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Abstract
Contrastive learning shows great potential in unpaired

image-to-image translation, but sometimes the translated
results are in poor quality and the contents are not pre-
served consistently. In this paper, we uncover that the neg-
ative examples play a critical role in the performance of
contrastive learning for image translation. The negative ex-
amples in previous methods are randomly sampled from the
patches of different positions in the source image, which are
not effective to push the positive examples close to the query
examples. To address this issue, we present instance-wise
hard Negative Example Generation for Contrastive learn-
ing in Unpaired image-to-image Translation (NEGCUT).
Specifically, we train a generator to produce negative exam-
ples online. The generator is novel from two perspectives:
1) it is instance-wise which means that the generated exam-
ples are based on the input image, and 2) it can generate
hard negative examples since it is trained with an adversar-
ial loss. With the generator, the performance of unpaired
image-to-image translation is significantly improved. Ex-
periments on three benchmark datasets demonstrate that
the proposed NEGCUT framework achieves state-of-the-art
performance compared to previous methods.

1. Introduction
Image-to-image translation aims to transfer images from

the source domain to the target domain with the content in-

formation preserved, which is of significant importance on

various applications such as style transfer [13, 24, 29, 37],

domain adaption [4, 19, 20, 33, 51] and image coloriza-

tion [2, 48, 58, 60]. Due to the inconvenience of collect-

ing paired training data, recent methods are usually based

on the unpaired setting. In that case, cycle-consistency loss

has been widely used to preserve the consistency between

the source images and generated images, for instance, Cy-

cleGAN [61], StarGAN [7], UNIT [34] and MUNIT [22].
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Figure 1. We visualize the generated images along with the distri-

bution of cosine similarity between query and negative samples in

CUT [41] and our method. The blue histogram refers to the distri-

bution in CUT while the orange histogram refers to the distribution

in our method.

The recently proposed method CUT [41] introduces con-

trastive learning in unpaired image-to-image translation and

achieves better performance over methods [31, 34, 61] that

use cycle-consistency loss. In this paper, we aim to fur-

ther improve the performance of contrastive learning for

unpaired image-to-image translation. We uncover that the

performance of contrastive learning relies heavily on the

hardness of negative samples. As shown in Figure 1, the

negative samples in the method [41] are randomly sampled

from the patches of different positions in the image, which

sometimes leads to the translated results in poor quality and

the contents not preserved consistently. Also we calculate

the cosine similarities between the query patches and neg-

ative patches, and we can find that their cosine similarities

are around 0. In other words, these negative patches are not

challenging enough to push the positive examples close to

the query examples, which will result in the framework not

taking full advantage of contrastive learning.
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To address the above issue, we present instance-wise

hard Negative Example Generation for Contrastive learning

in Unpaired image-to-image Translation (NEGCUT) in this

paper. More precisely, we propose a novel negative genera-

tor to excavate hard negative examples. For a source image,

we first extract its features on different layers of image gen-

erator encoder and embed them into feature vectors. Based

on the embedded features from source images, the negative

generator produces instance-wise negative examples related

to the source image. Moreover, the negative samples should

be diverse enough to push the query patch closer to the pos-

itive patch. To this end, we add the noise as an extra input

for the generator. However, the noise input can probably

be ignored for the generator, thus the generator can gener-

ate similar examples for different input noises. This is also

called the mode collapse issue [45]. Inspired by the mode

seeking loss in MSGAN [38], we introduce diversity loss to

the generator to encourage the generator to produce diverse

hard negative samples for different input noise.

To generate challenging negative samples for contrastive

learning, the main idea is to train the negative generator

against the encoder network in an adversarial manner. Two

components in the framework, i.e., the encoder network and

negative generator, are updated alternatively to play a min-

max game. On one hand, the encoder network narrows the

distance between query and positive samples against hard

negative samples to minimize contrastive loss. On the other

hand, the negative generator produces hard negative sam-

ples close to the positive samples to maximize contrastive

loss. Intuitively, the framework will reach an equilibrium

where the encoder learns detailed and distinguishing rep-

resentation to discriminate the positive samples from gen-

erated hard negative samples. In Figure 1, we visualize

the generated images along with the distribution of cosine

similarity between the query and negative samples in the

CUT and NEGCUT. It is observed that the negative samples

produced by negative generator are harder than those sam-

pled in the method [41], which push the encoder network

to learn distinguishing representation and finally results in

fine-grained correspondence of structures and textures.

Our contributions are summarized as follows,

• We identify that instance-wise negative examples that

increase hardness as training process play a critical

role in the performance of contrastive learning for un-

paired image-to-image translation.

• We propose a novel framework NEGCUT to mine

instance-wise hard negative examples for contrastive

learning in unpaired image-to-image translation.

• Extensive experiments on three benchmark datasets

demonstrate the superiority of our method, which

achieves new state-of-the-art performance. The gen-

erated images of our method are of better visual per-

formance with consistent detailed correspondence.

2. Related Work
In this section, we briefly introduce the related topics,

including contrastive learning, image-to-image translation

and hard negative mining.

2.1. Image-to-Image Translation

Image-to-image translation (I2I) [30, 35, 44, 50, 52, 54,

59, 61, 62] aims to transfer images from source to target do-

main with the content information preserved. Earlier meth-

ods [5, 23, 42, 52] apply an adversarial loss [14], along

with a reconstruction loss to train their model based on the

paired training data. However, due to the difficulty of col-

lecting a large amount of paired data, recent methods are

usually based on the unpaired setting. In that cases, cycle-

consistency loss has been widely used to preserve the con-

sistency between the source images and generated images

instead, for instance, CycleGAN [61], DiscoGAN [27], Du-

alGAN [55] and U-GAT-IT [26]. Based on the assumption

that the generated result should be translated back by an in-

verse mapping, cycle-consistency learns the mapping from

target to source domain and check whether the source im-

ages are reconstructed. However, the assumption is overly

strict compared to the actual situation, where the images be-

tween the two domains are not one-to-one mapping. In view

of this, CUT [41] involves contrastive learning in unpaired

image-to-image translation to learn the correspondence be-

tween source and generated images, which outperforms pre-

vious methods using cycle-consistency loss.

2.2. Contrastive Learning

Contrastive learning is a framework that learns represen-

tation by comparing similar and dissimilar pairs. Recent

methods [1, 6, 16, 17, 18, 40] based on the theory of max-

imizing mutual information have achieved wide success on

unsupervised representation learning. These methods take

full advantage of noise-contrastive estimation [15], map-

ping the images into an embedding space where associ-

ated samples are brought together in contrast with unrelated

samples. For a single query sample, the associated sam-

ples are referred to as positive samples while the unrelated

samples are referred to as negative samples. With similarity

measured by dot production, a form of a contrastive loss,

called InfoNCE, is proposed as a representative loss func-

tion for noise-contrastive estimation.

2.3. Hard Example Mining

Hard example mining is a classic method to solve the

problem of sample imbalance in several areas, i.e., object

detection and unsupervised representation learning. In ear-

lier methods, hard example mining are used to optimize

SVMs [11], shallow neural networks [43] and boosted de-

cision trees [10]. Recent work [21, 25, 32, 36, 46, 47, 53]

14021



,

… … …

FC

R
ELU

FC
FC

R
ELU

FC FC

R
ELU

FC

C
O

N
C

A
T

SA
M

PLE

SA
M

PLE

MEAN

source generated

push

pull

pull

Adversarial Contrastive
Contrastive

Representation 
Network

Negative 
Generator

Representation 
Network

Forward

Encoder Decoder EncoderOutputInput

…

Sample N 

…

Figure 2. The overview of our NEGCUT framework. We perform hard negative example generation for adversarial contrastive learning on

multiple layers of the image generator encoder. The black arrows show the forward propagation of our framework while the blue and red

arrows show the backward propagation of contrastive loss and adversarial contrastive loss, respectively. On each layer, the representation

network randomly samples the source and translated features at the spatial dimension, and produces the query and positive samples. The

negative generator produces challenging negative samples by the mean vector of features from the representation network. The query,

positive and generated negative samples are involved for contrastive learning in an adversarial manner.

selects hard examples for training deep networks. In [47],

an image descriptor is learned to independently select the

hard positive and negative samples from a large set. In [36]

and [46], online hard examples selection is investigated on

image classification and object detection, respectively. Lin

et .al design a novel focal loss [32] to focus training on a

sparse set of hard examples, which addresses the imbalance

between different classes in object detection. In unsuper-

vised representation learning, a triple loss is used [53] to

mine the hard negative samples from a large set. In [21],

adversarial learning is involved to generate challenging neg-

ative samples for unsupervised representation learning.

3. Methods
In this paper, we present a novel framework NEGCUT to

mine instance-wise hard negative examples for contrastive

learning in unpaired image-to-image translation. Different

from previous work which randomly samples negative ex-

amples from the patches in the image, our method gener-

ates instance-wise hard negative examples through adver-

sarial learning. With the produced hard negative examples,

our framework can generate images with detailed and fine-

grained correspondence on structures and textures. The rest

of this section is organized as follows: We begin with re-

viewing the related method in previous work in Sec. 3.1. In

Sec. 3.2, we outline the NEGCUT framework and introduce

the details of hard negative example generation through ad-

versarial learning. Finally, we discuss the objective function

utilized in our framework in Sec. 3.3.

3.1. Preliminaries and Motivation

We first briefly review the method leveraging contrastive

learning in unpaired image-to-image translation developed

in CUT [41]. To generate images of target domain with the

content information maintained, the main idea is to learn the

correspondence between the source and generated images.

Compared with previous methods using cycle-consistency

loss, CUT applies contrastive loss to learn the correspon-

dence instead, which directly maximizes the mutual infor-

mation between the source and generated images. The con-

trastive loss is formulated as follows,

l(q, k+, k−) =

− log[
exp(q · k+/τ)

exp(q · k+/τ) +
∑N

n=1 exp(q · k−
n /τ)

],
(1)

where q is the query samples from the generated image, k+

is the positive samples from the corresponding position of

the query in the source image, k−
n is the negative samples

from the other positions in the source images, and τ is the

temperature factor.

CUT develops the contrastive learning in a multi-layer

patch-wise manner, which is formulated as follows,

LPatchNCE(G,H,X) = Ex∼X

L∑

l=1

Sl∑

s=1

l(ql,s,k
+
l,s,k

−
l,s),

(2)
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where ql,s, k+
l,s and k−

l,s are extracted from the features of

source image X and generated image Y at different inter-

mediate layers l of generator encoder. With the contrastive

loss, the generator learns to narrow the distance between the

query and positive samples against negative samples at dif-

ferent layers, which is equivalent to maximizing the mutual

information between the source and generated images.

By replacing the cycle-consistency loss with the con-

trastive loss, CUT generates more realistic and correspond-

ing images compared with previous methods. However, the

randomly-sampled negative examples in CUT cannot take

full advantage of contrastive learning. The approach to es-

timating the negative examples plays a critical role in the

performance of contrastive learning. Negative examples in

CUT are not challenging enough to push the encoder net-

work to learn distinguishing representation, which leads to

the translated results in poor quality and the contents not

preserved consistently. Different from these, we propose

a novel framework NEGCUT to mine instance-wise hard

negative samples for unpaired image-to-image translation

through adversarial learning.

3.2. NEGCUT

3.2.1 Framework Architecture

Figure 2 gives an overview of our framework, which con-

sists of Image Generator, Representation Network and Neg-
ative Generator. Image generator G takes the source image

X as input and generates the translated image Y. Regard-

ing two variants of a single image, i.e., the source image X
and the generated image Y, we conduct multi-layer patch-

wise contrastive learning to learn the correspondence be-

tween these two images. On a certain layer of the image

generator encoder, the query and positive samples are pro-

duced by the representation network through embedding the

spatially sampled feature vectors into high-dimensional rep-

resentation space.

To increase the similarity between the query and pos-

itive samples, the negative generator mines instance-wise

hard negative samples against positive samples. Based on

the embedded features of the source image, diverse chal-

lenging negative examples are generated by taking various

randomly-sampled noise vectors as input. In our frame-

work, the encoder network (i.e., the image generator and

representation network) and the negative generator are al-

ternately updated with the adversarial contrastive loss. With

more challenging negative examples produced by the neg-

ative generator, the encoder network will learn distinguish-

ing representation to discriminate positive samples from the

challenging negative samples, which leads to fine-grained

and robust correspondence between the source and gener-

ated images. Additionally, a discriminator is applied to en-

sure the domain and realness of the generated image.

3.2.2 Hard Negative Example Generation

In this section, we formally present hard negative exam-

ple generation for contrastive learning in unpaired image-

to-image translation. As shown in Figure 2, we perform

contrastive learning on multiple layers of the image genera-

tor encoder. For a certain layer, we employ a representation

network Hi(·) to embed the feature of different patches.

The representation network is a 2-layer MLP network in-

dependently mapping the feature vector at each pixel from

the source and translated images to a M -dimension vector.

Based on the feature after mapping, we randomly sample S
positions in the spatial dimension and take the normed vec-

tors as query and positive samples for contrastive learning,

which is formulated as follow,

q =
Hi

s(F
Y
i )

‖Hi
s(F

Y
i )‖2 , k

+ =
Hi

s(F
X
i )

‖Hi
s(F

X
i )‖2 , (3)

where FX
i and FY

i are the source features and the translated

features at the i-th layer of image generator encoder, respec-

tively. Hi
s(F

X
i ) and Hi

s(F
Y
i ) refers to the s-th positive and

query examples sampled, respectively.

To push the positive sample close to the query sam-

ple, we generate challenging negative samples with

a carefully designed multi-layer negative generator

{N0, N1, · · · , N l}. Base on the spatially-average features

from representation network Hi(FX
i ), the negative gener-

ator produces hard negative samples with noise vector zn,

which is formulated as follows,

k−adv,n =
N i(Hi(FX

i ); zn)

‖N i(Hi(FX
i ); zn)‖2

. (4)

For a positive sample, we generate multiple negative exam-

ples through sampling various noise vectors from standard

Gaussian distribution.

To generate challenging negative samples for contrastive

learning, the main idea is to train the negative genera-

tor against the encoder network in an adversarial manner,

which is formulated as follows,

min
θH,θG

max
θN

l(q,k+,k−
adv) =

− log[
exp(q · k+/τ)

exp(q · k+/τ) +
∑N

n=1 exp(q · k−
adv,n/τ)

].
(5)

From Equation (5), it is observed that the en-

coder network (i.e., the representation network

H = {H0, H1, · · · , H l} and the image generator G)

narrows the distance between the query samples and

positive samples against the negative samples to minimize

contrastive loss. On the contrary, the negative generator

N = {N0, N1, · · · , N l} produces challenging negative

examples to maximize the contrastive loss. Intuitively,
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the encoder network and the negative generator will reach

an equilibrium by alternate training, where the negative

generator produces challenging negative samples and the

encoder network learns distinguishing representation to

discern the positive samples from the negative samples.

In Figure 2, we further illustrate how the negative gen-

erator, representation network and image generator are up-

dated. The negative generator is first updated with negative

contrastive loss, which is formulated as follows,

θNi ← θNi + ηN
∂l(q,k+,k−

adv)

∂θNi

. (6)

The backpropagation of the negative contrastive loss is cut

off before the representation network and does not affect

the weights of the representation network and image gener-

ator. After that, the representation network is updated with

positive contrastive loss, which is formulated as follow,

θHi ← θHi − ηH
∂l(q,k+,k−

adv)

∂θHi

. (7)

Since the contrastive learning is developed in a multi-layer

manner, the total adversarial contrastive loss for the nega-

tive generator and representation network is formulated as

follows,

LAdCont = Ex∼X

L∑

l=1

Sl∑

s=1

l(ql,s,k
+
l,s,k

−
adv,l,s). (8)

The image generator is trained along with the representa-

tion network. Through the back-propagation of adversarial

contrastive loss, the image generator receives the gradient

at different layers of the encoder. The image generator is

updated with the summation of these gradient, which is for-

mulated as follows,

θG ← θG − ηG

l∑

i=0

(
∂l(q,k+,k−

adv)

∂FX
i

∂FX
i

∂θG

+
∂l(q,k+,k−

adv)

∂FY
i

∂FY
i

∂θG
),

(9)

where FX
i and FY

i are the features of the source and trans-

lated images at the i-th layer of encoder, respectively.

However, when the adversarial contrastive loss is the

only function used to update the negative generator, it is ob-

served that the generated negative examples lose diversity

and collapse to one negative example. This is because the

adversarial contrastive loss focuses on generating hard neg-

ative samples rather than diverse negative samples, though

diversity is helpful for the performance. To this end, we

introduce the diversity loss to generate diverse challenging

negative samples with different input noise. The diversity

loss encourages the generation of distinctive results when

different noise vectors are brought in, which is formulated

as follows,

Ldiv = −‖N i(Hi(Xi), z1)−N i(Hi(Xi), z2)‖1, (10)

where z1 and z2 are two different input noise randomly sam-

pled from standard Gaussian distribution.

3.3. Other Objectives

Besides the adversarial contrastive loss and diversity loss

mentioned above, our framework is also optimized by gen-

erative adversarial loss.

Generative Adversarial Loss. Since the ground-truth im-

ages are unavailable in unpaired image-to-image transla-

tion, we develop adversarial learning [14, 57] to constrain

the realness and domain of the generated images. For the

image generator G(·) and the discriminator D(·), we unitize

the LSGAN100 loss [39], which is formulated as follows,

LD
gan = Exr

[(1−D(xr))
2] + Exf

[D(xf )
2],

LG
gan = Exf

[(1−D(xf )
2],

(11)

where xr and xf indicates the real image distribution and

the generated images distribution, respectively.

Overall Loss. The overall loss for the negative generator

and encoder network is the weighted summation of above

losses, which is formulated as follows,

LH = LAdCont,

LG = LAdCont + λ1LG
gan,

LN = −LAdCont + λ2Ldiv,

(12)

where λ1 and λ2 are the trade-off parameters balancing dif-

ferent losses. In our experiments, λ1 and λ2 are set to 1 and

1, respectively.

4. Experiment
4.1. Experiment Setup

Datasets. To demonstrate the superiority of our method,

we train and test our method on three benchmark datasets,

i.e., Cityscapes [9], Cat→Dog [8] and Horse→Zebra [61]

datasets with translation between various different domains.

The Cityscapes dataset contains a diverse set of images

recorded in the street scenes with high-quality pixel-level

annotations. The Cat→Dog dataset is a dataset of 10,000

high-quality cat and dog face images extracted from the

AFHQ dataset. The Horse→Zebra dataset consists of about

2,500 images of horse and zebra in different scenes. We

learn the translation from semantic masks to real images,

from cat images to dog images and from horse images to

zebra images on three datasets, respectively. For all the

datasets, we resize images to the same resolution of 256

× 256 to train our network.
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Figure 3. Qualitative results with the four challenging methods, i.e., CycleGAN [61], UNIT [34] , DRIT [31], CUT [41], on three benchmark

datasets. Compared with previous methods, the generated images of our method show superior performance with correct correspondence

between the source and generated image.

Implementation Details. To make a fair comparison,

we set the hyperparameters consistent with previous meth-

ods [41]. We conduct our adversarial contrastive learning

on the 1-st, 5-th, 9-th, 13-th, 17-th layers of the generator

encoder. The number of negative samples for contrastive

learning is set to 256 in our framework. The dimension of

the query, positive and negative samples is set to 256. For

the whole framework, we utilize Adam optimizer [28]. The

training lasts 400 epochs in total. The learning rate is set

to 2e-4 and linearly reduces after 200 epochs. The whole

framework is implemented by Pytorch and we perform ex-

periments on NVIDIA RTX 3090Ti.

Evaluation Metrics. We evaluate the realness of generated

images by the FID metric. FID measures the distance be-

tween two sets of images. To calculate the FID metric, we

first embed the generated images and ground-truth images

into the feature space with an Inception model [49]. The

FID metric is computed by the mean value and covariance

of the generated image set (μY,ΣY) and the ground-truth

image set (μŶ,ΣŶ):

FID(Y, Ŷ) = ‖μY−μŶ‖22+Tr(ΣY+ΣŶ−2(ΣYΣŶ)
1
2 ).

(13)

In addition, to evaluate the relevance between source im-

ages and generated images, we apply several metrics dif-

ferent from FID on the Cityscapes dataset. With a pre-

trained segmentation model [56], we calculate the mAP,

pixel accuracy (pAcc) and class accuracy (cAcc) metrics on

the source semantic labels and generated real images. The

higher mAP, pAcc and cAcc represent that the generated

images are more relevant to source semantic labels.

4.2. Comparison with the State-of-the-art Methods

We compare our method with several state-of-the-

art methods of unpaired image-to-image translation, i.e.,
CUT [41], CycleGAN [61] and DRIT [31]. The quantita-

tive result on three benchmark datasets is shown in Table 1.

From the table, it is observed that our method achieves new

state-of-the-art performance on three datasets. Compared
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Figure 4. Qualitative comparison among different designs of neg-

ative generator. When the negative generator and diversity loss are

employed and the number of negatives is set to 256, the generated

images have the best visual quality and most correct correspon-

dence.

with the most challenging method, i.e. CUT, our method

outperforms it 14.0%, 26.6% and 13.0% relatively on FID

metric on three datasets. Additionally, since only the im-

age generator is used at inference time, NEGCUT does not

introduce extra test time consumption compared with CUT.

Furthermore, we make a qualitative evaluation on three

datasets with several competitive methods, i.e. CUT, Cy-

cleGAN, UNIT and DRIT. From Figure 3, it is observed

that the images generated by our method have better visual

performance compared with previous methods. Especially,

our generated images keep a better correspondence with the

source images compared with the most challenging method

CUT. This benefits from the challenging negative samples

generated by the negative generator. The negative exam-

ples sampled randomly in CUT help the network learn the

correspondence between source images and generated im-

ages at the beginning, but become less and less effective

as the training process proceeds. In contrast, our negative

samples produced by negative generator keep challenging

via adversarial learning, which forces the image generator

and representation network to learn the fine-grained corre-

spondence. Due to this reason, the images generated by our

method have better correspondence with the source images

in details, i.e., textures and postures.

Method Cityscapes Cat→Dog H→Z

mAP↑ pAcc↑ cAcc↑ FID↓ FID↓ FID↓
CycleGAN [61] 20.4 55.9 25.4 76.3 85.9 77.2
UNIT [34] 16.9 56.5 22.5 91.4 104.4 133.8
DRIT [31] 17.0 58.7 22.2 155.3 123.4 140.0
Distance [3] 8.4 42.2 12.6 81.8 155.3 72.0
SelfDistance [3] 15.3 56.9 20.6 78.8 144.4 80.8
GCGAN [12] 21.2 63.2 26.6 105.2 96.6 86.7
CUT [41] 24.7 68.8 30.7 56.4 76.2 45.5
FastCUT [41] 19.1 59.9 24.3 68.8 94.0 73.4
NEGCUT 27.6 71.4 35.0 48.5 55.9 39.6

Table 1. Comparison with state-of-the-art methods on unpaired

image translation, i.e. CycleGAN, UNIT, DRIT, CUT, etc. H→Z

refers to the Horse→Zebra dataset. ↑ indicates the higher the bet-

ter, while ↓ indicates the lower the better. It is notable that our

method outperforms previous methods on various metrics.

Settings Cityscapes Cat→Dog H→Z

Negative Diversity Number mAP↑ pAcc↑ cAcc↑ FID↓ FID↓ FID↓Generator Loss of Neg.

× × 256 27.3 71.9 34.5 49.7 110.9 59.6

� × 256 27.0 71.1 33.7 91.5 83.0 72.1

� � 64 26.9 71.1 33.7 49.7 59.3 59.3

� � 128 27.2 71.4 33.9 49.8 86.9 51.8

� � 512 27.3 71.3 34.3 51.2 62.8 44.0

� � 256 27.6 71.4 35.0 48.5 55.8 39.6

Table 2. Ablation study for several different designs, i.e., nega-

tive generator, diversity loss and the number of negative samples.

H→Z refers to the Horse→Zebra dataset. ↑ indicates the higher

the better, while ↓ indicates the lower the better. Without negative

generator or the diversity loss, the produced negative examples are

not challenging enough, which leads to inferior performance under

most of the indicators on three datasets.

4.3. Ablation Study

We perform several ablation experiments to verify the

effectiveness of several designs in our framework, i.e. neg-

ative generator, diversity loss and number of negative sam-

ples. We report the quantitative results in Table 2.

To evaluate the necessity of generating instance-wise

negative samples with negative generator, we design a vari-

ant without negative generator. As an alternative, we di-

rectly update the negative samples in the feature vector

space in this variant. In such case, the learned negative

samples are widely distributed in the feature space and un-

related to the source instance. From Table 2, it is observed

that, without the negative generator, the framework obtains

an inferior performance under most of the indicators, which

verifies the effectiveness of generating instance-wise nega-

tive samples. After that, we conduct an ablation study on the

diversity loss by comparing the framework with and without

the diversity loss. In Table 2, it demonstrates that the frame-

work with diversity loss outperforms that without diversity

loss. This is because, in the variant without diversity loss,

the produced negative samples lose diversity in the early

stage of training and maintain less diverse during training.

Under this situation, the negative generator fails to produce

challenging negative samples, which leads to the poor per-

formance. Additionally, we analyze the visual results under
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these different settings. In Figure 4, it can be seen that,

without the negative generator or diversity loss, the gener-

ated image has a far inferior visual quality on fidelity and

correspondence between the source and generated image.

Based on the framework with negative generator and di-

versity loss, we further make an ablation study on the num-

ber of negative samples. From Table 2, it can be seen that

the performance reaches the top when the number of neg-

ative samples equal to 256. When the number of negative

samples is more than 256, the main challenging negative

samples have been contained in the 256 negative samples.

The extra generated negative samples may contain some ir-

relevant disturbance resulting in inferior performance, and

increase the computation cost notably. Nevertheless, too

few negative samples may result in the ineffectiveness to

push positive samples closer to the query. Comprehensively

considering the performance and computational consump-

tion, the best number of negative samples is 256 in our

framework. Furthermore, we compare the generated images

under different numbers of negative examples. In Figure 4,

it is observed that, when the number of negative samples is

set to 256, the generated images have the best visual quality

and most correct correspondence.

4.4. Visualization of Hard Negative Examples.

To further demonstrate the effect of hard negative ex-

amples, we visualize hard negative examples by retrieving

regions based on generated features. In Figure 5, we first

retrieve 8 hard negative examples based on each query fea-

ture. After that, we visualize these hard negative examples

by retrieving the most related patches in the image. It is ob-

serve that the retrieved hard negative examples share simi-

lar semantic meanings with the query patch in structure and

texture. This indicates that the generated hard examples can

encourage the model to generate content consistent results.

Furthermore, we compare the learned similarity by rep-

resentation network in CUT and NEGCUT. For each query

q, we calculate the similarity maps through computing

exp(q · k+/τ ) on all the pixels of the image. From Fig-

ure 6, it is observed that, in the similarity maps of CUT,

the corresponding areas are scattered over the entire image

and several unrelated areas are also associated. Addition-

ally, when the query point is sampled from a part of the

foreground, i.e. head of the horse, the whole foreground

is associated in the similarity maps of CUT, which demon-

strates that the representation network in CUT has difficulty

on discriminating different parts of the foreground. Differ-

ent from that, the corresponding areas in the similarity maps

of NEGCUT are concentrated on the neighborhood of query

points or areas with the same semantic, which verifies that

the representation network in NEGCUT learns more distin-

guishing representation and accuracy correspondence under

the help of instance-wise hard negative samples.

(a) Source images & 
Positive examples

(c) Translated
image

(b) Positive examples (red) &
Hard negative examples (blue)

Figure 5. Visualization of negative examples by retrieving regions

based on generated features. We visualize 8 hard negative exam-

ples by retrieving the most related patches in the image. It is ob-

served that the retrieved patches share similar semantic meanings

with the query patch in structure and texture.

CUT

NEGCUT

(a) Translated image 
& query points

(b) Source
image

(c) Learned similarity from two 
query points to input image

Figure 6. Visualization of the learned similarity by representation

network in CUT and NEGCUT. Two similarity maps are learned

from two query points sampled from the foreground (blue) and

background (red). Compared with the similarity learned by CUT,

our similarity maps are more concentrated on the neighbourhood

of query points, which verifies that our method learns distinguish-

ing representation with the help of hard negative samples.

5. Conclusion
In this paper, we propose a novel framework called

NEGCUT to mine challenging negative samples for con-

trastive learning in unpaired image-to-image translation.

Specifically, we design a negative generator trained against

the encoder network in an adversarial manner. The two

components in our framework, i.e., the encoder network and

the negative generator, are updated alternately to learn dis-

tinguishing representation to discriminate positive samples

against generated hard negative samples. Extensive experi-

ments on three benchmark datasets demonstrate the superi-

ority of our method. Our method achieves state-of-the-art

performance and shows a better correspondence between

source images and generated images compared with previ-

ous methods.
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