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Abstract

Efficient and robust grasp pose detection is vital for robotic
manipulation. For general 6 DoF grasping, conventional
methods treat all points in a scene equally and usually
adopt uniform sampling to select grasp candidates. How-
ever, we discover that ignoring where to grasp greatly
harms the speed and accuracy of current grasp pose
detection methods. In this paper, we propose “graspness”,
a quality based on geometry cues that distinguishes gras-
pable area in cluttered scenes. A look-ahead searching
method is proposed for measuring the graspness and
statistical results justify the rationality of our method.
To quickly detect graspness in practice, we develop a
neural network named graspness model to approximate
the searching process. Extensive experiments verify the
stability, generality and effectiveness of our graspness
model, allowing it to be used as a plug-and-play module
for different methods. A large improvement in accuracy
is witnessed for various previous methods after equipping
our graspness model. Moreover, we develop GSNet, an
end-to-end network that incorporate our graspness model
for early filtering of low quality predictions. Experiments
on a large scale benchmark, GraspNet-1Billion, show that
our method outperforms previous arts by a large margin
(30+ AP) and achieves a high inference speed.

1. Introduction
As a fundamental problem in robotics, robust grasp pose

detection for unstructured environment has been fascinat-

ing our community for decades. It has a broad spectrum of

applications in picking [10], assembling [40], home serv-

ing [11], etc. Advancing the generality, accuracy and effi-

ciency is a long pursuit of researchers in this field.

For grasp pose detection in the wild, it can be regarded

as a two-stage problem: given a single-view point cloud,
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Figure 1. Graspness illustration for a cluttered scene. Brighter

color denotes higher graspness. We prefer the points with high

graspness for grasping.

we first find locations with high graspability (where stage)

and then decide grasp parameters like in-plane rotation, ap-

proaching depth, grasp score and gripper width (how stage)

for a local region.

Previous methods for 6-DoF grasp pose detection in clut-

tered scenes mainly focused on improving the quality of

grasp parameter prediction, i.e., the how stage, and two lines

of research are explored. The first line [41, 27, 31] adopts

a sampling-evaluation method, where grasp candidates are

uniformly randomly sampled from the scene and evaluated

by their model. The second line [36, 13, 32] proposes end-

to-end networks to calculate grasp parameters for the whole

scene, where point clouds are sampled before [32] or dur-

ing [36, 13] the forward propagation. For all these methods,

the where stage is not explicitly modeled (i.e., they do not

perform a filtering procedure in a first stage) and candidate

grasp points distribute uniformly in the scene.

However, we find that such uniform sampling strat-

egy greatly hinders the performance of the whole pipeline.

There are tremendous points in 3D contiguous space, while

positive samples are concentrated in small local regions.

Take GraspNet-1Billion [13], the current largest dataset in

grasp pose detection as an example. We statistically find

that, even with object masks, the graspable points are less
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than 10% among all the samples, not to mention the candi-

date points in the whole scene. Such an imbalance causes

a large waste of computing resources and degrades the effi-

ciency.

To tackle the above bottleneck in grasp pose detection,

we propose a novel geometrically based quality, grasp-
ness, for distinguishing graspable area in cluttered scenes.

One might think that we need complex geometric reason-

ing to obtain such graspness. However, we discover that a

simple look-ahead search by exhaustively evaluating pos-

sible future grasp poses from a point can well represent its

graspness. Statistical results demonstrate the justifiability of

our proposed graspness measure, where the local geometry

around points with high graspness are distinguished from

those with low scores. Fig. 1 gives an illustration of our

graspness for a cluttered scene.

Furthermore, we develop a graspness model that approx-

imates the above process in practice. Given a point cloud in-

put, it predicts point-wise graspness score, which is referred

to as graspable landscape. Benefiting from the stability of

the local geometry structures, our graspness model is object

agnostic and robust to variation of viewpoint, scene, sensor,

etc., making it a general and transferable module for grasp

point sampling. We qualitatively evaluate its robustness

and transferability in our analysis. Tremendous improve-

ments in both speed and accuracy for previous sampling-

evaluation based methods are witnessed after equipping

them with our graspness model.

Based on our graspness model, we also propose

Graspness-based Sampling Network (GSNet), an end-to-

end two-stage network with a graspness-based sampling

strategy. Our network takes a dense scene point cloud as in-

put, which preserves the local geometry cues. The sampling

layer firstly selects the points with high graspness. Remain-

ing points are discarded from the forward propagation to

improve the computation efficiency. Such two-stage design

is beneficial to network convergence and also the final ac-

curacy by providing more positive samples during training.

We conduct extensive experiments to evaluate the effec-

tiveness of our proposed graspness measure, model and the

end-to-end network. Several baseline methods equipped

with our graspness model outperform their vanilla counter-

parts by a large margin in both speed and accuracy. More-

over, our GSNet outperforms previous methods to a large

extent. Our code and models will be made publicly avail-

able to facilitate researches in related area.

2. Related Work
In this section, we first briefly review previous methods

on grasping in cluttered scenes, followed by concluding the

common strategies they have used to sample grasp candi-

dates. Finally we surveyed some literature in cognitive sci-

ence area where graspness recognition is witnessed in hu-

man perception.

Grasping in Cluttered Scenes For cluttered scene grasp

pose detection, previous research can be mainly divided

into two categories: plannar based grasp detection and 6-

DoF based grasp detection. The research in the first cat-

egory [1, 22, 25, 29, 30, 37, 24, 8] mainly took RGB im-

ages or depth images as inputs and output a set of rotated

bounding boxes to represent the grasp poses. Due to the

limitation of low DoF, their applications were usually re-

stricted. Another line of research aimed to predict full

DoF grasp poses. Among them, two different directions

were explored. The first direction [42, 41, 27, 31] adopted

the sampling-evaluation based two-step policy, where grasp

candidates were densely uniformly sampled in the scene

and evaluated using a deep quality model. The second

direction [13, 36, 32, 4] adopted the end-to-end strategy,

where point clouds of the scene were directly processed by

end-to-end networks. For each input point, the network at-

tempted to predict the most feasible grasp pose. All the

mentioned methods focused on improving the quality of

grasp parameters, and the problem of where to grasp was

not investigated.

Grasp Sampling Strategies Several kinds of sampling

strategies can be concluded from the above methods. The

most common used strategy is the uniform sampling, which

is adopted by [41, 27, 32, 36]. Specifically, GPD [41] and

PointNetGPD [27] uniformly sampled grasp points in the

scene point cloud and estimated the rotation by darboux

frame. Some end-to-end models [36, 32] down-sampled

the input point cloud by voxel grid to avoid memory explo-

sion. A similar strategy, farthest point sampling, is adopted

by other end-to-end model [13]. Some optimization based

methods are also explored. Ciocarlie et al. [9] and Hang

et al. [19] adopted the simulated annealing method, while

Mahler et al. [29] proposed cross-entropy methods. In [31],

a grasp sampler network first sampled possible grasp poses

on partial object point cloud and conducted iterative refine-

ment by a grasp evaluator based on its gradient. In a recent

paper by Clemens et al. [12], several sampling methods for

grasp dataset generation are reviewed. However, all the pre-

vious methods ignore the geometric cues for graspable point

sampling. In this paper, we propose a novel graspness mea-

sure based on local geometry for graspable point sampling,

which is much more efficient than previous uniform sam-

pling and optimization based methods.

Graspness in Cognitive Science In cognitive area, re-

searchers have studied the visual attention during grasping

for a long period. Many literature [2, 3, 15, 20, 38] demon-

strated that human bias the allocation of available percep-

tual resources, named as affordance attention, towards the

region with the highest graspability. And such attention
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usually precedes the action preparation stage [2]. Such dis-

covery corresponds to our graspness concept and motivates

us to apply it in the grasp sampling strategy.

3. Graspness Discovery
3.1. Preliminary

As mentioned above, we decouple the grasp pose detec-

tion problem into two stages. Before the common practice

in previous research that directly calculates the grasp pa-

rameters, we first sample points and views with high grasp-

ness. Computational resources will be allocated to these

areas thereafter to improve computational efficiency.

To determine the suitable grasp locations and the feasible

approach directions with high graspability, we define two

kinds of graspness in a high dimensional space to represent

parallel attention in point locations and approach directions.

Before detailing our graspness measure, we first introduce

some basic notations.

For a point sets P = {pi|i = 1, ..., N}, we assume V
approach directions uniformly distributed in a sphere space

V = {vj |j = 1, ..., V }.

Two kinds of graspness scores are discussed in this pa-

per. The first is the point-wise graspness scores denoted as

Sp = {spi |spi ⊂ [0, 1], i = 1, ..., N},
where [0, 1] denotes that our graspness for each point ranges

from 0 to 1. The second is the view-wise graspness scores

denoted as

Sv = {svi |svi ⊂ [0, 1]V , i = 1, ..., N},
where [0, 1]V denotes V -dim graspness ranging in [0,1].

In the following section, we illustrate how we measure

graspness for both single object and the cluttered scene.

3.2. Graspness Measure
Single Object Graspness Given an object point cloud,
we aim to generate graspness for each point where higher
activation denotes larger possibility for successful grasping.
Assuming there is an oracle 1(·) that tells whether an arbi-
trary grasp is successful, and Gi,j denotes the set of all fea-
sible grasp poses for view vj centered at point pi, then the
graspness score s̃pi and s̃vi can be obtained by an exhaustive
look-ahead search:

s̃pi =

∑V
j=1

∑
g∈Gi,j

1(g)
∑V

j=1 |Gi,j |
, i = 1, ..., N,

s̃vi =
{∑

g∈Gi,j
1(g)

|Gi,j |
∣∣∣1 ≤ j ≤ V

}
, i = 1, ..., N.

(1)

By doing so, we guarantee that higher graspness value al-

ways denote higher possibility of successful grasping.
In practice, such an oracle 1(·) does not exist, and Gi,j

can contain infinite grasp poses in a continuous space.

(a) without collision. (b) with collision.

Figure 2. Graspness scores. The left image shows the graspness

without collision detection while the right image shows the grasp-

ness with collision detection

Thus, we make an approximation to the above process.
For view vj of point pi, we generate L grasp candidates

Gi,j = {gi,jk |k = 1, ..., L} by grid sampling along gripper

depths and in-plane rotation angles. For each grasp gi,jk ,

we calculate a grasp quality score qi,jk using a force ana-
lytic model [29]. A threshold c is manually set to filter out
unsuccessful grasps. Then, the relaxation form of Eqn. 1 is:

s̃pi =

∑V
j=1

∑L
k=1 1(q

i,j
k > c)

∑V
j=1 |Gi,j |

, i = 1, ..., N,

s̃vi =
{∑L

k=1 1(q
i,j
k > c)

|Gi,j |
∣∣∣1 ≤ j ≤ V

}
, i = 1, ..., N.

(2)

Scene-Level Graspness After defining the object-level

graspness, we extend it to cluttered scenes by first dis-

cussing the gap between them and then redefining the grasp-

ness in cluttered scenes.

A cluttered scene contains multiple objects and the ir-

relevant background. As shown in Fig. 2(a), the simplest

way to compute scene-level graspness is directly project-

ing the object-level graspness score to the scene by ob-

ject 6D poses. However, this solution ignores the differ-

ences between an object model and a scene cloud captured

from RGB-D camera. Firstly, a valid grasp of a single ob-

ject may collide with background or other objects when

placing in cluttered manner and becomes a negative grasp.

Secondly, as the depth camera provides single-view partial

point clouds, we need to associate the scene point cloud

with the projected object point.
To deal with the collision problem, we follow [13] to re-

construct the scene using object 3D models and correspond-

ing 6D poses. Each grasp gi,jk is evaluated by a collision

checking process and assigned a collision label ci,jk . Our
graspness scores are then updated as:

s̃pi =

∑V
j=1

∑L
k=1 1(q

i,j
k > c) · 1(ci,jk )

∑V
j=1 |Gi,j |

, i = 1, ..., N,

s̃vi =
{∑L

k=1 1(q
i,j
k > c) · 1(ci,jk )

|Gi,j |
∣∣∣1 ≤ j ≤ V

}
, i = 1, ..., N.

(3)

After that, we project the object points to the scene by ob-

ject 6D poses. For each point in the scene, we obtain its
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graspness scores by nearest neighbor search and associate it

with the nearest projected object point.

Finally, to obtain a coherent representation for the scene-

level graspness scores, we perform a normalization for each

scene:

Sp =
{ s̃pi −min(S̃p)

max(S̃p)−min(S̃p)

∣∣∣i = 1, ..., N
}
,

Sv =
{ s̃vi − min(S̃v)

max(S̃v)− min(S̃v)

∣∣∣i = 1, ..., N
}
,

(4)

where min(·) denotes column wise minimum:

min(S̃v) =
{ N
min
i=1

s̃vi(j)

∣∣∣j = 1, ..., V
}
,

and so does max(·). Fig. 2(b) shows an example of scene-

level graspness scores.

3.3. Justification

In order to justify our graspness measure, we analyze

the local geometry for regions with different graspness to

find out whether they are really distinguishable geometri-

cally. For a single-view point cloud, the cascaded graspness

model detailed in Sec. 4.1 is used to extract the local feature

vector of each point. The points with graspness more than

0.3 are treated as positive samples, and negative ones of the

same size are sampled with graspness less than 0.1. Fig. 3

shows the t-SNE [28] visualization of the encoded local ge-

ometry (feature vectors of each point produced by backbone

network) for all the scenes in GraspNet-1Billion [13] train-

ing/testing set respectively. We can observe that regions

with different graspness are quite distinguishable. It demon-

strates that our graspness measure is rational and reveals the

potential of learning graspness from point cloud.

4. GSNet Architecture
After defining the graspness measure, we introduce the

end-to-end grasp pose detection network, GSNet, where our

graspness is learned by an independent module and can be

applied to other methods.

4.1. Cascaded Graspness Model
Given a dense single view point cloud P , graspness

model needs to learn two approximations: fp : P −→ Sp

and fv : P −→ Sv .

It is challenging to find a direct mapping from point coor-

dinates to graspness scores due to the large domain gap be-

tween these two spaces. Instead, we decompose the whole

process into two sub-functions. Consider a high dimen-

sional feature set F :

F = {fi|fi ⊂ R
C , i = 1, ..., N},

(a) Training set. (b) Testing set.

Figure 3. t-SNE visualization of encoded local geometry. Orange

points denote the samples with high graspness, and blue points

denote the samples with low graspness.

where R
C denotes C-dim feature space. The point set is

firstly transformed to the feature set by ht : P −→ F .

Graspable landscapes are then generated by hp : F −→ Sp

and hv : F −→ Sv . Hence, we model the graspness scores

by

fp = hp ◦ ht, fv = hv ◦ ht,

where ◦ denotes function composition, and the feature set

F is shared by both hp and hv .

Although hp and hv can be learned simultaneously, the

computation overhead is quite expensive since Sv is in high

dimensional space. Meanwhile, it is not necessary to com-

pute the view-wise graspable landscapes for all points since

most of the points are not graspable at point level. Hence,

we propose cascaded graspness model to learn ht, hp and

hv step by step, where points are sampled by the output of

hp before learning hv to reduce computation cost.

Backbone Network Approximation of ht requires a

strong backbone network for extraction of both global and

local point features. We adopt ResUNet14 built upon

MinkowskiEngine [6] because it can flexibly process point

sets of any size with sparse convolution and has shown

excellent performance in multiple tasks of 3D deep learn-

ing [7, 14, 18, 5]. The network can also be replaced

by other point-wise networks, such as PointNet [34, 35],

PointCNN [26] and SSCNs [17].

The network adopts a U-shape architecture with resid-

ual blocks, which obtains point features using 3D sparse

(transposed) convolutions and skip-connections. For a point

cloud of size N × 3, it extracts a C-channel feature vector

set, and outputs a point set of size N×(3+C) for graspable

sampling and grasp generation.

Graspable Farthest Point Sampling The modeling for

hp is implemented with a multi-layer perceptron (MLP) net-

work to generate point-wise graspable landscape. Specif-

ically, the output contains a prediction for the graspable

landscape of size N × 1 and a binary objectness classifi-

cation scores of size N × 2, resulting a total output of size

N × 3. Graspness scores of non-object points are set to 0.
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Figure 4. GSNet architecture. The two rows show the process of cascaded graspness model and grasp operation model respectively. In

cascaded graspness model, point encoder-decoder outputs C-dim feature vectors for the input N points. A point-wise graspable landscape

is generated and M seed points are sampled from it. The seeds are then used to generate view-wise graspable landscapes, and select the

grasp view. In grasp operation model, the seeds are grouped in cylinder regions. The grasp scores and gripper widths are predicted for each

group and used to output M grasp poses.

After obtaining the point-wise graspable landscape, we

select points with graspness score larger than δp and adopt

farthest point sampling (FPS) to maximize distances among

sampled points. M seed points are sampled with (3 + C)-
dim features, where 3 denotes the point coordinates and C
denotes the features output by the backbone network.

Graspable Probabilistic View Selection hv is also mod-

eled by an MLP. We apply it to the sampled seed points and

output M × V vectors for view-wise graspable landscapes

and M ×C residual features for grasp generation. V views

are sampled from a unit sphere using Fibonacci lattices [16].

After obtaining the view-wise graspness scores, we se-

lect the best view for afterward predictions during infer-

ence. For training, we adopt probabilistic view selection

(PVS) that normalizes the graspness scores of all views on

a seed point to (0,1) and regard them as probability scores,

according to which the view is sampled. The M seed point-

view pairs are then used to estimate grasp scores, gripper

widths, approach distances and in-plane rotation angles.

4.2. Grasp Operation Model

Crop-and-refine has been proven effective in estimating

candidate configuration in both 2D and 3D tasks [39, 21,

33]. We crop points in directional cylinder spaces which

are generated by seed point-view pairs, transform them to

gripper frames and estimate their grasp parameters.

Cylinder-Grouping from Seed Points The locations and

directions of cylinder spaces are determined by seed point

coordinates and view vectors respectively. For each of the

M point-view pairs, we group and sample K points from

M seed points using the cylinder with fixed height d and

radius r. After aligning the cylinder with gripper frame

as [13], the point coordinates are normalized by cylinder

radius and concatenated with feature vectors which are the

sum of features output by graspable FPS and graspable

PVS. The grouped point sets of size M × K × (3 + C)
are called grasp candidates, where K stands for the number

of sampled points in each group.

Grasp Generation from Candidates We use a shared

PointNet [34] for grasp generation. Grasp candidates are

processed by an MLP network and a max-pooling layer, and

be output as feature vectors of size M ×C
′
. Finally we get

grasp configurations by a new MLP network.

The output of GSNet contains scores and widths for dif-

ferent (in-plane rotation)-(approach depth) combinations.

We pick the combination with the highest score as the grasp

prediction. The output size is M × (A×D × 2), where A
denotes the number of in-plane rotation angles, D denotes

the number of gripper depths and 2 denotes the score and

the width.

Grasp Score Representation We use the minimum fric-

tion coefficient μ under which a grasp is antipodal to eval-

uate the quality of the grasp. Based on this, we define the

grasp score as

qi =

{
ln (μmax/μi)

ln (μmax/μmin)
gi is positive,

0 gi is negative.
(5)

All scores are normalized to [0, 1]. Smaller μi indicates

higher score qi and more probability to succeed.
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4.2.1 Loss Function

Cascaded graspness model and grasp operation model are

trained simultaneously with multi-task losses:

L = Lo + α(Lp + λLv) + β(Ls + Lw), (6)

where Lo is for objectness classification, Lp, Lv , Ls and Lw

are for regressions of point-wise graspable landscape, view-

wise graspable landscape, grasp scores and gripper widths

respectively. Lp and Ls are calculated only if the related

points are on objects, Lv is calculated for views on seed

points and Lw is calculated for grasp poses with ground

truth scores > 0. We use softmax for classification tasks

and smooth-l1 loss for regression tasks.

5. Experiments
5.1. Implementation Details

Benckmark Dataset GraspNet-1Billion [13] is a large-

scale dataset for grasp pose detection, which contains

190 scenes with 256 different views captured by two

cameras (RealSense/Kinect). The testing scenes are di-

vided into three splits according to the object categories

(seen/similar/novel). A unified evaluation metric is pro-

posed to benchmark both image based methods and point

cloud based methods. We adopt this benchmark as it aligns

well with real-world grasping.

Data Processing and Augmentation The point cloud is

downsampled with voxel size 0.005m before being fed into

the network, and contains only XYZ in camera coordinates.

Input clouds are augmented on the fly by random flipping

along YZ plane and random rotation around Z axis in ±30◦.

Implementations To obtain graspness for scenes in

GraspNet-1Billion, we follow the process illustrated in

Sec. 3.2 since it contains abundant grasp pose annotations.

For each point, it densely labels grasp quality score for 300

different views and 48 grasps for each view. Thus, our ap-

proach directions V and grasp candidates per view L are set

as 300 and 48.

For our network, the backbone network adopts an

encoder-decoder architecture and outputs feature vectors of

channel C = 512. In visual selection module, M = 1024
seed points and V = 300 views are sampled, and the thresh-

old δP is set to 0.1. The size of MLP used for hp is (512, 3)
and hv is (512, 512, 300). In cylinder-grouping, we sample

K = 16 seed points in the cylinder space with radius r =
0.05m and height range of [−0.02m, 0.04m]. We divide in-

plane rotation angles into A = 12 classes (15◦ per class)

and use D = 4 classes for approaching distances (0.01m,

0.02m, 0.03m, 0.04m). The two MLPs used to process

attentional proposals and output grasp scores and gripper

widths have the size of (512, 256, 256) and (256, 256, 96)

respectively. Finally the network outputs grasp scores and

gripper widths for A × D = 48 classes. In loss functions,

we set α, β, λ = 10, 10, 10.

Training and Inference Our model is implemented with

PyTorch and trained on Nvidia GTX 1080Ti GPUs for 10

epochs with Adam optimizer [23] and the batch size of 4.

The learning rate is 0.001 at the first epoch, and multiplied

by 0.95 every one epoch. The network takes about 1 day

to converge. During training, we use one GPU for model

updating and one GPU for label generation. In inference,

we only use one GPU for fast prediction.

5.2. Performance of Cascaded Graspness Model

Cascaded graspness model is proposed to distinguish

graspable areas in various scenes, thus the generality and

stability across different domains are important for the

model. Here we design an experiment to illustrate its gen-

erality and stability.

Evaluation Metric The ranking error is used to quanti-

tatively evaluate the function approximation ability of the

model. We divide the range of graspness score into K
bins uniformly and convert the contiguous scores to dis-

crete ranks. The ranking error is defined as the mean rank

distances between predictions and labels:

erank =
1

Nr

Nr∑
i=1

|r̂i − ri|
K

, (7)

where ri, r̂i ∈ {0, 1, ...,K − 1} stand for the ranks for pre-

dictions and labels respectively, and Nr is the number of

predictions. We set K = 20 in experiments. eprank and evrank
are used to denote the ranking error of point-wise graspness

score and view-wise graspness score respectively.

Inference in Different Domains We conduct three

groups of experiments where the dataset is split by object

categories, viewpoints and cameras respectively (detailed in

Tab. 1). In the first group, we train the model on scene 0-

99, and test it on scenes with three object categories (seen,

similar and novel). The second group divides the 256 view-

points into 3 sets, trains the model on viewpoint 0-127, and

tests on three viewpoint sets respectively. The third group

trains the model on Kinect captured data, and tests the per-

formance on data captured by RealSense.

The results are summarized in Tab. 1. For point-wise

graspness prediction, we can see that the difference between

eprank of seen and novel categories is not obvious. View

variation also has a low impact on point-wise graspness

prediction. The eprank of RealSense is higher than Kinect,

but the distance is still in an acceptable range. For view-

wise graspness prediction, evrank in all groups are nearly un-
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Object Variation Viewpoint Variation Camera Variation

Train Test Train Test Train Test

Scene 0-99 100-129 130-159 160-189 0-99 100-129 100-129 100-129 0-99 100-129 100-129

View 0-255 0-255 0-255 0-255 0-127 0-127 128-191 192-255 0-255 0-255 0-255

Camera Kinect Kinect Kinect Kinect Kinect Kinect Kinect Kinect Kinect Kinect Realsense

eprank 0.0485 0.0677 0.0856 0.0802 0.0484 0.0697 0.0725 0.0763 0.0485 0.0677 0.0984

evrank 0.0451 0.0457 0.0459 0.0413 0.0458 0.0468 0.0473 0.0476 0.0451 0.0457 0.0461

Table 1. Ranking error of cascaded graspness model on different test setting. We can see that the graspness model is not sensitive to

object/viewpoint/camera variations.

Methods
Seen Similar Novel

AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GG-CNN [30] 15.48/16.89 21.84/22.47 10.25/11.23 13.26/15.05 18.37/19.76 4.62/6.19 5.52/7.38 5.93/8.78 1.86/1.32

Chu et al. [8] 15.97/17.59 23.66/24.67 10.80/12.74 15.41/17.36 20.21/21.64 7.06/8.86 7.64/8.04 8.69/9.34 2.52/1.76

GPD [41] 22.87/24.38 28.53/30.16 12.84/13.46 21.33/23.18 27.83/28.64 9.64/11.32 8.24/9.58 8.89/10.14 2.67/3.16

Liang et al. [27] 25.96/27.59 33.01/34.21 15.37/17.83 22.68/24.38 29.15/30.84 10.76/12.83 9.23/10.66 9.89/11.24 2.74/3.21

Fang et al. [13] 27.56/29.88 33.43/36.19 16.95/19.31 26.11/27.84 34.18/33.19 14.23/16.62 10.55/11.51 11.25/12.92 3.98/3.56

GPD + CGM 28.16/29.65 34.07/35.59 17.21/18.94 26.47/28.19 33.14/33.74 14.27/16.20 9.73/10.89 10.55/11.37 3.35/4.12

Liang et al. + CGM 33.86/33.17 41.50/40.85 22.93/23.18 28.91/29.06 34.70/35.96 16.95/17.33 11.97/12.47 13.52/13.31 4.01/4.64

Fang et al. + CGM 41.46/39.51 49.32/48.75 29.64/26.19 36.87/35.28 45.69/44.93 25.29/23.84 15.11/13.26 17.49/15.03 6.74/5.28

Ours 65.70/61.19 76.25/71.46 61.08/56.04 53.75/47.39 65.04/56.78 45.97/40.43 23.98/19.01 29.93/23.73 14.05/10.60

Ours + CD 67.12/63.50 78.46/74.54 60.90/58.11 54.81/49.18 66.72/59.27 46.17/41.89 24.31/19.78 30.52/24.60 14.23/11.17
Table 2. GraspNet-1Billion evaluation results on RealSense/Kinect. CGM is cascaded graspness model. CD is collision detection.

changed. These experiments prove the stability and gener-

ality of the cascaded graspness model when transferred to

new domains.

5.3. Comparing with Representative Methods

We compare our method with previous representative

methods. GG-CNN [30] and Chu et al. [8] are rectan-

gle based methods which take images as input. GPD [41]

and Liang et al. [27] classify grasp candidates generated by

rule-based point cloud sampling. Fang et al. [13] propose

an end-to-end network which predicts grasp poses directly

from scene point clouds.

We test our method in three object categories respec-

tively and report the results in Tab. 2. The models for Re-

alSense and Kinect are trained separately. Our method out-

performs previous methods by a large margin on both cam-

eras without any post-processing. Compared with Fang et
al., the previous state-of-the-art method, GSNet improves

the performance by ∼2x on AP metric [13]. Notably,

on the most difficult metric AP0.4, GSNet still achieves a

great relative improvement (> 140%) on all categories.

Fig. 5 presents the qualitative results of our network. The

top-1 grasp accuracy on three categories are 78.22/76.49,

62.88/57.64 and 28.97/24.04 for Realsense/Kinect input.

We also report the results after simple collision detec-

tion using a parallel-jaw gripper model, where all grasps

collided with scene points are removed. The results are im-

proved by 1.42/2.31 AP, 1.06/1.79 AP and 0.33/0.77 AP on

the three categories respectively.

5.4. Boosting with Cascaded Graspness Model

We apply the cascaded graspness model(CGM) to GPD,

Liang et al. and Fang et al. directly and compare the results

with the original methods. For Fang et al., we simply re-

place ApproachNet with our module. For GPD and Liang et
al., we first determine the grasp candidate points using our

predicted point-wise graspable landscape, followed by their

post processing of Darboux frame estimation and grasp im-

ages/clouds classification.

In the middle of Tab. 2, we show the results after adding

the CGM. Both the two-step methods and the end-to-end

method achieve significant performance gains, proving

the effectiveness of cascaded graspness model. Graspable

landscapes can not only improve candidate qualities, but

also reduce the huge computation time caused by densely

sampling.

5.5. Analysis

Effects of Graspable FPS/PVS In Sec. 4.1 we use gras-

pable FPS to sample seed points from graspable landscapes,

while other sampling methods can also be applied to the net-

work. We compare our sampling method with three alter-

natives: a) random sampling from the whole point cloud; b)

FPS from the whole point cloud; c) random sampling from

graspable landscapes. Tab. 3 shows the results of the mod-

els trained using different sampling methods. FPS outper-

forms random sampling by at least 4.98 AP and sampling

with graspable landscapes improves the results by over 7

AP for both FPS and random sampling, which proves the

effectiveness of graspable FPS.
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Figure 5. Qualitative results of GSNet. Top 50 grasps after grasp-NMS[13] are displayed.

Point Sampling View Sampling AP
random graspable PVS 46.17

FPS graspable PVS 51.15

graspable random graspable PVS 53.32

graspable FPS normal 55.63

graspable FPS top-1 score 58.34

graspable FPS graspable PVS 59.70
Table 3. Comparison of different sampling methods.“top-1 score”

stands for selecting the view with the highest graspness score.

Landscape AP
object-level 55.33

scene-level 59.70

Table 4. Landscape types.

View Graspness AP
mean score 50.62

max score 56.95

feasible ratio 59.70
Table 5. View graspness types.

Camera CGM GOM Total

RealSense 0.08s 0.02s 0.10s

Kinect 0.10s 0.02s 0.12s

Table 6. Inference speed on GraspNet-1Billion. “CGM” is cas-

caded graspness model and “GOM” is grasp operation model.

For view selection, we compare graspable PVS with two

methods: a) selecting views by surface normal; b) select-

ing the view with the highest graspness score during train-

ing. The results in Tab. 3 show that our method outperforms

both alternative strategies. Graspable PVS dynamically se-

lects approach vectors, which provides richer data for model

training than other methods.

Selection of Landscape Representations In Sec. 3.2 we

extend object-level graspness scores to cluttered scenes.

Tab. 4 shows that sampling from scene-level graspness per-

forms better than object-level counterpart. The represen-

tation for graspness score also has multiple choices. We

replace the original definition ratio of feasible grasps with

mean and maximum grasp quality scores respectively in the

calculation of view-wise graspness scores, and the results in

Tab. 5 shows that feasible grasp ratio performs the best.

Model Speed Tab. 6 shows the inference time of our

method. Cascaded graspness model achieves a high speed

on RealSense/Kinect data, which can also provide accurate

sampling for various grasp detection methods. GPD and

PointNetGPD take >1s while ours takes only ∼0.1s.

IDs #Objects #Attempts Success Rate

4, 10, 22, 32, 36, 57 6 6 100%

2, 38, 58, 59, 61, 69 6 7 85.7%

34, 37, 64, 66, 68, 72, 77 7 9 77.8%

0, 2, 23, 29, 39, 56, 62 7 7 100%

1, 10, 40, 41, 44, 48, 65, 69 8 8 100%

3, 9, 10, 23, 33, 42, 63, 68 8 9 88.9%

Total 42 46 91.3%

Table 7. Results of cluttered scene grasping. #Objects denotes the

number of objects, and so does #Attempts.

5.6. Real Grasping Experiments

We also conduct grasping experiments for cluttered

scenes in the real-world setting. The configuration of our

experimental setup is illustrated in supplementary materi-

als. The experiments are conducted on a UR-5 robotic arm

with an Intel RealSense D435 camera and a Robotiq two-

finger gripper. During experiments, we only keep the points

on table workspace for speed up.

We conduct grasping experiments in six cluttered scenes.

Each scene contains 6-8 objects selected from GraspNet-

1Billion. Objects are put together randomly and we repeat

the grasping pipeline until the table are cleaned. The suc-

cess rate is defined as the ratio of object number and attempt

number. Tab. 7 reports the grasping performance, which

proves the effectiveness of our method. A comparison with

other baselines is detailed in supplementary materials.

6. Conclusion
In this paper, we propose a novel geometrically based

quality named graspness. A look-ahead searching method

is adopted as our graspness measure and we statistically

demonstrate its effectiveness and rationality. An end-to-end

network is developed to incorporate graspness into grasp

pose detection problem, wherein an independent model

learns the graspable landscapes. We conduct extensive ex-

periments and demonstrate the stability, generality, effec-

tiveness and robustness of our graspness model. Large mar-

gin of improvements are witnessed for previous methods

after equipping with our graspness model, and our final net-

work sets a high record for both accuracy and speed.
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