
Learning Latent Architectural Distribution in Differentiable Neural
Architecture Search via Variational Information Maximization

Yaoming Wang1†, Yuchen Liu1†, Wenrui Dai2*, Chenglin Li1, Junni Zou2, and Hongkai Xiong1

1Department of Electronic Engineering, Shanghai Jiao Tong University, China
2Department of Computer Science & Engineering, Shanghai Jiao Tong University, China

{wang yaoming, liuyuchen6666, daiwenrui, lcl1985, zoujunni, xionghongkai}@sjtu.edu.cn

Abstract

Existing differentiable neural architecture search ap-
proaches simply assume the architectural distribution on
each edge is independent of each other, which conflicts with
the intrinsic properties of architecture. In this paper, we
view the architectural distribution as the latent representa-
tion of specific data points. Then we propose Variational In-
formation Maximization Neural Architecture Search (VIM-
NAS) to leverage a simple yet effective convolutional neu-
ral network to model the latent representation, and opti-
mize for a tractable variational lower bound to the mutual
information between the data points and the latent repre-
sentations. VIM-NAS automatically learns a nearly one-hot
distribution from a continuous distribution with extremely
fast convergence speed, e.g., converging with one epoch.
Experimental results demonstrate VIM-NAS achieves state-
of-the-art performance on various search spaces, including
DARTS search space, NAS-Bench-1shot1, NAS-Bench-201,
and simplified search spaces S1-S4. Specifically, VIM-NAS
achieves a top-1 error rate of 2.45% and 15.80% within 10
minutes on CIFAR-10 and CIFAR-100, respectively, and a
top-1 error rate of 24.0% when transferred to ImageNet.

1. Introduction

With the development of deep learning, various neu-
ral architectures are needed for specific tasks. Given a
specific dataset, neural architecture search (NAS) frees re-
searchers from cumbersome architecture design by explor-
ing the search space automatically to search for the opti-
mal network architecture. Since different datasets have their
own preference for the architecture, for instance, biomedi-
cal images favor U-Net alike architectures with fully convo-
lutional operations and symmetrical structure. NAS can be
deemed as searching for the preference of a given dataset.

*Corresponding author: Wenrui Dai. †Equal contribution.

Thus, the architectural parameters can be viewed as the la-
tent representation of specific data points.

In the sense of methodology, NAS can be divided into
three parts, i.e., search space, search strategy, and perfor-
mance estimation strategy [17, 38]. One-shot approaches
[3, 4, 34] have been developed as a promising alternative to
reduce the search time by finding the best sub-network in
a super network through parameter sharing. Gradient-based
approaches [51, 29, 37, 41], aka Differentiable NAS, further
treat the super network as the whole search space, intro-
duce architectural parameters, and obtain the sub-network
by optimizing the architectural parameters and super net-
work weights in a differentiable manner.

Despite the remarkable performance, existing differen-
tiable NAS approaches make improper assumptions that the
predefined architectural distribution on each edge is inde-
pendent of each other, conflicting with intrinsic properties
of architecture. Specifically, SNAS [41] and FBNet [39]
utilize the Concrete distribution [22, 30] to approximate the
discrete categorical distribution on architectural parameters.
DATA [51] performs multiple sampling with replacement
from the same Concrete distribution to expand the search
space. SI-VDNAS [37] introduces Gaussian noise for vari-
ational dropout and samples the super network through
the learned dropout rate. Isotropic Gaussian noise in SI-
VDNAS as well as the factorizable distribution in SNAS,
FBNet and DATA ignores the dependencies between archi-
tectural parameters.

In addition to the above improper assumptions, the
search cost for differentiable NAS approaches is also pro-
hibitive due to the numerous search spaces and tasks. Two-
stage approaches [47, 36] decouple the model training and
searching process for amortizing the training cost, but are
still restricted by numerous search spaces. Therefore, an
efficient search strategy with fast convergence speed is de-
sirable for differentiable NAS.

In this paper, we propose a novel search strategy, namely
Variational Information Maximization Neural Architecture
Search (VIM-NAS), to maximize the mutual information

12312

between the data points and the latent architectural rep-
resentations. VIM-NAS leverages a simple yet effective
convolutional neural network to model the latent architec-
tural representation, and optimizes for a tractable varia-
tional lower bound to the mutual information. Our contri-
butions are summarized below.

• We propose a novel perspective that architectural dis-
tribution can be deemed as the latent representation of
a given dataset in NAS.

• We leverage a simple yet effective architectural neural
network to model the dependencies among architec-
tural distribution.

• We propose a novel search strategy to maximize the
variational lower bound to the mutual information be-
tween the data points and the latent architectural rep-
resentations.

Experimentally, VIM-NAS exhibits currently the fastest
convergence speed within one epoch and learns a nearly
one-hot distribution from a continuous distribution. Specif-
ically, VIM-NAS achieves the state-of-the-art performance
on DARTS search space with a top-1 error rate of 2.45%
and 15.80% within 10 minutes on CIFAR-10/100 and a top-
1 error rate of 24.0% when transferred to ImageNet. VIM-
NAS also achieves the state-of-the-art performance on other
search spaces, including NAS-Bench-1shot1, NAS-Bench-
201 and simplified search spaces S1-S4.

2. Related Work
NAS approaches liberate researchers from tedious net-

work architecture design on various tasks, including im-
age classification [54], objection detection [19, 20, 45], im-
age segmentation [18, 28], and pose estimation [2, 50] etc.
Meanwhile, more efficient and stable neural architecture
search strategies are still attracting a lot of research. Evolu-
tionary algorithms [16, 31, 35, 44] encode network architec-
tures into populations, optimize populations through contin-
uous iterative mutation, and eventually translate populations
back to networks. Reinforcement learning (RL)-based ap-
proaches [3, 34, 54] utilize a meta-controller to guide the
search process in a large architectural space based on a re-
ward function corresponding to the inference accuracy of
the selected network. Despite the remarkable performance,
evolutionary algorithms and RL-based methods suffer from
high search cost due to repeated evaluations. One-shot ap-
proaches [1, 3, 4, 34] adopt parameter sharing to reduce the
search cost. Gradient-based approaches [29, 41, 37] further
introduce architectural parameters to optimize searched ar-
chitectures in a differentiable fashion.

Though differentiable approaches can achieve fast search
speed, the search process still encounters the unstable prob-

lem and tedious super network training for each search pro-
cess. Recently, the collapse problem in DARTS attracts a lot
of work. FairDARTS [11] utilizes the sigmoid function to
avoid unfair exclusive competition. SGAS [25], instead, cir-
cumvents the problem with a greedy strategy. DARTS+ [27]
and Progressive DARTS [8] employ early stopping to con-
trol the number of identity operations. These approaches
involve too much human intervene, are not suitable for dif-
ferent search spaces, and are hard to transfer to different
tasks. [48] designs indicators like Hessian eigenvalues for
the collapse, and [7] adds perturbations to regularize such
an indicator. Unsupervised representation [43] for neural
architecture is also utilized to learn good architecture repre-
sentation using architectures without accuracy. TE-NAS [6]
proposes a training-free strategy to rank the candidate ar-
chitectures with the spectrum of the neural tangent kernel
(NTK) and the number of linear regions in the input space.

3. Methodology
3.1. Preliminary: Differentiable NAS

Differentiable NAS decomposes the searched architec-
ture into stacking cells. The search space is defined as a di-
rected acyclic graph (DAG) over cells with N nodes. Each
node is a latent representation and there is a predefined oper-
ation set denoted by O on each edge (i, j) connecting node
i and j. The core idea is to relax the discrete operation se-
lection to be continuous and obtain a weighted sum over all
|O| operations on each edge as

fi,j (xi) =
∑
o∈O

exp
(
αo
i,j

)∑
o′∈O exp

(
αo′
i,j

) · o (xi) (1)

where xi is the output of the i-th node and αo
i,j is the ar-

chitectural parameter. The output of a node is the sum over
all input edges as xj =

∑
i<j fi,j (xi), and the output of

the total cell is the concatenation of the output of nodes as
concat (x2,x3, . . . ,xN−1), where x0 and x1 are the fixed
input nodes. Based on the cell search space, Differentiable
NAS relaxes the architecture search to learn the architec-
tural parameter A =

[
α(i,j)

]
. With the target dataset and

optimization objective, the architectural parameter A and
the network weight w are optimized via gradient descent
alternatively [29] or jointly [41].

3.2. VIM-NAS

We deem the architecture as the latent variable for the
observed data. Given a dataset D consisting of N pairs
of observations and labels {(xn, yn)}Nn=1, we consider a
joint distribution pϕ(D, A) = p(D)pϕ(A|D) between the
dataset D and architecture A, where p(D) is the distribu-
tion of dataset D and pϕ(A|D) is the posterior architectural
distribution parameterized by ϕ. In differentiable NAS, we

12313

learn the parameter ϕ that accurately predicts the specific
dataset D using the architecture A. To achieve this goal,
we propose to maximize the mutual information Iϕ(D, A)
between the dataset D and architecture A as:

max
ϕ

Iϕ(D, A) = Epϕ(D,A)

[
log

pϕ(D, A)

p(D)pϕ(A)

]
= H(D)−Hϕ(D|A), (2)

where H(·) denotes information entropy. Since the data en-
tropy H(D) is constant for a given dataset D and indepen-
dent of ϕ, we can omit H(D) in Equation (2).

max
ϕ

−Hϕ(D|A) = Epϕ(D,A) [log pϕ(D|A)] (3)

It can be extremely challenging to compute the mutual
information between high-dimensional random variables.
Thus, we obtain the lower bound of the mutual informa-
tion by introducing a variational approximation qθ(D|A) to
the true posterior distribution pϕ(D|A).

Iϕ(D, A) = H(D) + Epϕ(D,A) [log qθ(D|A)]

+DKL(pϕ(D|A)||qθ(D|A))

≥ H(D) + Epϕ(D,A) [log qθ(D|A)] (4)

Equation (4) suggests that the lower bound is tight when
qθ(D|A) matches pϕ(D|A). In the view of NAS, the
true posterior pϕ(D|A) is the distribution of sub-network
and is approximated with the distribution of super network
qθ(D|A). Formally, the objective for differentiable NAS is

max
θ,ϕ

Epϕ(D,A) [log qθ(D|A)], (5)

where ϕ is the architectural parameter and θ is the network
weight. Given arbitrary finite dataset D, we estimate the ex-
pectations with respect to p(D) and its gradients via Monte
Carlo methods. The objective L(ϕ, θ;D) is formulated as

max
θ,ϕ

L(ϕ, θ;D) =
∑
d∈D

Epϕ(A|D) [log qθ(D|A)] . (6)

Existing differentiable NAS approaches [29, 39, 41] as-
sume that architectural distribution on each edge is indepen-
dent of each other. Thus, the true posterior pϕ(A|D) can
be factorized in the form of

∏
i pϕi

(Ai|D) to simplify the
search process. A simple Monte Carlo sampling is lever-
aged to compute the expectation in Equation (6). However,
this assumption obscures the natural dependencies among
architectural parameters. As convolutional neural networks
exhibit powerful ability in fitting arbitrary functions, we can
leverage it to model the implicit distribution [33, 46] and
achieve the simple sampling by forward propagation. In-
stead of fully factorizable assumption, we leverage convo-
lutional neural network to model the architectural distribu-
tion pϕ(A|D). Since the single convolutional neural net-
work ϕ(·) can only conduct point estimation for architec-
tural distribution, we further introduce an additive Gaussian

Algorithm 1 VIM-NAS
Input: Data D = {xn, yn}1:N , initialized network weights

θ, initialized architectural neural network parameters ϕ,
and input Gaussian noise ϵ.

Output: The searched final architecture.
1: while not converged do
2: Sample Gaussian noise ξ ∼ N (0, 1).
3: Sample architecture A = ϕ(ϵ) + ξ, A ∼ pϕ(A|D).
4: Update weights θ by descending ∇θL(ϕ, θ;D).
5: Update network ϕ by descending ∇ϕL(ϕ, θ;D).
6: end while
7: Derive the final architecture based on the learned ϕ.

noise ξ ∼ N (0, 1), and reformulate the architectural distri-
bution pϕ(A|D) = N (µϕ, 1), where µ is parameterized by
the convolutional neural network ϕ(·). Algorithm 1 elabo-
rates the implementation of VIM-NAS.

3.3. Architectural Neural Network

VIM-NAS leverages an architectural neural network
ConvReLUBN(3,14,3)-ConvReLUBN(14,1,3) to model the
architectural distribution, where ConvReLUBN denotes the
module stacked with convolution, relu and batch normal-
ization, and the following three numbers denote the input
channel number, output channel number and kernel size, re-
spectively. The details of architectural neural network can
be referred to supplementary materials. We further take a
microscopic view for this architectural neural network, and
figure out what is learned by the simple convolutional neu-
ral network. We visualize the feature map of the ConvRe-
LUBN(3,14,3) module in Figure 1. As we can see from Fig-
ure 1, the initialized feature map is dense and random, while
a sparse connection is learned from convolutional neural
network after training one epoch. This phenomenon indi-
cates that the proposed simple convolutional neural network
captures the dependencies among architectural distribution.

3.4. Convergence to Nearly One-hot Within 1 Epoch

To our best knowledge, VIM-NAS is the fastest differ-
entiable NAS approaches up to now. VIM-NAS can reach
the convergent result by only training one epoch in DARTS
search space. Figures 2 and 3 demonstrate that VIM-NAS
learns a nearly one-hot architectural distribution from the
random initialized continuous distribution automatically af-
ter one epoch training.

Compared with DARTS, as shown in Figure 2, which
exhibits oscillation and homogeneity among candidate op-
erations during the search period, VIM-NAS approaches to
the true posterior distribution of sub-network with a nearly
one-hot architectural distribution. To verify the impact of
initialization imposed on the convergent nearly one-hot ar-
chitectural distribution, Figure 3 utilizes different colors for

12314

(a) Initialized feature map

(b) Convergent feature map after one epoch

Figure 1. Comparison with initialized feature map and convergent
feature map (one epoch training) of intermediate layer. In each sub
figure, 14 channels of feature maps and each feature map shares
the same size as candidate operations and edges.

(a) DARTS-N (b) VIM-NAS-N

Figure 2. Anytime architectural weights on the first edge of nor-
mal cell on DARTS search space for DARTS and VIM-NAS. ‘N’
denotes the searched normal cell(best viewed in color).

(a) Initialized architectural distri-
bution

(b) Convergent architectural distri-
bution after one epoch training

Figure 3. Contrast of architectural distribution between initializa-
tion and convergence after training one epoch.

a brief instruction that the information is learned from the
dataset instead of random initialization.

3.5. Discussion

Understanding VIM-NAS in a GAN-alike Way. In gen-
erative models, a convolutional neural network is leveraged

to learn the good representation from the noise for down-
stream tasks. Similarly, VIM-NAS utilizes a simple con-
volutional neural network ϕ to map the input noise to the
target architectural distribution.

When considering to utilize the network ϕ for the mod-
eling of architectural distribution, the optimization objec-
tive can be deemed as adversarial optimization of two net-
works. Specifically, the architectural neural network serves
as a generator to learn a good representation of architectural
distribution, while the super network acts as a discrimina-
tor to distinguish the architecture with good performance.
In contrast to vanilla GAN, which utilizes the real data as
the ground truth to optimize the discriminator, our VIM-
NAS has no explicit good architectures as reference. Con-
sequently, VIM-NAS leverages the training accuracy of a
given dataset to optimize the discriminator.
Reformulation of Variational Dropout NAS. Further-
more, we also leverage the convolutional neural network
φ(·) to parameterize the variance σ of Gaussian architec-
tural distribution. Specifically, we achieve the parameter-
ized architectural distribution as pϕ,φ(A|D) = N (µϕ, σφ).
We can utilize the reparameterization trick to sample from
the distribution as A = µϕ+σφ ·ξ, ξ ∼ N (0, 1). Moreover,
we can reinterpret the architectural distribution with varia-
tional dropout [23, 32] as N (µ, µ2δ), where δ = σ/µ2 =
p/(1−p), and p denotes the Gaussian dropout rate. Follow-
ing [37], a sparse constraint is also leveraged in our experi-
ments. We name the reformulated variational dropout NAS
as VIM-NAS-Dropout and report the results in Section 4.

4. Experiments
4.1. Datasets

We conduct experiments on CIFAR-10/100 [24] and Im-
ageNet [12], three most popular datasets for evaluating
NAS. CIFAR-10/100 consist of 60K images, 50K train-
ing images and 10K test images. ImageNet is a large-
scale benchmark for image classification that contains 1.3M
training images and 50K test images.

4.2. Experiments on DARTS Search Space

Search Space. Following DARTS [29], the macro architec-
ture is constructed by stacking 6 normal cells and 2 reduc-
tion cells. Each cell contains seven nodes, including two
input nodes, four intermediate nodes and one output node.
The outputs of four intermediate nodes are concatenated as
the input to the output node. Each cell has 14 candidate
edges, 8 candidate operations for each edge, ’zero’ opera-
tion is utilized to select candidate edges implicitly.
Search Settings. During the search process, DARTS di-
rectly utilizes 14×8 architectural parameters to describe the
micro DAG. Instead, VIM-NAS leverages an architectural
neural network to model the architectural distribution. The

12315

(a) Search space 1 (b) Search space 2 (c) Search space 3

Figure 4. Anytime test regret on NAS-Bench-1Shot1 (best viewed in color).

c_{k-2} 0skip_connect

c_{k-1}

sep_conv_3x3

1sep_conv_3x3 2

skip_connect

sep_conv_3x3 3
sep_conv_3x3

c_{k}

sep_conv_3x3

sep_conv_3x3

(a) Normal cell

c_{k-2}

0

skip_connect

1

sep_conv_3x3

2

sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_3x3

3sep_conv_3x3

sep_conv_3x3

sep_conv_3x3
c_{k}

(b) Reduction cell

Figure 5. Searched normal cell and reduction cell of VIM-NAS on
DARTS search space on CIFAR-10.

architectural neural network parameters and conventional
network weights are optimized with two separate momen-
tum SGD optimizers, respectively. Since the architectural
neural network is quite small, the extra computation cost is
negligible. Other detailed settings for searching and evalua-
tion are the same as DARTS (please refer to supplementary
materials).
Results on CIFAR-10. Our proposed VIM-NAS reaches
the convergent result after training only one epoch (within
10 minutes on a single NVIDIA GTX 1080 Ti GPU). The
architectural distribution reaches almost one-hot and re-
mains unchanged during further training. The searched nor-
mal cell and reduction cell on CIFAR-10 are shown in Fig-
ure 5. As in Table 1, VIM-NAS can achieve state-of-the-art
performance with the top-1 test error of 2.45% and 15.80%
on CIFAR-10 and CIFAR-100, respectively.
Results on ImageNet. We further transfer the searched ar-
chitectures on CIFAR-10 to ImageNet to evaluate the gener-
alization ability. As shown in Table 2, VIM-NAS achieves
state-of-the-art performance with a top-1 error rate of 24.0%
and a top-5 error rate of 7.2% compared with other popular
gradient-based NAS approaches. Notice that we can out-
perform the directly searched architecture on ImageNet by

Architecture Top-1 (Test) Error (%) Params Cost
CIFAR-10 CIFAR-100 (M) (days)

DARTS-V1 [29] 3.00 ± 0.14 17.76∗ 3.3 0.4
DARTS-V2 [29] 2.76 ± 0.09 17.54∗ 3.3 1
P-DARTS [8] 2.50 16.55∗ 3.4 0.3
SNAS [41] 2.85 ± 0.02 - 2.8 1.5
PARSEC [5] 2.81 ± 0.03 - 3.7 1
BayesNAS [53] 2.81 ± 0.04 - 3.4 0.2
DATA (M = 7) [51] 2.79 - 2.9 1
PC-DARTS [42] 2.57 ± 0.07 - 3.6 0.1
ASNG-NAS [1] 2.83 ± 0.14 - 3.9 0.11
SI-VDNAS-C† [37] 2.60 ± 0.05 16.20 2.7 0.8
GDAS [15] 2.93 18.38 3.4 0.21
SDARTS-ADV [7] 2.61 ± 0.02 - 3.3 1.3
SGAS [25] 2.66 ±0.24 - 3.7 0.25
DARTS- [10] 2.59 ± 0.08 - 3.5 0.4
TE-NAS [6] 2.63 ± 0.06 - 3.8 0.05
VIM-NAS 2.45 ± 0.04 15.80 3.9 0.007

Table 1. Comparison with state-of-the-art gradient-based NAS
methods for image classification on CIFAR-10/100. For each
method, top-1 test error (%), number of parameters (M) and search
cost (GPU-days) are evaluated. Here, lower error rate stands for
better performance and ∗ indicates that the experiments are con-
ducted by P-DARTS. † denotes that SI-VDNAS-C are the searched
convergent cell.

PC-DARTS. Moreover, we conduct a direct search on Im-
ageNet and achieve even better performance with a top-1
error rate of 23.8% and a top-5 error rate of 7.1%.

4.3. Experiments on NAS-Bench-201

Settings. Based on the reduced DARTS-like cell search
space, NAS-Bench-201 [13] has 4 internal nodes with 5
operations per node, which constructs 15,625 architectures
in total. All the architecture performance on three datasets
(CIFAR-10, CIFAR-100, ImageNet-16-120 [9]) can be di-
rectly obtained by querying in the database as ground-truth.
We use the same search setting with Section 4.2, and keep
the hyperparameters for all compared methods the same
as [13]. We run every method 4 independent times with
different random seeds and report the results in Table 3.

12316

Architecture Test Error (%) FLOPS Search Cost
Top-1 Top-5 (M) (GPU-days)

DARTS (2nd) [29] 26.7 8.7 574 1
GDAS [15] 26.0 8.5 581 0.21
PARSEC [5] 26.0 8.4 - 1
PC-DARTS [42] 25.1 7.8 586 0.1
PC-DARTS† [42] 24.2 7.3 597 3.8
P-DARTS [8] 24.4 7.4 557 0.3
DARTS+† [27] 23.9 7.4 582 6.8
DARTS-† [10] 23.8 7.0 467 4.5
FairDARTS-B [11] 24.9 7.5 541 0.4
DSO-NAS-share [52] 25.4 8.4 586 6
SDARTS-ADV [7] 25.2 7.8 - 1.3
SGAS [25] 24.2 7.2 585 0.25
SparseNAS [40] 24.7 7.6 - 1
BayesNAS [53] 26.5 8.9 - 0.2
DATA (M = 7) [51] 24.9 8.1 - 1.5
SI-VDNAS-B [37] 25.3 8.0 577 0.3
TE-NAS [6] 26.2 8.3 - 0.05
TE-NAS† [6] 24.5 7.5 - 0.17
VIM-NAS 24.0 7.2 627 0.007
VIM-NAS† 23.8 7.1 660 0.26

Table 2. Comparison with state-of-the-art gradient-based NAS
methods on ImageNet. For each method, top-1 and top-5 test er-
rors (%), FLOPS (M) and search cost (GPU-days) are evaluated.
Here, lower error rate stands for better performance and † indicates
that the architecture is directly searched on ImageNet.

Results. During the search process on CIFAR-10, our
proposed VIM-NAS can reach the convergent result af-
ter training only one epoch (232.51 seconds on a sin-
gle NVIDIA GTX 1080 Ti GPU). Compared with Ran-
dom baseline, our VIM-NAS shows better performance on
all three datasets. Compared with other differentiable al-
gorithms DARTS-V1 [29], DARTS-V2 [29], GDAS [15],
SETN [14], DARTS- [10] and TE-NAS [6], our proposed
VIM-NAS achieves a new state-of-the-art, the best of which
almost touches the optimal. Moreover, we achieve state-of-
the-art performance by training one epoch with much re-
duced search time, which is minimal among differentiable
approaches. Though TE-NAS proposes a training-free strat-
egy, the search cost is six times as large as VIM-NAS. Con-
sequently, our VIM-NAS demonstrates more stable and su-
perior performance on NAS-Bench-201.

4.4. Experiments on NAS-Bench-1Shot1

Settings. NAS-Bench-1Shot1 [49] consists of 3 search
spaces based on CIFAR-10, which contains 6,240, 29,160
and 363,648 architectures, respectively. The macro archi-
tecture is constructed by stacking 3 blocks and each block
contains 3 stacked cells. The micro architecture of each
cell is represented as a DAG. The search algorithm needs
to determine the operation on every edge, as well as the
topology of edges connecting input, output nodes and the
choice blocks. We leverage the architectural neural network

(same as Section 4.2) to model the operation distribution
and keep the other parameters the same as [49] to determine
the topology. We compare our proposed methods with other
popular NAS algorithms on all 3 search spaces. Each algo-
rithm is trained for 50 epochs with three independent times,
and the hyperparameters are set as defaults [49].
Results. The anytime test regret averaged from three inde-
pendent runs are exhibited in Figure 4. Our proposed VIM-
NAS can reach the convergent result after training for sev-
eral epochs (2-5 epochs) in all three search spaces. Though
the operation distribution parameterized by the architec-
tural neural network reaches convergence in one epoch,
the other topology parameters require several epochs to
converge. Random Search with Weight Sharing [26] and
ENAS [34] mainly find some poor performance architec-
tures. GDAS [15] turns to converge prematurely to a sub-
optimal local minimum. DARTS and PC-DARTS explore
some better architecture as the search process goes gradu-
ally. Our proposed VIM-NAS achieves state-of-the-art per-
formance after training several epochs in search spaces 1
and 2, respectively. For search space 3, VIM-NAS can also
achieve a satisfactory result after training two epochs. Com-
pared with GDAS, which demonstrates the premature con-
vergence due to the temperature annealing of the Gumbel
Softmax, our VIM-NAS consistently converges to a better
local minimum across all three search spaces.

4.5. Experiments on Simplified Search Spaces S1-S4

Settings. RobustDARTS (R-DARTS) [48] proposed four
simplified search spaces (S1-S4), which keep the same
macro architecture as DARTS but only contain a por-
tion of candidate operations (please refer to details in R-
DARTS [48]). We search on CIFAR-10 with the same ar-
chitectural neural network to model the architectural distri-
bution as Section 4.2. There are two different evaluation set-
tings from R-DARTS [48], SDARTS [7] and DARTS- [10].
Following R-DARTS [48], we use 20 cells with 36 initial
channels for CIFAR-10 in S1 and S3, 20 cells with 16 ini-
tial channels for CIFAR-10 in S2 and S4, and 8 cells with
16 initial channels for CIFAR-100 in all four search spaces.
Moreover, following SDARTS [7] and DARTS- [10], we
evaluate the architecture performance using 20 cells with
36 initial channels for CIFAR-10 in S2 and S4, and 20 cells
with 36 initial channels for CIFAR-100 in all four search
spaces. We run every method 4 independent times and pick
the final best architecture performance reported in Table 4.
Results. Our proposed VIM-NAS can converge after train-
ing one epoch (within 10 minutes), and the searched archi-
tecture performance outperforms the recent SOTAs across
several spaces and datasets, which further demonstrate the
robustness of VIM-NAS. Specifically, we find a good archi-
tecture in S1 with the lowest top-1 test error of 2.61% and
16.12% on CIFAR-10 and CIFAR-100, respectively. Be-

12317

Method Search Cost CIFAR-10 (%) CIFAR-100 (%) ImageNet-16-120 (%)
(seconds) validation test validation test validation test

ResNet [21] N/A 90.83 93.97 70.42 70.86 44.53 43.63
Random 0.01 90.93 ± 0.36 93.70 ± 0.36 70.60 ± 1.37 70.65 ± 1.38 42.92 ± 2.00 42.96 ± 2.15
Reinforce [54] 0.12 91.09 ± 0.37 93.85 ± 0.37 70.05 ± 1.67 70.17 ± 1.61 43.04 ± 2.18 43.16 ± 2.28
ENAS [34] 14058.80 39.77 ± 0.00 54.30 ± 0.00 10.23 ± 0.12 10.62 ± 0.27 16.43 ± 0.00 16.32 ± 0.00
DARTS (1st) [29] 11625.77 39.77 ± 0.00 54.30 ± 0.00 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.41 ± 0.00
DARTS (2nd) [29] 35781.80 39.77 ± 0.00 54.30 ± 0.00 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.41 ± 0.00
GDAS [15] 31609.80 89.89 ± 0.08 93.61 ± 0.09 71.34 ± 0.04 70.70 ± 0.30 41.59 ± 1.33 41.71 ± 0.98
SETN [14] 34139.53 84.04 ± 0.28 87.64 ± 0.00 58.86 ± 0.06 59.05 ± 0.24 33.06 ± 0.02 32.52 ± 0.21
DARTS- [10] 11625.77 91.03 ± 0.44 93.80 ± 0.40 71.36 ± 1.51 71.53 ± 1.51 44.87 ± 1.46 45.12 ± 0.82
TE-NAS [6] 1558 - 93.90 ± 0.47 - 71.24 ± 0.56 - 42.38 ± 0.46
Ours 232.51 91.48 ± 0.09 94.31 ± 0.11 73.12 ± 0.51 73.07 ± 0.58 45.92 ± 0.51 46.27 ± 0.17
Ours (best) 232.51 91.55 94.36 73.49 73.51 46.37 46.34
Optimal N/A 91.61 94.37 73.49 73.51 46.77 47.31

Table 3. Comparison with state-of-the-art NAS methods on NAS-Bench-201 [13]. Averaged on 4 runs of searching.

Benchmark DARTS† R-DARTS† DARTS†
DARTS-† Ours† PC-DARTS‡ SDARTS‡

DARTS-‡ Ours‡DP L2 ES ADA RS ADV

C10

S1 3.84 3.11 2.78 3.01 3.10 2.68 2.61 3.11 2.78 2.73 2.68 2.61
S2 4.85 3.48 3.31 3.26 3.35 3.71 3.22 3.02 2.75 2.65 2.63 2.53
S3 3.34 2.93 2.51 2.74 2.59 2.42 2.42 2.51 2.53 2.49 2.42 2.42
S4 7.20 3.58 3.56 3.71 4.84 3.88 3.55 3.02 2.93 2.87 2.86 2.85

C100

S1 29.46 25.93 24.25 28.37 24.03 22.41 22.07 18.87 17.02 16.88 16.92 16.12
S2 26.05 22.30 22.24 23.25 23.52 21.61 20.90 18.23 17.56 17.24 16.14 16.35
S3 28.90 22.36 23.99 23.73 23.37 21.13 21.11 18.05 17.73 17.12 15.86 15.94
S4 22.85 22.18 21.94 21.26 23.20 21.55 21.01 17.16 17.17 15.46 17.48 17.39

Table 4. Comparison in various search spaces. We report the lowest error rate (%) of 4 found architectures. ‡: under [7, 10] evaluation
settings where all models have 20 layers and 36 initial channels. †: under [48] settings where CIFAR-10 models in S2 and S4 have 20
layers and 16 initial channels, and CIFAR-100 models have 8 layers and 16 initial channels.

sides, VIM-NAS achieves state-of-the-art performance in
S2 with the top-1 test error of 2.53% on CIFAR-10 and
20.90% on CIFAR-100 under small evaluation settings. In
S3, we obtain a well-performed architecture with state-of-
the-art top-1 test error of 2.42% on CIFAR-10 and 21.11%
on CIFAR-100. Moreover, VIM-NAS achieves a top-1 er-
ror rate of 2.85% on CIFAR-10 and 21.01% on CIFAR-100
in S4. The architectures of all these models can be found in
the supplementary material.

4.6. Extensive Experiments

Since the DARTS search space is the most popular
search space, we conduct extensive experiments on it.
Ablation Study on Architectural Network. To demon-
strate the effectiveness of our proposed architectural neu-
ral network, we further evaluate DARTS† with the vanilla
14 × 8 architectural parameters, but with the same pre-
training stage, posterior Gaussian distribution with covari-
ance as 1 and the same learning rate (0.025) for the architec-
tural neural network as VIM-NAS. For a better understand-
ing of the convergence of search algorithms, we visualize
the architectural weights for the first edge of normal cell
and reduction cell.

As seen in Figure 6, vanilla DARTS converges slowly

and suffers from high uncertainty lying in the homogeniza-
tion of architectural parameters. Though with the same
large learning rate, DARTS† fails to converge quickly and
turns to behave like noise. As seen in Figure 8, Our pro-
posed VIM-NAS can achieve fast convergence to a well-
performed local minimum after training one epoch. Con-
sequently, it is our architectural neural network design that
contributes to the fast and stable convergence.

To verify the design of the architectural network, we fur-
ther implement a small architectural neural network with a
single ConvReLUBN module and a large architectural neu-
ral network with five modules, which are denoted as VIM-
NAS-Small and VIM-NAS-Large, respectively. Please re-
fer to the supplementary material for the detailed network
structure. The architectural weights for the first edge of the
normal cell are visualized in Figure 7, and the evaluation
performance is listed in Table 5. VIM-NAS-Small exhibits
slightly poor performance and unstable convergence with
large fluctuation due to the limited capacity of a small net-
work. VIM-NAS-Large turns to gradually converge after
training several epochs, since the large architectural neural
network needs a longer period of training.

Extensive Experiments on Approximating Posterior Ar-
chitectural Distribution. Instead of leveraging the proba-

12318

(a) DARTS-N (b) DARTS†-N

Figure 6. Anytime architectural weights on DARTS search space.
’N’ denotes the searched normal cell. DARTS†: DARTS is imple-
mented with high learning rate (0.025) and added noise.

(a) VIM-NAS-S-N (b) VIM-NAS-L-N

Figure 7. Anytime architectural weights on DARTS search space.
‘N’ denotes the searched normal cell. VIM-NAS-S: VIM-NAS
implemented with a small architectural network. VIM-NAS-L:
VIM-NAS implemented with a large architectural network.

(a) VIM-NAS-N (b) VIM-NAS-R

Figure 8. Anytime architectural weights on DARTS search space.
’N’ and ’R’ denote normal cell and reduction cell, respectively.

(a) VIM-NAS-D-N (b) VIM-NAS-P-N

Figure 9. Anytime architectural weights on DARTS search space.
’N’ denotes the searched normal cell. VIM-NAS-D: reformulation
of variational dropout NAS with VIM. VIM-NAS-P-N: VIM-NAS
implemented with point estimation.

bility estimation to model the architectural distribution in
Section 3.2, we directly utilize the convolutional neural
network as a point estimation to approximate the archi-

Method DARTS DARTS† VIM-NAS
Top-1 Error (%) 3.00 2.65 2.45
Params (M) 3.3 3.6 3.9
Method VIM-NAS-S VIM-NAS-L VIM-NAS-D
Top-1 Error (%) 2.51 2.58 2.58
Params (M) 3.6 3.7 3.3

Table 5. Extensive experiments on CIFAR10. DARTS†: DARTS
implemented with high learning rate (0.025) and added noise.
VIM-NAS-S: VIM-NAS implemented with a small architectural
network. VIM-NAS-L: VIM-NAS implemented with a large ar-
chitectural network. VIM-NAS-D: reformulation of variational
dropout NAS with variational information maximization.

tectural distribution, namely VIM-NAS-P. Furthermore, we
also leverage the convolutional neural network to parame-
terize the variance of the posterior architectural distribution,
which is deemed as a reformulation of variational dropout
NAS in Section 3.5, namely VIM-NAS-Dropout.

The architectural weights for the first edge of searched
normal cells are visualized in Figure 9. The point estimation
is less effective, and VIM-NAS-P turns to converge slowly
with large fluctuation. VIM-NAS-Dropout can also achieve
fast and stable convergence as VIM-NAS.

5. Conclusion
In this paper, we provide new insights into NAS that

the architectural distribution is the latent representation of
a given dataset. Then, we leverage a simple yet effec-
tive convolutional neural network to model the dependen-
cies among architectural distribution. Moreover, we pro-
pose a novel search strategy to maximize the variational
lower bound to the mutual information between the data
points and the latent architectural representations. Exper-
imental results demonstrate VIM-NAS exhibits extremely
fast convergence speed within one epoch, and achieves
state-of-the-art performance on various search spaces, in-
cluding DARTS search space, NAS-Bench-1shot1, NAS-
Bench-201 and simplified search spaces S1-S4. Specifi-
cally, VIM-NAS achieves a top-1 error rate of 2.45% and
15.80% within 10 minutes on CIFAR-10 and CIFAR-100,
respectively. When transferred to ImageNet, VIM-NAS
reaches a 24.0% top-1 error rate. Moreover, a direct search
on ImageNet achieves even better performance with a top-1
error rate of 23.8% and a top-5 error rate of 7.1%.

Acknowledgement
This work was supported in part by the National Natu-

ral Science Foundation of China under Grants 61932022,
61720106001, 61931023, 61831018, 61971285, 61871267,
61972256, 61838303, and in part by the Program of Shang-
hai Science and Technology Innovation Project under Grant
20511100100.

12319

References
[1] Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari,

Kento Uchida, Shota Saito, and Kouhei Nishida. Adaptive
stochastic natural gradient method for one-shot neural archi-
tecture search. In Proceedings of the 36th International Con-
ference on Machine Learning, pages 171–180, 2019.

[2] Qian Bao, Wu Liu, Jun Hong, Lingyu Duan, and Tao Mei.
Pose-native network architecture search for multi-person hu-
man pose estimation. In Proceedings of the 28th ACM Inter-
national Conference on Multimedia, pages 592–600, 2020.

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In Proceedings of the 35th In-
ternational Conference on Machine Learning, pages 549–
558, 2018.

[4] Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston.
SMASH: One-shot model architecture search through hy-
pernetworks. In 6th International Conference on Learning
Representations, 2018.

[5] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi.
Probabilistic neural architecture search. arXiv preprint
arXiv:1902.05116, 2019.

[6] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neu-
ral architecture search on ImageNet in four GPU hours: A
theoretically inspired perspective. In 9th International Con-
ference on Learning Representations, 2021.

[7] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differen-
tiable architecture search via perturbation-based regulariza-
tion. In Proceedings of the 37th International Conference on
Machine Learning, pages 1554–1565, 2020.

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 1294–
1303, 2019.

[9] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of ImageNet as an alternative to the
CIFAR datasets. arXiv preprint arXiv:1707.08819, 2017.

[10] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. DARTS-: Robustly stepping out
of performance collapse without indicators. In 9th Interna-
tional Conference on Learning Representations, 2021.

[11] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.
Fair DARTS: Eliminating unfair advantages in differentiable
architecture search. In 16th European Conference on Com-
puter Vision, pages 465–480, 2020.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009.

[13] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the
scope of reproducible neural architecture search. In 7th In-
ternational Conference on Learning Representations, 2019.

[14] Xuanyi Dong and Yi Yang. One-shot neural architec-
ture search via self-evaluated template network. In 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3681–3690, 2019.

[15] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four GPU hours. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1761–1770, 2019.

[16] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Effi-
cient multi-objective neural architecture search via Lamarck-
ian evolution. In 7th International Conference on Learning
Representations, 2019.

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. Journal of Machine
Learning Research, 20:1–21, 2019.

[18] Jiemin Fang, Yuzhu Sun, Qian Zhang, Kangjian Peng, Yuan
Li, Wenyu Liu, and Xinggang Wang. FNA++: Fast network
adaptation via parameter remapping and architecture search.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43(9):2990–3004, 2020.

[19] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. NAS-FPN:
Learning scalable feature pyramid architecture for object de-
tection. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7036–7045, 2019.

[20] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui
Yang, Han Wu, Xinghao Chen, and Chang Xu. Hit-Detector:
Hierarchical trinity architecture search for object detection.
In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11405–11414, 2020.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with Gumbel-Softmax. In Workshop on
Bayesian Deep Learning, NIPS 2016, 2016.

[23] Durk P. Kingma, Tim Salimans, and Max Welling. Varia-
tional dropout and the local reparameterization trick. In Ad-
vances in Neural Information Processing Systems 28, pages
2575–2583, 2015.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009.

[25] Guohao Li, Guocheng Qian, Itzel C. Delgadillo, Matthias
Muller, Ali Thabet, and Bernard Ghanem. SGAS: Sequential
greedy architecture search. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1620–1630, 2020.

[26] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. In Uncertainty in
Artificial Intelligence, pages 367–377, 2020.

[27] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. DARTS+:
Improved differentiable architecture search with early stop-
ping. arXiv preprint arXiv:1909.06035, 2019.

[28] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei. Auto-
DeepLab: Hierarchical neural architecture search for seman-
tic image segmentation. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
82–92, 2019.

12320

[29] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In 7th International Con-
ference on Learning Representations, 2019.

[30] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In Workshop on Bayesian Deep Learning,
NIPS 2016, 2016.

[31] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya
Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz
Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hod-
jat. Evolving deep neural networks. In Artificial Intelligence
in the Age of Neural Networks and Brain Computing, pages
293–312. Elsevier, 2019.

[32] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In Pro-
ceedings of the 34th International Conference on Machine
Learning, pages 2498–2507, 2017.

[33] Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, and
Dmitry Vetrov. Doubly semi-implicit variational inference.
In Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics, pages 2593–2602, 2019.

[34] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In Proceedings of the 35th International Conference
on Machine Learning, pages 4095–4104, 2018.

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the 33rd AAAI Conference on Ar-
tificial Intelligence, pages 4780–4789, 2019.

[36] Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra.
AttentiveNAS: Improving neural architecture search via at-
tentive sampling. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6418–
6427, 2021.

[37] Yaoming Wang, Wenrui Dai, Chenglin Li, Junni Zou, and
Hongkai Xiong. SI-VDNAS: Semi-implicit variational
dropout for hierarchical one-shot neural architecture search.
In Proceedings of the 29th International Joint Conference on
Artificial Intelligence, pages 2088–2095, 2020.

[38] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A
survey on neural architecture search. CoRR, abs/1905.01392,
2019.

[39] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. FBNet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10734–10742, 2019.

[40] Yan Wu, Aoming Liu, Zhiwu Huang, Siwei Zhang, and Luc
Van Gool. Neural architecture search as sparse supernet. In
Proceedings of the 35th AAAI Conference on Artificial Intel-
ligence, pages 10379–10387, 2021.

[41] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: stochastic neural architecture search. In 6th Inter-
national Conference on Learning Representations, 2018.

[42] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: Partial chan-
nel connections for memory-efficient architecture search. In

8th International Conference on Learning Representations,
2020.

[43] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang.
Does unsupervised architecture representation learning help
neural architecture search? In Advances in Neural Informa-
tion Processing Systems 32, pages 12486–12498, 2020.

[44] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,
Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. CARS:
Continuous evolution for efficient neural architecture search.
In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1829–1838, 2020.

[45] Lewei Yao, Hang Xu, Wei Zhang, Xiaodan Liang, and Zhen-
guo Li. SM-NAS: Structural-to-modular neural architecture
search for object detection. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence, pages 12661–12668,
2020.

[46] Mingzhang Yin and Mingyuan Zhou. Semi-implicit varia-
tional inference. In Proceedings of the 35th International
Conference on Machine Learning, pages 5660–5669, 2018.

[47] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. BigNAS: Scal-
ing up neural architecture search with big single-stage mod-
els. In 16th European Conference on Computer Vision, pages
702–717, 2020.

[48] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding and
robustifying differentiable architecture search. In 7th Inter-
national Conference on Learning Representations, 2019.

[49] Arber Zela, Julien Siems, and Frank Hutter. NAS-Bench-
1Shot1: Benchmarking and dissecting one-shot neural archi-
tecture search. In 7th International Conference on Learning
Representations, 2019.

[50] Wenqiang Zhang, Jiemin Fang, Xinggang Wang, and Wenyu
Liu. EfficientPose: Efficient human pose estimation with
neural architecture search. Computational Visual Media,
7:335–347, 2021.

[51] Xinbang Zhang, Jianlong Chang, Yiwen Guo, Meng
Gaofeng, Shiming Xiang, Zhouchen Lin, and Chunhong
Pan. DATA: Differentiable ArchiTecture Approximation
with distribution guided sampling. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(9):2905–
2920, 2020.

[52] Xinbang Zhang, Zehao Huang, Naiyan Wang, Shiming Xi-
ang, and Chunhong Pan. You only search once: Single
shot neural architecture search via direct sparse optimiza-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(9):2891–2904, 2020.

[53] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan.
BayesNAS: A Bayesian approach for neural architecture
search. In Proceedings of the 36th International Conference
on Machine Learning, pages 7603–7613, 2019.

[54] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning transferable architectures for scalable image
recognition. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8697–8710, 2018.

12321

