low-quality images, and achieves new
state-of-the-art results on several benchmarks with a con-

cise pipeline. In addition, an Occlusion Scene Text (OST)
dataset is proposed to evaluate the performance on the case
of missing character-wise visual cues.

The main contributions of this paper are as follows: 1) A
new simple architecture is proposed for scene text recogni-
tion. We further visualize the feature maps to illustrate how
VisionLAN initiatively uses linguistic information to handle
the confused visual cues (e.g. occluded, noise, etc.). 2) We
propose a Weakly-supervised Complementary Learning to
generate accurate character-wise mask map in MLM with
only word-level annotations. 3) A new Occlusion Scene
Text (OST) dataset is proposed to evaluate the recognition
performance of occluded images. Compared with previ-
ous methods, VisionLAN achieves the state-of-the-art per-
formance on seven benchmarks (irregular and regular) and
OST with a concise pipeline.

2. Related Work
2.1. Scene Text Recognition

Scene text recognition (STR) has been a long-term re-
search topic in computer vision [42, 47, 7]. With deep learn-
ing becoming the most promising machine learning tool
[35, 40, 41, 8, 17, 20], significant progress has been made
in the past few years for STR research [28, 24]. In this sec-
tion, we divide these methods into two categories according
to whether linguistic rules are used, namely language-free
methods and language-aware methods.

Language-free methods [42, 48, 31, 19] view STR as a
visual classification task and mainly rely on the visual infor-
mation for prediction. CRNN [31] extracts sequential visual
features through combined CNN and RNN, then a Connec-
tionist Temporal Classication (CTC) [9] decoder is used to
maximize the probability of all the paths for final prediction.
Patel et al. [27] automatically generate the custom lexicon
for an image to greatly boost the performance of text read-
ing systems. Zhang et al. [48] regard text recognition as
a visual matching task. They calculate the similarity map
between visual features of input image and the pre-defined
alphabet to predict the text sequence. Liao et al. [18] re-
gard the text recognition as a pixel-wise classification task.
Similarly, Textscanner [36] further proposes an order map
to ensure a more accurate transcription from characters to
the word. In general, the language-free methods ignore lin-
guistic rules in the recognition process, which usually fail
to recognize images with confused visual cues (e.g. blur,
occlusion, etc.).

Language-aware methods [16, 4, 47, 43] try to leverage
linguistic rules to assist the recognition process. Lee et al.
[15] use RNNs to automatically learn the sequential dy-
namics in word strings without manually defining N-grams.
Aster [32] firstly uses a rectification module before recog-
nition, and then adopts RNNs to model the linguistic infor-
mation by using the character predicted from the last time
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Figure 2. The pipeline of the proposed VisionLAN. VisionLAN mainly contains three parts: backbone network, Masked Language-aware
Module (MLM) and Visual Reasoning Module (VRM). MLM is only used in training stage.

step. However, such serial and time-dependent operation
in RNN limits the computation efficiency and the perfor-
mance of semantic reasoning [45]. Thus, SRN [45] pro-
poses a global semantic reasoning module based on trans-
former units [35] for pure language modeling, which takes
the prediction of vision model as input and predicts the rela-
tionships among characters to refine the recognition results.
Fang et al. [7] design a completely CNN-based architec-
ture for both vision and language modeling. Though these
methods achieve promising results on scene text recogni-
tion task, the additionally introduced language model will
significantly increase the computation cost. Furthermore,
it is also difficult to comprehensively consider and effec-
tively fuse the independent visual and linguistic information
in the two-step architecture for accurate recognition [7, 46].
Different from previous methods considering the visual and
linguistic information in two separate structures, we directly
endue the vision model with language ability and propose a
VisionLAN to view the two information as a union. Thus, it
is possible to enhance the confused visual cues by capturing
linguistic information in the visual context.

2.2. Masking and Prediction.

BERT [5] introduces a cloze task to mask the tokens
of input sentence, which is used to learn a robust bi-
directional representation based on the context. Follow-
ing [5], some works use a similar concept to handle the
vision-and-language task [34, 1, 22]. ViLBERT [22] uses a
two stream model to process visual and textual inputs, and
pre-trains their model through the two proxy tasks. Su et
al. [34] propose a general structure to fit for most visual-
linguistic downstream tasks, which takes both visual and
linguistic features as input. As the STR datasets are weakly
labeled with word-level annotations, it is difficult to di-
rectly implement these masking approaches in STR task.
Different from these methods that mask in token or image
patch level, in this paper, we propose a Weakly-supervised

Complementary Learning to automatically mask the input
image in the feature level. Thus, VisionLAN learns lin-
guistic information from a new perspective by guiding the
model to make word-level prediction on the case of missing
character-wise visual cues.

3. Proposed Method
The VisionLAN is an end-to-end trainable framework

with three parts containing: backbone network, Masked
Language-aware Module (MLM) and Visual Reasoning
Module (VRM). In this section, we first detail the pipeline
of proposed method in Sec. 3.1, and then we introduce
MLM and VRM in Sec. 3.2 and Sec. 3.3 respectively.

3.1. Pipeline
The pipeline of VisionLAN is shown in Fig. 2. In the

training stage, given an input image, the 2D features V are
firstly extracted from backbone network. Then, MLM takes
extracted features V and character index P as inputs, and
generates the position-aware character mask map Maskc
through the Weakly-Supervised Complementary Learning.
Maskc is used to occlude the character-wise visual mes-
sages in V to simulate the case of missing character-wise
visual semantics. After that, VRM takes occluded feature
map Vm as input and makes prediction under the complete
word-level supervision. In the testing stage, we remove
MLM and only use VRM for prediction.

3.2. Masked Language-aware Module
In order to occlude the character-wise visual cues for

the guidance of linguistic learning, we propose a Masked
Language-aware Module (MLM) to automatically generate
the character-wise mask map with only original word-level
annotations.

As shown in Fig. 3, MLM takes visual features V and the
character index P as inputs. Character index P ∈ [1, Nw]
indicates the index of the occluded character, which is ran-
domly obtained for each input word image with length Nw.
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Figure 3. The architecture of MLM. MLM takes the visual features
V and the character index P as inputs to automatically generate
character mask map Maskc. CE loss means the cross-entropy
loss.

Then the transformer unit [35] is used to improve the feature
representation ability. Finally, after integrating with charac-
ter index information, the character mask map Maskc is
obtained through a sigmoid layer, which is used to generate
the occluded feature map Vm in Fig. 2.

To guide the learning process of Maskc, two paral-
lel branches are designed based on the Weakly-supervised
Complementary Learning (WCL). WCL aims to guide
Maskc to cover more area of the occluded character, which
complementarily makes 1 − Maskc contain more region
of other characters. In the first branch, we implement the
element-wise product between V and Maskc to generate
the feature map Vmas containing visual semantics of the
occluded character (e.g. character “b” in the word “burns”
with character index 1 in Fig. 3). In contrast, the element-
wise product between V and 1 − Maskc in the second
branch is used to generate the feature map Vrem contain-
ing visual semantics of other characters (e.g. string “urns”
in the word “burns” in Fig. 3). By doing these, the comple-
mentary learning process guides the Maskc to only cover
the character at corresponding position without overlapping
other characters (shown in Fig. 7). We share the weights of
transformer unit and prediction layer (Eq. 1) among two
parallel branches for the feature representation enhance-
ment and semantic guidance. Vin ∈ Rhw×c is the feature
map and Att ∈ Rhw×N is the attention map, where c = 512
is the channel number, N = 25 is the max time step, h and
w are the height and width. Oc is positional encoding [35]
of character orders. W1, W2, W3 are trainable weights and
t is the time step.

pt = AttTt Vin (1)

Att = Softmax(G(Vin)) (2)

G(Vin) = W1tanh(W2Oc +W3Vin) (3)

Figure 4. The architecture of VRM. CE loss is cross-entropy loss.

Compared with BERT [5], though both approaches mask
out the information in a certain time step, the proposed
MLM masks the visual features in the 2d spatial space in-
stead of covering token-level information. Furthermore, as
STR datasets are weakly labeled, it is difficult to obtain
the accurate character-wise pixel-level annotations. Thus,
it is impractical to directly implement BERT-based meth-
ods [34, 1, 22] into STR task. Based on these, MLM helps
the model to learn linguistic information from a new per-
spective, which can not be replaced by exiting masking ap-
proaches.

The supervisions of WCL are automatically obtained by
using the original word-level annotation and randomly gen-
erated character index (detailed in Sec. 4). Thus, MLM
automatically generates accurate character mask map with-
out the need of additional annotations, making it possible
for the real application.

3.3. Visual Reasoning Module

Different from previous methods capturing the visual
and linguistic information in the two-step architecture, we
propose the Visual Reasoning Module (VRM) to model
the two information simultaneously in a unified structure.
As a pure vision-based structure, VRM aims to reason the
word-level prediction from occluded features by using the
character-wise information in the visual context.

The details of VRM is shown in Fig. 4, it contains two
parts: Visual Semantic Reasoning (VSR) layer and Parallel
Prediction (PP) layer. VSR layer consists of N transformer
units [35], which are proved to be effective for modeling
long-range dependencies in recent computer vision tasks
[2, 24]. Specially, position encoding is used to perceive the
pixel location information. Different from [45] using trans-
former units for pure language modeling, the transformer
units in the proposed VRM are used for sequence modeling,
which will not be influenced by length of the word. Then,
the PP layer is designed to predict the characters in parallel,
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Figure 5. The visualization of features generated from VSR layer
and the corresponding prediction result. Top: input image. Mid-
dle: model implemented without MLM. Bottom: our VisionLAN.

which has identical formulation as Eq. 1.
In order to achieve the language modeling process yi =

f(yN , ..., yi+1, yi−1, ..., y1), the reasoning process of the
ith character yi needs to purely depend on the information
of other characters. As MLM accurately occludes the char-
acter information in the training stage, VSR layer is guided
to predict the dependencies between visual features of char-
acters to infer the semantics of occluded character. Thus,
with the word-level supervision, VSR layer learns to initia-
tively model the linguistic information in visual context to
assist recognition. In the testing stage, VSR layer is able
to adaptively consider the linguistic information for visual
feature enhancement when the current visual semantics are
confused (e.g. occlusion, noise, etc.).

We visualize the feature maps generated from VSR layer
in testing to better understand how the learned linguistic in-
formation improves the recognition performance. As shown
in Fig. 5, VSR layer effectively supplements the semantics
of occluded character “r” in the word “better”, and correctly
highlights the discriminating visual cues of character “t”
in the word “trans” with the help of linguistic information
in visual context. Without the initiative linguistic learning
guided by MLM, VRM wrongly predicts the input images
as “bettep” and “rrans”.

3.4. Training Objective

The final objective function of the proposed method is
formulated in Eq. 4. Lrec is loss in VRM, and Lmas &
Lrem are losses for predicting masked character and other
characters in MLM respectively. λ1 and λ2 are used to bal-
ance the losses. Specially, we set λ1 = λ2 = 0.5, and use
cross-entropy loss formulated in Eq. 5 for Lrec, Lmas and
Lrem. pt and gt represent the prediction and ground truth.
We set N to 25 in our experiments.

L = Lrec + λ1Lmas + λ2Lrem (4)

L∗ = − 1

N

N∑
t=1

log(pt|gt) (5)

4. Experiment
4.1. Datasets

We conduct experiments following the setup of [45]
in the purpose of fair comparison. The training datasets

are SynthText (ST) [10] and SynthText90K (90K) [12].
The performance is evaluated on 6 benchmarks contain-
ing IIIT 5K-Words (IIIT5K) [25], ICDAR2013 (IC13) [14],
ICDAR2015 (IC15) [13], Street View Text (SVT) [37],
Street View Text-Perspective (SVTP) [29] and CUTE80
(CT) [30]. Details of above 6 datasets can be found in pre-
vious works [45, 28].

In addition, we provide a new Occlusion Scene Text
(OST) dataset to reflect the ability for recognizing cases
with missing visual cues. This dataset is collected from 6
benchmarks (IC13, IC15, IIIT5K, SVT, SVTP and CT) con-
taining 4832 images. Images in this dataset are manually
occluded in weak or heavy degree (shown in Fig. 6). Weak
and heavy degrees mean that we occlude the character using
one or two lines. For each image, we randomly choose one
degree to only cover one character. More examples of OST
are shown in the supplementary materials.

4.2. Implementation Details

We use the ResNet45 [32, 38, 28] as our backbone. Par-
ticularly, we set the stride to 2 in stage 2,3,4 and initialize
the weights by default. Following the most recent works
[45, 28], we set the image size to 256 × 64 (there is no
obvious difference with the size of 128 × 32 in our ex-
periments). Data augmentation including random rotation,
color jittering and perspective distortion. We conduct the
experiments on 4 NVIDIA V100 GPUs with batch size 384.
The network is trained end-to-end using Adam optimizer
with learning rate 1e-4. The recognition covers 37 charac-
ters including a-z, 0-9, and an end-of-sequence symbol.

Following [45], we divide the training process into 2
steps: language-free (LF) step and language-aware (LA)
step. It is worth mentioning that we control the total number
of training sessions to be consistent with existing methods
for fair comparison. 1) In LF step, we split the connection
between MLM and VRM (V = Vm in Fig. 2) to guarantee
a more stable learning process of both modules. VRM in
this step will not acquire the language capability and only
uses visual texture for prediction. 2) In LA step, Maskc
generated from MLM is used to occlude the feature map V
to guide the learning of linguistic rules in VRM. Specifi-
cally, we control the ratio of occluded number in a batch,
which aims to balance the cases with rich or weak visual
information during the training stage.

As all the training images have word-level annotations,
we randomly generate the character index based on the
length of word, and use this index and the original word-
level annotation to generate the labels for MLM (e.g. when
index is 4 and word is “house”, the labels are “s” and “houe”
respectively). The label generating process is automatic
without manual intervention, making it easy to finetune our
model on other datasets.
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Table 1. Ablation study about the occluded number ratio of one
batch in the MLM during the training stage.

Ratio IIIT5K IC13 SVT IC15 SVTP CT
Baseline 94.5 94.2 89.3 79.8 81.1 85.8
1:2 95.0 94.8 90.4 80.8 83.0 88.0
1:1 95.4 95.0 91.0 81.8 83.7 88.2
2:1 95.0 94.7 90.0 81.1 82.7 88.1

Table 2. Ablation study of the WCL. “Mas only” and “Rem only”
means that we only implement the 1st or the 2nd branch in MLM.

Methods IIIT5K IC13 SVT IC15 SVTP CT
Mas only 94.8 94.7 89.8 81.7 82.3 87.2
Rem only 95.2 94.8 89.9 81.1 82.2 88.0
WCL 95.4 95.0 91.0 81.8 83.7 88.2

Table 3. The comparisons between MLM and other masking meth-
ods. Average accuracy is calculated from 6 benchmarks. We set
cutout patch to h×w/10 and dropout value to 0.1. The results are
compared under the same training sessions.

Methods Average accuracy(%)
Baseline 88.8
Dropout [33] 89.0
Cutout [6] 89.0
MLM 90.2

Table 4. Ablation study about the ability of linguistic information
capturing in VRM. “2L” means two transformer units are used.

Methods IIIT5K IC13 SVT IC15 SVTP CT
VRM-2L 95.4 95.0 91.0 81.8 83.7 88.2
VRM-3L 95.8 95.7 91.7 83.7 86.0 88.5

4.3. Ablation Study

We illustrate the effectiveness of proposed modules in
this section. To be specific, baseline contains VRM with
two transformer units in Tab. 1& 2& 3.

The effectiveness of MLM. The proposed MLM aims to
guide the linguistic learning process in the VRM. We con-
duct several experiments to evaluate its effectiveness in Tab.
1. The baseline model is implemented without MLM. We
change the ratio of occluded number in a batch to study
its influence to the recognition performance (e.g. when the
batch size is 128, ratio = 1:3 means that we use Maskc to
occlude V for only 32 samples in 1 batch, and feature maps
of the rest 96 samples remain unchanged). As shown in Tab.
1, the proposed MLM significantly improves the perfor-
mance of baseline model when the ratio ranges from 1:2 to
2:1. For the irregular datasets (IC15, SVTP, CT) containing
amounts of images with confused visual cues (blur, occlu-
sion, noise, etc.), the proposed MLM improves the baseline
model at least 2% in accuracy with ratio =1:1, which fur-
ther demonstrates that the initiative linguistic learning pro-
cess effectively helps the vision model to handle confused
visual cues. For regular datasets, the improvement is also

considerable (0.9%, 0.8%, and 1.7% on IIIT5K, IC13 and
SVT datasets respectively). When the ratio raises up to 2:1,
the performance drops slightly. We infer that the large value
of ratio will break the balance between cases with rich and
weak visual cues during the training process. Therefore, we
set the value of ratio to 1:1 in the rest experiments.

The effectiveness of WCL. To demonstrate the effec-
tiveness of proposed Weakly-supervised Complementary
Learning in MLM, we conduct several experiments imple-
mented with only the first branch (occluded character) or
the second branch (remaining string). As shown in Tab. 2,
MLM implemented with the complementary learning pro-
cess obtains better results than the methods only guiding the
semantics of occluded character or remaining string during
the training stage.

Compared with other masking methods. We compare
MLM with [6, 33] to evaluate our effectiveness in language
modeling. All the modules only work on V for fair com-
parison. As shown in Tab. 3, the proposed MLM signifi-
cantly improves the recognition results (1.4% vs 0.2%). As
detailed in Sec. 3.3, the reasoning process of the ith char-
acter needs to purely depend on the information of other
characters without containing current character-wise infor-
mation. Thus, randomly masking pixel-wise feature [6, 33]
does not have the ability of linguistic learning. Benefiting
from the well-designed architecture and ingenious weakly
supervised learning, MLM accurately localizes character-
wise visual cues, which has the ability to guide the linguistic
learning process in VRM.

The effectiveness of VRM. To study the relationship be-
tween the recognition performance and the ability of captur-
ing linguistic information, we compare the results of models
implemented with different number of transformer units in
VSR layer. As shown in Tab. 4, VRM implemented with
three transformer units further improves the performance,
which has the stronger language capability.

4.4. Comparisons with State-of-the-Arts

We compare our method with previous state-of-the-art
methods on 6 benchmarks in Tab. 5. We simply divide the
methods into language-free and language-aware methods
according to whether linguistic information are used. The
language-aware methods perform better than language-free
methods in general. Benefiting from adaptively consider-
ing the linguistic information for feature enhancement, the
proposed VisionLAN achieves state-of-the-art performance
across the 6 public datasets compared with both language-
free and language-aware methods. Specifically, for regu-
lar datasets, the proposed VisionLAN obtains 1%, 0.2%
and 0.2% improvement on IIIT5K, IC13 and SVT datasets
respectively. For irregular datasets, the increases are 1%,
0.9% and 0.7% on IC15, SVTP and CT respectively.
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Table 5. Results on IIIT5K, IC13, SVT, IC15, SVTP and CUTE datasets. Following [28, 45], all the results are under NONE lexicon.
Lan-free and Lan-aware are shorts for language-free and language-aware methods. “Annos” is short for annotations. “char” and “word”
mean character-level and word-level annotations are used in the training stage. Baseline contains VRM with three transformer units.

Methods Training Data Annos IIIT5K IC13 SVT IC15 SVTP CT

Lan-free
CTC [31] 90K word 81.2 89.6 82.7 - - -
ACE [42] 90K word 82.3 89.7 82.6 68.9 70.1 82.6
FCN [19] ST word, char 91.9 91.5 86.4 - - -

Lan-aware

FAN [3] 90K+ST word 87.4 93.3 85.9 70.6 - -
AON [4] 90K+ST word 87.0 - 82.8 68.2 73.0 76.8
ASTER [32] 90K+ST word 93.4 91.8 89.5 76.1 78.5 79.5
ESIR [47] 90K+ST word 93.3 91.3 90.2 76.9 79.6 83.3
ScRN [43] 90K+ST word, char 94.4 93.9 88.9 78.7 80.8 87.5
SAR [16] 90K+ST word 91.5 91.0 84.5 69.2 76.4 83.3
TextScanner [36] 90K+ST word, char 83.9 92.9 90.1 79.4 84.3 83.3
DAN [38] 90K+ST word 94.3 93.9 89.2 74.5 80.0 84.4
Wang et al. [39] 90K+ST word 94.4 93.7 89.8 75.1 80.2 86.8
SRN [45] 90K+ST word 94.8 95.5 91.5 82.7 85.1 87.8
SEED [28] 90K+ST word 93.8 92.8 89.6 80.0 81.4 83.6

Ours Baseline 90K+ST word 94.6 94.3 89.3 81.2 81.6 86.8
VisionLAN 90K+ST word 95.8 95.7 91.7 83.7 86.0 88.5

Table 6. The comparisons of speed and EIPs between existing lan-
guage models and ours. The test dataset is IC15.

Methods Speed EIPs
Baseline 11.5ms -
Baseline + [32] 43.2ms 3.0M
Baseline + [45] 19ms 12.6M
VisionLAN 11.5ms 0M

Figure 6. The examples of text images in OST. Top: image oc-
cluded in weak degree. Bottom: image occluded in heavy degree.
Left: original image. Right: occluded image.

Table 7. Results on OST. Average is the short for average accuracy.
Weak and Heavy mean the accuracy on weak and heavy degrees.

Methods Average Weak Heavy
Baseline 53.0 63.2 42.7
Baseline + [32] 53.9 63.9 43.9
Baseline + [45] 58.2 68.4 48.0
VisionLAN 60.3 70.3 50.3

As VisionLAN adaptively considers the visual and lin-
guistic information in the 2d visual space, our method is
less sensitive to the distorted images. Thus, the proposed
method can obtain better results than ASTER [32] and ESIR
[47] on irregular datasets, which adopt the rectification pro-
cess before recognition. As shown in Tab. 5, the increases
are 7.6%, 7.5% and 9% for [32], and 6.8%, 6.4% and 5.2%
for [47] on IC15, SVTP and CT datasets respectively.

We further compare the differences between the existing
methods and ours in recognition speed and the extra intro-
duced parameters (EIPs) for capturing linguistic informa-

tion in Tab. 6. In terms of approaching speed and parame-
ters, we implement one transformer unit in GSRM of [45]
(the same goes for Sec. 4.5). As the linguistic information
is acquired along with the visual features without the need
of extra language model, the proposed VisionLAN signifi-
cantly improves the speed by at least 39% (11.5ms vs 19ms
and 43.2ms) without introducing extra parameters (0M vs
12.6M and 3M). Furthermore, as VisionLAN directly con-
siders the linguistic information in the visual space, its ef-
ficiency of capturing linguistic information will not be af-
fected by the word length.

4.5. The Language Capability on OST Dataset
To evaluate the language capability of our VisionLAN

in detail, we compare our method with recent most popular
language models (RNN [32] and Transformer [45]) on OST
dataset to evaluate their performance on the case of missing
character-wise visual cues. Specifically, we connect these
language models to VRM following the implementation de-
tails in their papers. As shown in Tab. 7, though the lin-
guistic information captured by [32] and [45] can assist the
prediction of vision model, the proposed VisionLAN sig-
nificantly outperforms these methods by viewing the visual
and linguistic information as a union. Through adaptively
aggregating the two information in a unified structure in-
stead of considering them independently, VisionLAN im-
proves the baseline model by 7.3% in average.

4.6. The Generalization Ability on Long Chinese
Dataset

We evaluate VisionLAN on non-Latin Long Text
(TRW15 [49]) to prove its generalization ability. This
dataset contains 2997 cropped images, and we set the max
length N to 50. We train the proposed VisionLAN follow-
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Table 8. Results on TRW15 [49].
Methods Accuracy(%)
SCCM [44] 81.2
2D-Attention [45] 72.2
CTC [45] 73.8
SRN [45] 85.5
VisionLAN 88.7

ing the setup of [45]. As shown in Tab. 8, compared with
language-free (CTC) and language-aware (2D-Attention)
methods, VisionLAN outperforms these approaches by at
least 14.9%. Benefiting from viewing the visual and lin-
guistic information as a union, the proposed VisionLAN
achieves a new state-of-the-art result and significantly out-
performs SRN [45] by 3.2%. More experiments on other
datasets (e.g. MLT [26], etc.) are available in the supple-
mentaries.

4.7. The Qualitative Analysis

MLM in character-wise localization. To qualitatively an-
alyze the effectiveness of MLM, we visualize some ex-
amples of generated Maskc in Fig. 7. The generated
Maskc effectively localizes character-wise visual cues at
corresponding position with the guidance of character in-
dex P . Furthermore, MLM is able to handle the distorted
images (e.g. the curved word image “nothing”) and the lo-
calization of repeated characters (e.g. the character “b” with
P = 6 in word “confabbing”). The quantitative evaluation
of character-wise localization performance and more visu-
alizations of Maskc are available in the supplementaries.

The effectiveness of VisionLAN. We collect some recog-
nition results to illustrate how the learned linguistic infor-
mation helps vision model to improve the performance. As
shown in Fig. 8 (a), VisionLAN can handle the cases with
confusing characters. For example, as the character “e”
has the similar visual cues to character “f” in the image
with word “before”, the VisionLAN without MLM wrongly
gives the prediction “f”, while VisionLAN correctly infers
the character “e” with the help of linguistic information. For
the samples in Fig. 8 (b), VisionLAN can also use linguis-
tic rules to eliminate the background interference (including
occlusion, illumination, background textures, etc.). Further-
more, the accurate recognition of the blurred characters in
Fig. 8 (c) also demonstrates the effectiveness of our method.

5. Conclusion
As the first work to endue the vision model with lan-

guage capability, this paper proposes a concise and effective
architecture for scene text recognition. VisionLAN success-
fully achieves the transformation from two-step to one-step
recognition (from Two to One), which adaptively considers
both visual and linguistic information in a unified structure
without the need of extra language model. Compared with

Figure 7. The examples of generated Maskc. The top image is
input image, and the bottom image is Maskc with corresponding
character index P .

Figure 8. Recognition results with/without the use of linguistic in-
formation. The top string is the prediction of VisionLAN with-
out MLM. The bottom string is the prediction of VisionLAN. (a):
characters with confused visual cues. (b): characters disturbed by
background. (c): blurred characters.

previous language model, VisionLAN shows a stronger lan-
guage capability while maintaining high efficiency. In ad-
dition, a new Occlusion Scene Text dataset is proposed to
evaluate the performance on the cases of missing character-
wise visual cues. Extensive experiments on seven bench-
marks and the proposed OST dataset demonstrate the effec-
tiveness and efficiency of our method. We regard the pro-
posed VisionLAN as a basic step toward more robust and
accurate scene text recognition, and we will further explore
its potential in the future.
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