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Abstract

Humans usually explain their reasoning (e.g. classifica-
tion) by dissecting the image and pointing out the evidence
from these parts to the concepts in their minds. Inspired
by this cognitive process, several part-level interpretable
neural network architectures have been proposed to explain
the predictions. However, they suffer from the complex data
structure and confusing the effect of the individual part to
output category. In this work, an interpretable image recog-
nition deep network is designed by introducing a plug-in
transparent embedding space (TesNet) to bridge the high-
level input patches (e.g. CNN feature maps) and the out-
put categories. This plug-in embedding space is spanned
by transparent basis concepts which are constructed on
the Grassmann manifold. These basis concepts are en-
forced to be category-aware and within-category concepts
are orthogonal to each other, which makes sure the embed-
ding space is disentangled. Meanwhile, each basis concept
can be traced back to the particular image patches, thus
they are transparent and friendly to explain the reasoning
process. By comparing with state-of-the-art interpretable
methods, TesNet is much more beneficial to classification
tasks, esp. providing better interpretability on predictions
and improve the final accuracy. The code is available at
https://github.com/JackeyWang96/TesNet.

1. Introduction

Convolutional neural networks(CNNs) [20, 19, 29, 12,
14] have achieved surpassing performance in many visual
tasks, such as image recognition and detection. However,
besides the extraordinary discrimination power, CNNs and
their corresponding results are still hard to explain, which
severely limits their applications such as self-driving cars,
diagnosis of cancer and etc. Recently, more and more in-
terpretable methods have been proposed on CNNs, in order
to open the black box of neural networks. Among them, an
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looks like

looks like

looks like

looks unlike

looks unlike

looks unlike

…

The evidence for this bird is a Yellow-headBlackbird The evidence for this bird is not a Cape Glossy Starling

Figure 1: Image of a Yellow-headed Blackbird and humans
usually explain their reasoning process through some parts
of the image which looks like some learned concepts of the
Yellow-headed Blackbird to classify the bird’s species.

intuitive strategy is to visualize the feature representation
hidden inside a CNN, but there is still a vast gap between
network visualization and semantic interpretations for neu-
ral networks.

Considering the examples in Figure 1, how would you
identify the bird image as a Yellow-headed Blackbird and
not a Cape Glossy Starling? Maybe you find that the bird’s
head, legs, and feathers look like those concepts of Yellow-
headed Blackbird rather than Cape Glossy Starling. In other
words, you may gather the evidence in your mind and make
a final decision. Specifically, humans usually explain their
reasoning process by dissecting the image into object parts
and pointing out the evidence from these identified parts to
the concepts stored in his / her mind. Therefore, for the in-
telligent machine, it is an emergent issue to determine the
object parts and construct the concepts in order to imple-
ment interpretable image classification.

To enforce the CNN-based classifier with interpretabil-
ity, the basis concepts are introduced as a plug-in compo-
nent in CNN architecture [1]. From the cognitive point of
view [26], the interpretable concepts should cover the fol-
lowing characteristics: 1) Informative: the input data can
be efficiently represented in the space spanned by the ba-
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sis concepts, and its essential information is preserved in
the new representation, 2) Diversity: each data point is re-
lated to only a few non-overlapping basis concepts, and the
points belonging to one category are related to the similar
subset of concepts, 3) Discriminative: the basis concepts
are class-aware so that the categories can be separated well
in the space of concepts.

For grasping the concepts, researchers take advantage
of the high-level features in deep neural networks (e.g.,
CNN), on which the auto-encoding [1] or prototype learn-
ing [5, 15, 23] are operated. These existing methods can
explicitly represent the inputs with basis concepts, i.e., they
met the first requirement. Among them, some prior distribu-
tion such as U-shaped Beta distribution is adopted to limit
the number of concepts to which the high-level features are
related [15]. However, they suffer from the situation that
the basis concepts may be entangled, which is not friendly
to isolate the effect of individual concept to the input repre-
sentation and the output category, and further destroys the
classification performance.

In this study, thus, we focus on constructing the basis
concepts simultaneously containing the above three charac-
teristics. First, each category has its own basis concepts, and
the corresponding concept subsets of different categories
are as much different as possible. Second, a good map-
ping is built to provide a bridge between high-level features
and basis concepts. Third, for the input image, the basis
concepts are helpful to compute the final prediction score
along all categories. To implement this, a Grassmann man-
ifold is introduced to construct basis concepts. As shown
in Figure 2, for each category, the subset of corresponding
basis concepts is taken as a point on the Grassmann man-
ifold. In this case, the basis concepts of one category are
orthogonal to each other. Meanwhile, the class-aware con-
cept subsets are part away from each other by constraining
their projection metric. The above two constraints make
sure that the basis concepts are disentangled. To improve
the transparency of leaned basis concepts, the prototypical
high-level patches of the original images are extracted to
represent the concept.

In this work, an interpretable network architecture is
designed by introducing a plug-in transparent embedding
space (TesNet) which is spanned by transparent basis con-
cepts which are constructed on the Grassmann manifold.
These basis concepts are enforced to be category-aware
and within-category concepts are orthogonal to each other,
which makes sure the embedding space is disentangled.
In order to demonstrate the model efficiency, we evaluate
our model on two case studies, i.e bird species identifica-
tion and car model identification. Extensive experiments
demonstrate the broad applicability of our model on differ-
ent CNN architectures. To investigate the proposed basis
concept construction strategy, a series of ablation studies
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Figure 2: The illustration of constructing transparent em-
bedding space on Grassmann Manifold. The space is
spanned by category-aware transparent basis concepts.
Each basis concept is demonstrated by its most related pro-
totypical high-level patches.

have been conducted. As expected, our model achieves the
state-of-the-art performance in terms of accuracy compared
with interpretable methods providing the same level of in-
terpretability.

The contribution of our work can be summarized as: 1)
An interpretable neural network with transparent basis con-
cepts (TesNet) is proposed to explain the prediction results
semantically and quantitatively. 2) The basis concepts are
category-aware and disentangled, which leverages discrim-
inability and interpretability. 3) The latent space spanned by
the basis concepts has the ability to represent the input and
preserve the essential information. 4) The proposed trans-
parent basis concepts construction layer is a generic solu-
tion and can be taken as a plug-in component for various
CNN architectures.

2. Related work

We briefly survey relevant literature on post-hoc inter-
pretability, interpretable representations learning.

Post-hoc interpretability has been extensively studied
with building the mapping of the abstract patterns encoded
by a pre-trained model into the human-understandable do-
mains such as images (arrays of pixels) or texts (sequences
of words) [25]. A great deal of previous work has fo-
cused on exploring the pattern hidden inside the neural
units by assigning neurons importance scores and visualiz-
ing on images. These methods can be broadly divided into
perturbation-based forward propagation approaches [34, 44,
45], which make perturbations on the input and observe the
importance impact on later neurons, and backpropagation-
based approaches [29, 30, 2, 35, 24, 31, 28] which prop-
agate the importance signal from the output neuron to the
input through each layer in the network. Some work disen-
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tangle the representations of the pre-trained convolutional
neural network into an explanatory graph [37, 36] or a de-
cision tree [39, 3] or concept activation vectors [16, 9, 40]
obtaining clear visual patterns Post-hoc interpretation pro-
vides a tool to understand a tangle of patterns in trained net-
work, but these methods do not fundamentally address the
problem of pattern entanglement, while our work is ded-
icated to learning clear visual patterns during the training
process.

Interpretable representations learning aims to learn
clear semantic representations rather than a black box dur-
ing the training process of the network. Bau et al. [4] de-
fined six types of semantics for CNNs, i.e. objects, parts,
scenes, textures, materials, and colors. Many interpretable
deep models handle with high-level convolutional layers to
learn the disentangled concepts of objects and parts.Some
work encourages each filter respond to a specific concept by
adding regularization terms. For instance, Zhang et al. [38]
designed a regularization loss to obtain disentangled repre-
sentations by restricting each filter response to a specific ob-
ject part in high-level convolutional layers. Liang et al. [21]
designed a learnable sparse Class-Specific Gate structure to
encourage each filter to respond to only one (or few) class.
Chen et al. [6] introduced a module named concept whiten-
ing (CW) which axes of the latent space are aligned with
pre-defined concepts. However, the space of possible con-
cepts can be unclear or even unlimited, which severely lim-
its the discovery power of CW. There are also some new net-
work architectures being designed to encode a specific se-
mantic concept. For example, Sabour et al. [27] designed a
novel network architecture named Capsule Networks where
each capsule outputs an activity vector encoding an object
or an object part, instead of a scalar.

The proposed TesNet relates closely to methods [1,
5, 15] that aim to learn basis concepts and make a fi-
nal decision based on these concepts. Alvarez-Melis and
Jaakkola [1] proposed a self-explaining model by taking
advantage of the auto-encoding technique to learn basis
concepts and assigning relevance scores to basis concepts
for prediction. Huang et al. [15] assumed a simple prior
(Beta distribution) about the occurrence of object part con-
cepts and explicitly encoded the generic concepts of object
parts across categories by region grouping, i.e., all cate-
gories share the same set of concepts. To make the concepts
discriminative, ProtoPNet [5] is proposed to learn the pro-
totypical parts for each class and trace the evidence from
prototypes to image patches. However, it is limited by the
prototype learning in L2-distance. Specifically, the proto-
types are implicitly assumed following a Gaussian distri-
bution, which is not proper for the complex data structure.
Meanwhile, it can not explicitly ensure the learned proto-
types are disentangled, which is an important property for
interpretable learning.

Our work also relates to the methods that build attention-
based interpretability into CNNs. These methods [17, 33,
41, 42] only expose which parts of an input the network
focused on when making decision, but they don’t point out
that which parts they focus on are similar to the learned con-
cepts. In other words, it is controversial whether these parts
under attention are semantic concepts. In contrast, our pro-
posed model provides a bridge between the high-level input
parts and the learned basis concepts, thus, it is friendly to
detect which parts are important for prediction and explicit
to determine the meaning of the basis concepts with the aid
of their most related image parts.

3. Method
In this section, we will describe the proposed inter-

pretable image recognition deep model. Its main goal is to
learn basis concepts that provide a bridge between the input
high-level image features and output categories. These con-
cepts span a transparent embedding space to re-represent
the images and improve the concept-based classification
performance for various CNN architectures.

3.1. The overview of TesNet architecture

Let X denote a set of training images, where X(c) ⊂ X
represents the subset belonging to class c (c = 1, 2, ..., C).
Image recognition aims to train a classifier on X and use it
to predict the label information for any new coming image.
To implement interpretable image recognition (label predic-
tion), our proposed TesNet consists of three core factors:
Convolutional layers f(·) with parameters ωconv, a Trans-
parent Subspace layer sb(·) with basis concepts B, and a
Classifier h(·) with the weight matrix G, as shown in Fig-
ure 3.

Among them, the convolutional layersf(·) are borrowed
from the traditional network (e.g. VGG-16, ResNet-34,
DenseNet-121). The main difference is that extra 1 × 1
convolutional layers are added to adjust the the number of
channels for top-level feature map. Given an input image
xi ∈ X(c), the feature map Zi ∈ RW×H×D is extracted by
the convolutional layer f(·) with spatial resolution W ×H
and D channels.

Once having feature map Zi, the subspace layer will
project it on the transparent embedding space which is
spanned by the basis concepts. Specifically, the subspace
layer convers C subspaces (one subspace for each class)
and each subspace is spaned by M basis concepts B(c) =

{b(c)
j }

M
j=1. These M within-class concepts are assumed

orthogonal to each other and each concept b
(c)
j ∈ RD

can be traced back to the high-level patches of the feature
map. For all classes, there are total M × C basis concepts
B =

{
{b(1)

j }
M
j=1, · · · , {b

(C)
j }

M
j=1

}
. For convenient, we de-

note concept set as B = {bj}M×C
j=1 . These class-aware con-

cepts are constrained by maximizing the projection met-
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Figure 3: TesNet architecture. To facilitate the illustration, the original embedding space is drawn as 3-D black coordinates
and the subspaces are drawn as 2-D red and blue coordinates.

ric so that the concepts in different classes are far away
from each other. These settings make sure the learned basis
concepts are transparent and disentangled. Each basis unit
sbj (·) in the subspace layer sb will compute the projection
distance from all 1×1 patches of feature map Zi to the j-th
basis concept, where this projection distance map will keep
the size of feature map and retain the spatial relation well.
Then compact the projection distance map to one value by
global max pooling, i.e., sbj (Zi) = maxp∈patches(Zi) p>bj .

Finally, the projection distances on all basis units sbj (·)
are taken as the input of Classifier which is composed of
a full connection layer h with weight matrix G. The final
label is predicted according to the logistic regression value.

Next, we will focus on how to construct the basis
concepts B = {bj}M×C

j=1 and build the decision function
φ(xi;ωconv,B,G) for label prediction. It will be imple-
mented via three stages: embedding space learning, embed-
ding space transparency and concept based classification.

3.2. Embedding space learning

This subsection aims to construct the basis concepts and
use them to span the embedding space. For convenient com-
puting, each basis concept is represented via a basis vec-
tor. These basis vectors should satisfy the following re-
quirements: 1) there is no semantic overlapping between
different basis vectors; 2) the categories can be separated
well in the embedding space; 3) the basis vectors are help-
ful to cluster the similar high-level patches and separate the
dissimilar patches.

To achieve these goals, a joint optimization problem is
designed for the convolutional layers’ parameters wconv and
the basis vectors B, while keeping the last layer weight ma-
trix G ∈ RC×(M×C) fixed. For class c, we set G(c,j) = 1

if bj ∈ B(c), otherwise, G(c,j) = −0.5.

Orthonormality for Within-class Concepts: From the
cognitive point of view, the concepts should be diversity,
i.e., different concepts should focus on different aspects
even though they are from the same class. For example,
a “bird” class can be recognized via “head” concept,“leg”
concept, “tail” concept, “color” concept and etc. Obviously,
these concepts have few or even no overlapping semantics.
Meanwhile, according to Occam’s Razor, humans usually
detect a class via a few concepts rather than amounts of con-
cepts. Mathematically, if each concept is represented via a
vector, each class can be built via a few basis vectors, and
these basis vectors have nothing to do with each other.

Therefore, we introduce an orthonormality loss to add an
orthonormal constraint on the basis vectors B(c) for each
class. Its goal is to push the within-class basis vectors apart
from each other. Orthonormality loss is defined as:

Lorth =

C∑
c=1

‖B(c)B(c)> − IM‖
2

F (1)

where ‖ · ‖2F is Frobenius norm and IM is an M ×M iden-
tity matrix. By minimizing the correlation between basis
vectors, we can get diverse concepts and guarantee there is
no overlapping between concepts. These orthogonal basis
vectors will span a subspace for the corresponding class. .

Separation for Class-aware Subspaces: In most classi-
fication models, the data is represented in the same embed-
ding space. Actually, the data points from different classes
usually fall into different subspaces, as demonstrated by
subspace learning [10]. To make sure different classes dis-
tinctive, their corresponding subspaces should be far away
from each other.

In TesNet, each subspace (for each class) is spanned by
M orthogonal basis vectors (∈ RD). According to the ba-
sic Riemannian geometry of Grassmann manifold [7], the
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Grassmann manifold G(M,D) is the set of M -dimensional
linear subspaces of the RD and it is a M(D −M) compact
Riemannian manifold. An element of G(M,D) is a linear
subspace, which is spanned by the orthonormalM×D basis
matrixQ such thatQQ> = IM , where IM is theM×M iden-
tity matrix. Therefore, each class-aware subspace (spanned
by B(c)) can be taken as a point on the Grassmann mani-
fold. Helmke et al. have proved that there exists one unique
project matrix corresponding to each point on the Grass-
mann mainifold [13]. In this case, the distance between sub-
spaces can be quantified with the aid of projection mapping
Φ(B(c)) = B(c)>B(c). One popular subspace distance met-
ric on Grassmann manifold is Projection Metric [11] which
can be formulated as:

d(B(c1),B(c2)) =
1√
2
‖B(c1)

>
B(c1) −B(c2)

>
B(c2)‖F (2)

where ‖ · ‖ denotes the matrix Frobenius norm. B(c1) and
B(c2) respectively denote the orthonormal basis matrix of
class c1 and class c2.

To separate the class-aware subspaces, a new loss is pro-
posed to maximize the projection metric among each pair
of subspaces as follows:

Lss =
−1√

2

C−1∑
c1=1

C∑
c2=c1+1

‖B(c1)
>
B(c1) −B(c2)

>
B(c2)‖F (3)

High-level Patches Grouping: The subspace layer is in-
troduced to project the high-level image patches to the em-
bedding subspaces and preserve the essential information.
Therefore, the operation should encourage the patches to be
close to at least one semantically similar basis vector of the
ground truth class and stay away from the basis vectors of
other classes. The former requirement is implemented via
a compactness loss, which minimizes the distance between
image patches and the basis vectors of the corresponding
class in the cosine distance. The later one is obtained by a
separation loss, which enforces the patches stay away from
the basis vectors that are not of the ground truth class.

Given the basis vectors B = {bj}M×C
j=1 with ||bj || = 1

and patches of the feature map
{
Zi = f(xi;ωconv)

}n
i=1

, the
compactness-separation loss can be defined as:

Lcs = Lcompactness + µLseparation (4)

Lcompactness =
1

n

n∑
i=1

min
j:bj∈B(yi)

min
p∈patches(Zi)

−p>bj

‖p‖

Lseparation =
1

n

n∑
i=1

min
j:bj /∈B(yi)

min
p∈patches(Zi)

p>bj

‖p‖

where µ is a hyper-parameter to balance two terms.
Identification: Given the training dataset {(xi, yi)}ni=1,

the identification can be done via a cross entropy loss:

Lid = − 1

n

n∑
i=1

C∑
c=1

yiclogφc(xi;ωconv,B) (5)

where n is the number of training images, yic corresponds
to the c-th element of one-hot encoded label of the sam-
ple xi, yi = eyi ∈ {0, 1}C such that 1>yi = 1∀i, and
φc denotes the c-th element of φ. Note the output layer
adopts softmax function so that

∑C
c=1 φc(xi;ωconv,B) = 1

and φc(xi;ωconv,B) ≥ 0,∀c, i, ωconv,B.
Finally, the embedding subspace can be obtained by

solving the joint optimization problem in an end-to-end
manner:

Ltotal = Lid + λ1Lorth + λ2Lss + λ3Lcs (6)

where λ1, λ2, and λ3 are hyper-parameters to balance the
corresponding terms.

3.3. Embedding space transparency

In order to make the embedding space transparent, i.e.,
the users can explicitly know the meaning of each basis
concept, each basis vector is traced back its nearest image
patches from the same class. Mathematically, the basis vec-
tor bj of class c, i.e. bj ∈ B(c) can be assigned via

bj ← arg max
p∈Pc

p>bj (7)

where Pc = {p̃ : p̃ ∈ patches(Zi) ∀i s.t. yi = c}. In this
way, each basis vector will be related to the particular image
patches, which will provide a transparent bridge between
the embedding domain and the human-understandable do-
main.

3.4. Concept based classification

Once having the transparent embedding space (i.e., fix-
ing the parameter ωconv and B), we can effectively build
classifier h(·) by optimizing the concept-class weight ma-
trix G, which connects the basis vector units and the logits
of class. It is expected that G(c,j) ≈ 0 (initially fixed at
-0.5) if the j-th unit does not belong to c-th class, and each
class is related to only a few units. Thus, the sparse con-
straint on the weight matrix is enforced to the identification
loss as follows.

Lh = Lid + λ4

C∑
c=1

∑
j:bj /∈B(c)

|G(c,j)| (8)

This setting will guarantee the discriminative evidence
comes from the concept of the ground truth class as much as
possible and rely less on the concept of negative classes. A
good by-product of this concept based classification is that
the contribution of concepts to the final prediction can be
quantified.

3.5. Implementation

Algorithm 1 describes the implementation for the deci-
sion function φ(xi;ωconv,B,G). Note that the three stages
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(embedding space learning, embedding space transparency,
and concept based classification) may be looped several
times. ωbase and ωadd denote the parameters of the base
and additional convolutional layers; Nesl and Nh denote
the number of training epochs in embedding space learning
and concept based classification stage; η(t)base, η

(t)
add, η

(t)
B , ηh

are learning rates (t denotes epoch index).

Algorithm 1: Overview of training algorithm
1 initialize: ωbase ← pre-trained on ImageNet ;
2 ωadd ← Kaiming uniform initialization;
3 ∀j : basis vectors bj ← Uniform([0, 1]1×1×D);
4 ∀c, j : G(c,j) ← 1 if bj ∈ Bj and G(c,j) ← 0 if

bj /∈ Bj ;
5 while Not(converge AND Lcompactness<−Lseparation)

do
/* Embedding space learning */

6 for t← 1 to Nesl do
7 foreach batch [X,Y ] from [X,Y ] do
8 if t > 5 then
9 ωbase ← ωbase−η(t)base∇ωbaseLtotal(X,Y );

10 ωadd ← ωadd − η(t)add∇ωaddLtotal(X,Y );
11 B← B− η(t)B ∇BLtotal(X,Y );
12 B← Unit(B, 0, 1) // Constraint basis

vectors as unit vectors

/* Embedding space transparency */
13 foreach basis vector bj do
14 c← class of bj ;
15 bj ← arg maxp∈Pc p

>bj where Pc ∈ {p̃ : p̃ ∈
patches(f(xi)) ∀(xi, yi) ∈ [X,Y ] s.t. yi = c}

/* Concept based classification */
16 for t′ ← 1 to Nh do
17 foreach batch [X,Y ] from [X,Y ] do
18 G← G− ηh∇GLh(X,Y )

4. Experiments
In experiments, two case studies are conducted to in-

vestigate our model and demonstrate its broad applicabil-
ity on various CNN architectures. The first study is for bird
species identification on CUB-200-2011 dataset [32] cover-
ing 200 bird species. In the second case study, the Stanford
Cars dataset [18] with 196 car models is used to evaluate
the proposed TesNet. In each study, a series of ablation tests
are conducted to verify the corresponding performance by
comparing with the state-of-the-art baselines.

Network Architecture. The proposed model is tested
on several convolutional architectures: VGG-16, VGG-19,
ResNet-34, ResNet-152, DenseNet-121, and DenseNet-161
(initialized with filters pretrained on ImageNet), following
two additional 1 × 1 convolutional layers. The number of
output channels in each additional layer is the same as the
number of channels in the basis vectors. For VGG-16 and

VGG-19, the number of channels in basis vectors is 128; for
ResNet-34, ResNet-152, DenseNet-121 and DenseNet-161,
the number of channels is 64. In all cases, 10 basis vectors
per class are sufficient. Note only image-level labels are
used for training.

4.1. Case study 1: bird species identification

Dataset. Caltecg-USCD Birds-200-2011 [32] (CUB-
200-2011) is a dataset of 200 bird species for bird species
recognition, which contains 5,994/5,794 images for train-
ing/test from 200 different bird species. Since the dataset
has only about 30 images per class, we augmented the train-
ing set by offline data augmentation which used random ro-
tation, skew, shear, and left-right flip, so that each class has
1200 training images.

looks
like

looks
like

looks
like

(a) Object-level
attention

(b) Part-level
attention

(c) Part-level attention+
learned concepts

Figure 4: Visual comparison of different level of inter-
pretability: (a) object-level attention map; (b) part-level at-
tention; and (c) part-level attention with learned concepts

Recognition results. Our results of recognition are pre-
sented by the accuracy with different base CNN architec-
tures on cropped bird images and compare them to baseline
and ProtoPNet at the top of Table 1. We also compared
with other deep methods providing the different levels of
interpretability in Table 2, “full” means that the model was
trained and tested on full images, “bb” means that the model
was trained and tested on images cropped using bounding
boxes. A visual comparison of different levels of inter-
pretability is provided in Figure 4. To ensure the fairness
of comparison, we trained the baseline models, ProtoPNet,
and our model on the same augmented dataset of cropped
bird images. As shown in Table 1, we switch from the
non-interpretable baseline model to our interpretable Tes-
Net with improving precision at most 8% and without the
loss of accuracy. Since each TesNet can be understood as
a “scoring sheet” (as in Figure 5), we can further improve
the accuracy by adding the logits of several trained TesNet
models together which is equivalent to combine these “scor-
ing sheet” to compute the total points for each class with no
loss of interpretability. Therefore, we combined a VGG19-
, ResNet34-, DenseNet121-based TesNet on cropped bird
images and the test accuracy can reach 86.2% while the
same setting of ProtoPNet can obtain 84.8%. We also com-
bined a VGG19-, Dense121-, and DenseNet161-based Tes-
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Table 1: Top: Accuracy comparison on cropped bird images of CUB-200-2011 with different CNN architectures.
Bottom: Ablation study on cropped bird images of CUB-200-2011. Recognition accuracy are reported.

Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161
Baseline 73.3 ± 0.2 74.7 ± 0.4 82.2 ± 0.3 80.8 ± 0.4 81.8 ± 0.1 82.1 ± 0.2

ProtoPNet [5] 77.2 ± 0.2 77.6 ± 0.2 78.6 ± 0.1 79.2 ± 0.3 79.0 ± 0.2 80.8 ± 0.3
TesNet(Ours) 81.3 ± 0.2 81.4 ± 0.1 82.8 ± 0.1 82.7 ± 0.2 84.8 ± 0.2 84.6 ± 0.3

Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161
TesNet (Lid+Lcs) 79.2 ± 0.2 79.8 ± 0.2 80.7 ± 0.2 81.6 ± 0.2 83.4 ± 0.1 82.6 ± 0.2

TesNet(Lid+Lcs+Lorth) 79.4 ± 0.2 80.3 ± 0.2 81.1 ± 0.2 80.3 ± 0.3 84.1 ± 0.2 83.0 ± 0.2
TesNet(Lid+Lcs+Lorth+Lss) 81.3 ± 0.2 81.4 ± 0.1 82.8 ± 0.1 82.7 ± 0.2 84.8 ± 0.2 84.6 ± 0.3

Table 2: Comparison of our model with other deep models
in terms of accuracy on the CUB-200-2011 dataset.

Interpretability Method Accuracy
None B-CNN [22] 85.1(bb), 84.1(full)

Object-level
attention

CAM [43] 70.5 (bb), 63.0 (full)
CSG [21] 82.6 (bb), 78.5(full)

Part-level
attention

PA-CNN [17] 82.8 (bb)
MG-CNN [33] 83.0 (bb) 81.7 (full)
MA-CNN [41] 86.5 (full)

TASN [42] 87.0 (full)
Part-level
attention +

learned concepts

Region [15] 81.5 (bb), 80.2 (full)
ProtoPNet [5] 84.8 (bb), 80.8 (full)

Ours 86.2 (bb), 83.5 (full)

Net on full images, even though the test accuracy of each
individual network is 77.5%, 80.2%, 79.6% respectively.

Reasoning process. Figure 5 shows the transparent rea-
soning process of our TesNet how to make a decision on
a test image of a European goldfinch. Given this test im-
age xi, our TesNet re-represent its feature map Zi under
the learned basis vectors. Specifically, for each class c, our
model tries to find the evidence for xi to be of class c by
re-representing its patches under every learned basis vec-
tor bj of class c. For example, in Figure 5, our model has
found evidence for the European goldfinch class by learned
basis vectors (visualized in the “Basis vector” column) of
that class. As shown in the “Activation map” column, the
first basis vector of the European goldfinch activates most
strongly on the typical black and yellow wings of this class,
the second basis vector activates on the head, and the third
basis vector activates on the brown fur. The most activated
image patch of the test image corresponding to the basis
vector is marked by a bounding box in the “original image”
column. In this case, our model finds a high similarity score
between the wing of the test image and the typical wing
of a European goldfinch with a similarity score of 5.792,
as well as the other parts. Finally, these similarity scores
are weighted and summed together to produce a final score
for this class c. The reasoning process is similar to other
classes. In the supplement, we provide more examples of
how our TesNet classifies the images.

Why is the bird classified as an
EuropeanGoldfinch?

Evidence for this bird being an European Goldfinch:

Original image Basis vector
(Concept)

Activation
map

Similarity
Score

Class
connection

Contribution to
logits

Training image
where concept
comes from

5.792 × 1.021 = 5.913

5.726 × 0.956 = 5.474

5.716 × 0.934 = 5.338

… … … … … … …

Total points to the European Goldfinch: 38.137
Evidence for this bird being a Black-capped Vireo:

Original image Basis vector
(Concept)

Activation
map

Similarity
Score

Class
connection

Contribution to
logits

Training image
where concept
comes from

5.199 × 1.071 = 5.568

3.929 × 0.889 = 3.492

2.490 × 0.738 = 1.837

… … … … … … …

Total points to the Black-capped Vireo: 14.879

Figure 5: The interpretable reasoning process of our model
in identifying the species of a bird.

Ablation study. An ablation study on the CUB-200-
2011 is conducted to evaluate the components in embedding
space learning. As shown at the bottom of Table 1, our study
considers the effect of the orthonormality loss and subspace
separation loss. The regularization of orthonormality can
slightly improve recognition accuracy performance at most
0.7% to ensure that different basis vectors have different
concepts in one class. The regularization of subspace sepa-
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Table 3: Accuracy comparison on cropped car images of Stanford Cars dataset with different CNN architectures
Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161
Baseline 87.3 ± 0.4 88.5 ± 0.3 92.6 ± 0.3 92.8 ± 0.4 92.0 ± 0.3 92.5 ± 0.3

ProtoPNet [5] 88.3 ± 0.2 89.4 ± 0.2 88.8 ± 0.1 88.5 ± 0.3 87.7 ± 0.1 89.5 ± 0.2
TesNet(Ours) 90.3 ± 0.2 90.6 ± 0.2 90.9 ± 0.2 92.0 ± 0.2 91.9 ± 0.3 92.6 ± 0.3

Table 4: Comparison of our model with other deep models
in terms of accuracy on the Stanford Cars dataset.

Interpretability Method Accuracy
None B-CNN [22] 91.3

Object-level attention CSG [21] 91.6

Part-level
attention

RA-CNN [8] 92.5
MA-CNN [41] 92.8

TASN [42] 93.8
Part-level
attention +

learned concepts

Region [15] 90.9
ProtoPNet [5] 91.4

Ours 93.1

ration loss largely improves the accuracy at most 2.4% for
the subspace of each class well-separation.

4.2. Case study 2: car model identification

Dataset. The Stanford Cars dataset [18] contains 16,185
images of 196 classes of cars, which is split into 8,144 train-
ing images and 8,041 testing images. Since each class has
only about 40 images in this dataset, we augmented the
training set by offline data augmentation which used ran-
dom rotation, skew, shear, and left-right flip, so that each
class has 1300 training images.

Recognition results. The accuracy of TesNet is re-
ported with the corresponding baseline models and Pro-
toPNet models on the cropped dataset, as shown in Ta-
ble 3. When we switch from the non-interpretable base-
line model to our interpretable TesNet, the loss of accuracy
is at most 1.7%. The accuracy slightly decreases because
the skip connections hurt learning part features. And we
tested the combined network of a VGG19-, ResNet34-, and
DenseNet121-based TesNet on full images which can reach
93.1%, even though the test accuracy of each individual net-
work is 89.5%, 90.0%, 89.8% respectively. The test accu-
racy is on par with some state-of-the-art models on full im-
ages, such as RA-CNN (92.5%), MA-CNN (92.8%), and
TASN (93.8%).

Reasoning process. Figure 6 shows the transparent rea-
soning process of our TesNet how to make a decision on a
test image of a Tesla Model S Sedan 2012. The model ac-
curately learned the significant concepts of the Tesla logo,
front wheels, side door, etc.

The ablation study and more reasoning process of the
Stanford Cars dataset are reported in the supplement.

Why is the car classified as
a Tesla Model S Sedan 2012?

Evidence for this car being a Tesla Model S Sedan 2012:

Original image Basis vector
(Concept)

Activation
map

Similarity
Score

Class
connection

Contribution to
logits

Training image
where concept
comes from

4.150 × 1.055 = 4.378

4.021 × 1.050 = 4.222

3.520 × 0.948 = 3.337
… … … … … … …

Total points to the Tesla Model S Sedan 2012: 27.495

Figure 6: How our TesNet correctly classifies an image of
the Tesla Model S Sedan 2012.

5. Conclusions and Future Work
An interpretable plug-in network architecture - TesNet,

in this work, is proposed with the aid of transparent ba-
sis concepts learning. TesNet constructs class-aware basis
concepts and within-class concepts are disentangled, which
effectively improves the prediction performance. Empiri-
cially, TesNet has ability to explain what concepts a CNN
deep network can learn and how the network combines the
evidences to make a decision. TesNet assumes that the basis
concepts are flat, which is contrast to humans categorize ob-
ject. The main reason is that, in real world, concepts usually
have taxonornical organization. Thus, it will be an interest-
ing topic to consider hierarchical basis concepts learning for
interpretable image recognition.
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