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Abstract

Recently, the performance of single image super-
resolution (SR) has been significantly improved with pow-
erful networks. However, these networks are developed for
image SR with specific integer scale factors (e.g., ×2/3/4),
and cannot handle non-integer and asymmetric SR. In this
paper, we propose to learn a scale-arbitrary image SR net-
work from scale-specific networks. Specifically, we develop
a plug-in module for existing SR networks to perform scale-
arbitrary SR, which consists of multiple scale-aware feature
adaption blocks and a scale-aware upsampling layer. More-
over, conditional convolution is used in our plug-in module
to generate dynamic scale-aware filters, which enables our
network to adapt to arbitrary scale factors. Our plug-in
module can be easily adapted to existing networks to real-
ize scale-arbitrary SR with a single model. These networks
plugged with our module can produce promising results for
non-integer and asymmetric SR while maintaining state-of-
the-art performance for SR with integer scale factors. Be-
sides, the additional computational and memory cost of our
module is very small.

1. Introduction
Single image super-resolution (SR) aims at recovering

a high-resolution (HR) image from its low-resolution (LR)
counterpart. As a long-standing low-level computer vision
problem, single image SR has been investigated for decades
[1, 2, 3, 4, 5, 6]. Recently, the rise of deep learning provides
a powerful tool to solve this problem, with numerous CNN-
based methods [7, 8, 9, 10, 11] being developed to improve
the SR performance.

Although recent CNN-based single image SR networks
[6, 10, 12, 13] have achieved promising performance, they
are developed for image SR with specific integer scale fac-
tors (e.g., ×2/3/4). In many real-world applications like
image retargeting, image editing and artworks, non-integer
SR (e.g., from 100× 100 to 220× 220) and asymmetric SR
(e.g., from 100 × 100 to 220 × 420) are highly demanded.
However, due to the fixed filters in upscale modules, most
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Figure 1. Visual comparison achieved by Bicubic, Meta-RCAN
[14] and our ArbRCAN. “(+Bicubic)” means that the network out-
put is further resized to the expected resolution using bicubic in-
terpolation for asymmetric scale factors.

existing networks can only zoom in an image with specific
integer scales and cannot handle scale-arbitrary SR in real-
world scenarios.

To address this limitation, Hu et al. [14] proposed a
Meta-SR network to dynamically predict filters in the up-
scale module for different scale factors using meta-learning.
As a result, Meta-SR achieves promising performance on
non-integer scale factors. However, scale information is
only used for upsampling in Meta-SR. That is, features in
the backbone are the same for all SR tasks with different
scale factors, which hinders the further improvement of per-
formance. Moreover, Meta-SR focuses on SR with non-
integer scale factors but cannot handle SR with asymmetric
scale factors.

In this paper, we propose to learn a scale-arbitrary single
image SR network from scale-specific networks. Specifi-
cally, we develop a plug-in module for existing SR networks
to enable scale-arbitrary SR, which consists of multiple
scale-aware feature adaption blocks and a scale-aware up-
sampling layer. The scale-aware feature adaption blocks are
used to adapt features in the backbone to specific scale fac-
tors and the scale-aware upsampling layer is used for scale-
arbitrary upsampling. Within our plug-in module, con-
ditional convolutions are used to generate dynamic scale-
aware filters to handle different scale factors. Our plug-in
module can be easily adapted to existing networks for scale-

4801



arbitrary SR with small additional computational and mem-
ory cost. Baseline networks equipped with our module can
produce promising results for non-integer and asymmetric
SR (Fig. 1), while maintaining state-of-the-art performance
on integer scale factors with a single model. To the best
of our knowledge, our plug-in module is the first work to
handle asymmetric SR.

Our main contributions can be summarized as follows:
1) We develop a plug-in module for existing SR networks to
achieve scale-arbitrary SR, including multiple scale-aware
feature adaption blocks and a scale-aware upsampling layer.
2) Our plug-in module uses conditional convolution to dy-
namically generate filters based on the input scale infor-
mation, which facilitates our network to adapt to specific
scale factors. 3) Experimental results show that baseline
networks equipped with our module produce promising re-
sults for scale-arbitrary SR with only a single model. A
video demo is provided in the supplemental material.

2. Related Work
In this section, we first briefly review several major

works for CNN-based single image SR. Then, we discuss
conditional convolutions that are related to our work.
Single Image Super-Resolution. Due to the powerful fea-
ture representation and model fitting capabilities of deep
neural network, CNN-based single image SR methods [7,
8, 9, 6, 10] outperform traditional methods [1, 2, 15, 3, 4, 5]
significantly. Dong et al. [7] proposed a three-layer convo-
lutional network (namely, SRCNN) to learn the non-linear
mapping between LR images and HR images. A deeper
network (namely, VDSR) with 20 layers [8] was then devel-
oped to achieve better performance. Later, Lim et al. [16]
proposed a very deep and wide network, namely EDSR.
Specifically, batch normalization (BN) layers were removed
and a residual scaling technique was used to enable the
training of such a large model. Recently, Zhang et al. [12]
and Dai et al. [13] further improved the SR performance
by introducing channel attention and second-order channel
attention, respectively.

Although existing single image SR networks have
achieved promising results, they are trained for SR with a
single specific integer scale factor. To overcome this limi-
tation, Lim et al. [16] proposed a multi-scale deep super-
resolution (MDSR) system to integrate modules trained for
multiple integer scale factors (i.e., ×2/3/4). However,
MDSR cannot super-resolve images with non-integer scale
factors. Recently, Hu et al. [14] proposed a Meta-SR
network to solve the scale-arbitrary upsampling problem.
Specifically, they used meta-learning to predict weights of
filters for different scale factors. Nevertheless, Meta-SR
does not exploit the benefits of scale information during fea-
ture learning in the backbone. To make better use of scale
information, Fu et al. [17] introduced a residual scale atten-

Block 1 Block 8LR Image Block 16

Figure 2. Visualization of feature similarity maps.

tion network (RSAN), where the scale information is used
as a prior knowledge to learn discriminative features for su-
perior performance.

Despite Meta-SR and RSAN are able to super-resolve
images with non-integer scale factors, they cannot handle
asymmetric SR. In many real-world applications like im-
age retargeting, image editing and artworks, asymmetric
SR is also highly demanded. However, it is still under-
investigated in literature. In this paper, we develop a plug-
in module for existing SR networks to enable SR with both
non-integer and asymmetric scale factors.
Conditional Convolutions. Different from traditional con-
volutional layers with static filters, conditional convolutions
[18, 19, 20, 21] parameterize their filters conditioned on
the input as linear combinations of several experts. Con-
sequently, the capacity of the network can be efficiently im-
proved without a significant increase in computational cost.
In this paper, we extend the idea of conditional convolutions
to generate dynamic scale-aware filters to handle the scale-
arbitrary SR task. It is demonstrated that conditional con-
volutions facilitate our network to adapt to arbitrary scale
factors to achieve better SR performance.

3. Methodology

3.1. Motivation

Since SR tasks with different scale factors are inter-
related [16], it is non-trivial to learn a scale-arbitrary SR
network from scale-specific networks (e.g.,×2/3/4). Early
attempts [8, 22, 23] use shared features in the backbone to
handle multiple scale factors without considering the scale
information during feature learning. Intuitively, since the
degradation is different for various scale factors, scale infor-
mation can further be used to learn discriminative features
to improve SR performance [17]. In this section, we inves-
tigate the relationship between ×2/3/4 SR tasks to provide
insights for scale-arbitrary SR.

We conduct experiments to compare the feature similar-
ity on specific layers in pre-trained ×2/3/4 SR networks.
In our experiments, EDSR [16] is selected as the baseline
network. First, we downsample an image to 1

4 size (denoted
as I ∈RH×W ). Then, we feed I to EDSR networks devel-
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Figure 3. An overview of our plug-in module. The details of our scale-aware convolutional layer and scale-aware upsampling layer are
further illustrated in Figs. 4 and 5, respectively.

oped for ×2/3/4 SR. Following [24], features from the last
layer in the ith residual block are whitened to remove global
component for more precise calculation of pairwise similar-
ity, resulting in F×2

i , F×3
i , F×4

i ∈ R256×H×W . Next, for
each location p, we extract a triplet of feature samples at p
to obtain f×2

i , f×3
i , f×4

i ∈ R256 and compute the feature
similarity among them:

Si(p)=
1

3

(
(f×2

i )T f×3
i

‖f×2
i ‖‖f

×3
i ‖

+
(f×2

i )T f×4
i

‖f×2
i ‖‖f

×4
i ‖

+
(f×3

i )T f×4
i

‖f×3
i ‖‖f

×4
i ‖

)
.

(1)
The feature similarity map Si is visualized in Fig. 2. For
more results, please refer to the supplemental material.

From Fig. 2, we can see that feature similarity varies
for different blocks and regions. That is, the sensitivity
of features to the change of scale factors is different for
various blocks and regions. Consequently, we are moti-
vated to perform pixel-wise feature adaption accordingly.
For features within regions of high feature similarities, they
can be directly used for SR with arbitrary scale factors. In
contrast, features within regions of low feature similarities
are adapted to specific scale factors. More analyses are in-
cluded in the supplemental material.

3.2. Our Plug-in Module

The architecture of our plug-in module is shown in
Fig. 3. Given a baseline network (e.g., EDSR) developed
for SR with integer scale factors, we can extend it to a scale-
arbitrary SR network using our plug-in module. Specifi-
cally, scale-aware feature adaption is performed after every
K backbone blocks, as shown in Fig. 3(b). Following the
backbone module, a scale-aware upsampling layer is used
for scale-arbitrary upsampling.
Scale-Aware Feature Adaption. Given a feature map F ,

…
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Figure 4. An illustration of our scale-aware convolutional layer.

it is first fed to an hourglass module with four convolutions
and a sigmoid layer to generate a guidance map M with
values ranging from 0 to 1, as shown in Fig. 3(b). Then, F
is fed to a scale-aware convolution for feature adaption, re-
sulting in an adapted feature map F adapt. Next, the guidance
map M is used to fuse F and F adapt as:

F fuse = F + F adapt ×M. (2)

Intuitively, in regions with high feature similarities across
different scale factors, F can be directly used as F fuse. In
contrast, in regions with low feature similarities, F adapt is
added into F fuse for feature adaption. That is, M serves as
a gating mechanism and learns to guide pixel-wise feature
adaption. It is demonstrated in Sec. 4.3 that our network
benefits from the guidance maps to produce better results
for scale-arbitrary SR.

The scale-aware convolutional layer within our feature
adaption blocks is further illustrated in Fig. 4. First, the
horizontal and vertical scale factors rh and rv are fed to a
model controller with two fully connected (FC) layers to
generate routing weights. Then, these routing weights are
used to combine the experts, resulting in a scale-aware filter.
Here, experts represent a set of convolutional kernels to be
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Figure 5. An illustration of our scale-aware upsampling layer.

combined based on the scale information. Finally, the pre-
dicted filter is used to process the input feature maps for fea-
ture adaption. Different from vanilla convolution with fixed
filter, our scale-aware convolution dynamically customizes
its filter conditioned on the scale information by combining
knowledge from experts. It is demonstrated in Sec. 4.3 that
scale-aware convolutions facilitate our network to adapt to
specific scale factors to achieve better performance.
Scale-Aware Upsampling. Pixel shuffling layer [25] is
widely used in SR networks for upsampling with integer
scale factors. For ×r(r = 2, 3, 4) SR, input features of size
Cin ×H ×W are first fed to a convolution to produce fea-
tures of size r2Cout ×H ×W . Then, the resulting features
are shuffled to the size of Cout×rH×rW . The pixel shuf-
fling layer can be considered as a two-step pipeline, which
consists of a sampling step and a spatially-varying filter-
ing step (i.e., r2 convolutions for r2 different sub-positions).
Please refer to the supplemental material for more details.

In this paper, we generalize the pixel shuffling layer to
a scale-aware upsampling layer, as shown in Fig. 5. First,
each pixel (x, y) in the HR space is projected to the LR
space to compute its coordinates (L(x) and L(y)) and rela-
tive distances (R(x) and R(y)):

L(x) =
x+ 0.5

rh
− 0.5, (3)

R(x) = L(x)− floor(
x+ 0.5

rh
), (4)

where L(y) and R(y) are calculated similar to L(x) and
R(x). Next, R(x), R(y), rh and rv are concatenated and
fed to two FC layers for feature extraction, as shown in
Fig. 5(b). The resulting features are then passed to filter and
offset heads to predict routing weights and offsets (δx and
δy), respectively. After that, the routing weights are used to
combine two groups of experts, resulting in a pair of filters
for the bottleneck/expansion layers in Fig. 5(c). Finally, a
k×k neighborhood centered at (L(x) + δx, L(y) + δy) is
sampled using bilinear interpolation and convolved with the
predicted filters to produce the output features at (x, y), as
shown in Fig. 5(c).

In the implementation, a pair of convolutional kernels
(RC×C

8 ×k×k and RC
8 ×C×k×k) need to be generated and

stored for each location in HR space. Since the memory
consumption can be very high for k=3 (∼31.6G for a 720P
HR image), k is set to 1 in our networks for memory effi-
ciency (∼3.5G).

4. Experiments
4.1. Datasets and Metrics

We used the DIV2K dataset [26] for network training and
five benchmark datasets for evaluation, including Set5 [27],
Set14 [28], B100 [29], Urban100 [30], and Manga109 [31].
Peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) were used as evaluation metrics. Similar to
[14], we cropped borders for fair comparison. Note that, all
metrics were computed in the luminance channel.

4.2. Implementation Details

Following [14], symmetric scale factors varying from
1 to 4 with a stride of 0.1 (i.e., 1.1, 1.2, ..., 3.9, 4.0) were
used to generate LR training images. Moreover, asymmet-
ric scale factors with a stride of 0.5 along horizontal and
vertical axes (i.e., 1.5

2.0 ,
1.5
2.5 , ...,

4.0
3.0 ,

4.0
3.5 ) were also included

for LR image generation. During training, a pair of hori-
zontal/vertical scale factors was randomly selected from the
above ranges for each batch and then 16 LR patches with
the size of 50 × 50 were randomly cropped. Meanwhile,
their corresponding HR patches were also cropped. Data
augmentation was performed through random rotation and
random flipping.

In our experiments, EDSR [16], RDN [10] and RCAN
[12] were used as baseline networks to produce three scale-
arbitrary networks, i.e., ArbEDSR, ArbRDN and ArbR-
CAN. We use 4 experts in the scale-aware convolutions
and set K = 4/2/1 for ArbEDSR/ArbRDN/ArbRCAN to
control the model size. Since the available pre-trained
RDN models are implemented in Torch while our net-
works are implemented in PyTorch [32], we re-trained RDN
as our baseline network. Pre-trained ×4 SR models of
EDSR/RDN/RCAN were used to initialize the backbone
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Table 1. PSNR results achieved by our network with different settings on Set5.

Model
Scale-Aware Feature Adaption Scale-Aware

Upsampling
×1.7 ×2 ×2.95 ×3 ×3.1 ×1.3

×3.9
×1.9
×3.5

×2
×3.3

×3.3
×1.9

×4
×1.8Scale-Aware Conv Guidance Map

EDSR (+Bicubic)* 7 7 7 39.72 38.19 34.64 34.68 34.25 34.10 34.70 34.92 35.68 34.61
1 7 7 bicubic 39.56 37.86 33.77 33.78 33.47 33.12 33.90 34.21 34.90 33.42
2 7 7 3 39.76 38.13 34.70 34.68 34.40 34.32 34.91 35.02 35.85 34.67
3 3 7 3 39.81 38.15 34.70 34.70 34.42 34.38 34.98 35.10 35.91 34.72
4 3 3 3 39.87 38.19 34.75 34.73 34.48 34.44 35.03 35.16 35.95 34.81

* To perform SR with non-integer and asymmetric scale factors (e.g., ×1.7/×1.3
×3.9

SR) using baseline network, we first super-resolve the LR image
for ×2/× 4 SR and then downscale the result to the expected resolution using bicubic interpolation following [14].

blocks in ArbEDSR/ArbRDN/ArbRCAN, respectively. We
used the Adam method [33] with β1 = 0.9 and β2 = 0.999
for optimization. An L1 loss between SR results and HR
images was used as the loss function. Following [10], 1000
iterations of back-propagation constitute an epoch. The ini-
tial learning rate was set to 1×10−4 and reduced to half af-
ter every 30 epochs. To maintain training stability, we first
trained our networks on integer scale factors (r = 2, 3, 4)
for 1 epoch and then trained the networks on all scale fac-
tors. The training was stopped after 150 epochs.

4.3. Ablation Study

Ablation experiments were conducted on Set5 to test the
effectiveness of our design choices. We used EDSR as the
baseline network and introduced 4 variants. All variants
were re-trained for 150 epochs.
Scale-Aware Upsampling. To enable scale-arbitrary SR, a
naive approach is to replace the pixel shuffling layer with an
interpolation layer (e.g., bicubic interpolation). To demon-
strate the effectiveness of our scale-aware upsampling layer,
we introduced two variants. For variant 1, we replaced the
pixel shuffling layer in the baseline network with a bicu-
bic upsampling layer. For variant 2, we replaced the pixel
shuffling layer with the proposed scale-aware upsampling
layer. It can be observed from Table 1 that the PSNR values
are relatively low when bicubic upsampling is used. With
our scale-aware upsampling layer, the performance is sig-
nificantly improved (e.g., 39.76/38.13 vs. 39.56/37.86 for
×1.7/2 SR). That is because, our scale-aware upsampling
layer can learn dynamic filters conditioned on the scale fac-
tors while bicubic upsampling uses a fixed filter.
Scale-Aware Feature Adaption. Scale-aware feature
adaption is used to adapt features to specific scale fac-
tors for better performance. Note that, our scale-aware
feature adaption block consists of two key components:
scale-aware convolution and guidance map generation. To
demonstrate their effectiveness, we first added scale-aware
convolutions to variant 2 to produce variant 3. Then, vari-
ant 4 is further obtained by adding guidance map gen-
eration to variant 3. It can be observed from Table 1
that the performance benefits from both scale-aware con-
volution and guidance map, with PSNR values being im-
proved from 39.76/38.13/34.91 to 39.87/38.19/35.03 for
×1.7/2/ 1.9

3.5 SR. Without feature adaption, model 2 uses

Block 8LR Image Block 16 Block 8 Block 16

feature similarity map guidance map

Figure 6. Visualization of guidance maps and their corresponding
feature similarity maps.

Table 2. PSNR results achieved by our network with different
number of experts on Set5. The running time is averaged over
B100 on ×4 SR.

#Experts Params. Time ×1.7 ×2 ×2.55 ×3.8 ×1.3
×3.9

×2
×3.5

×3.3
×1.8

×4
×1.2

1 38.4M 0.09s 39.37 37.87 35.82 32.13 33.34 34.37 35.50 33.93
2 38.6M 0.10s 39.88 38.20 36.02 32.99 34.23 34.92 36.03 34.87
4 39.2M 0.10s 39.87 38.19 36.02 33.00 34.44 34.96 36.07 35.18
8 40.4M 0.11s 39.88 38.22 36.03 32.98 34.46 34.98 36.07 35.20

shared features in the backbone for SR with different scale
factors. This variant suffers inferior performance since the
difference among features learned for various scale factors
is not considered. With our scale-aware feature adaption
blocks, our network can adapt features in the backbone ac-
cording to the scale information. Therefore, better perfor-
mance can be achieved.

We further visualize the guidance maps learned by vari-
ant 4 in Fig. 6. It can be observed that the learned maps are
consistent with the feature similarity maps (also shown in
Fig. 2). Specifically, regions with high values in guidance
maps are consistent with those of low feature similarities.
This demonstrates that our guidance maps can effectively
guide the fusion of F and F adapt (Eq. 2) to perform pixel-
wise feature adaption accordingly.
Number of Experts in Scale-Aware Convolution. Scale-
aware convolution dynamically generates scale-aware fil-
ters by combining knowledge from experts. To analyze
the effect of the number of experts, we compare the per-
formance of our network with different numbers of experts
in Table 2. With only one expert, our scale-aware convo-
lutions are degraded to vanilla ones with static filters and
cannot well handle different scale factors. Therefore, vari-
ant 1 suffers a performance drop from 39.88/38.22/36.03
to 39.37/37.87/35.82 for×1.7/2/2.55 SR. As more experts
are included in scale-aware convolutions, our network pro-
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Figure 7. Visualization of routing weights in the scale-aware con-
volution of the first scale-aware feature adaption block. (a) and
(b) show the routing weights for symmetric and asymmetric scale
factors, respectively.

duces comparable results on symmetric scale factors while
achieving better performance on asymmetric scale factors.
This means that SR with asymmetric scale factors benefits a
lot from the increase of experts. Further, we can see that the
performance improvement on highly asymmetric scale fac-
tors are more significant (e.g., 34.46(↑0.23)/34.98(↑0.06)
vs. 34.23/34.92 for ×1.3

×3.9/
×2
×3.5 SR). Since more experts than

4 cannot introduce notable performance improvements, we
use 4 experts as our default setting to achieve a better trade-
off between performance and model size.

We further visualize the routing weights in our scale-
aware convolution to investigate the knowledge of different
experts with respect to various scale factors. As shown in
Fig. 7(a), expert 2 is dominant for small scale factors while
expert 1 is gradually activated for large ones. Compared
to symmetric scale factors, more experts are activated for
asymmetric ones. For example, experts 1, 3 and 4 are as-
signed with higher weights for ×4

×1.1 than ×1.1
×1.1 . This obser-

vation is consistent with the results in Table 2 that SR with

asymmetric scale factors benefits a lot from more experts.

4.4. Results for SR with Symmetric Scale Factors

In this section, we compare our ArbEDSR, ArbRDN and
ArbRCAN to EDSR [16], RDN [10], RCAN [12], Meta-
RDN [14] and Meta-RCAN [14] on the SR task with sym-
metric scale factors (both integer and non-integer scale fac-
tors)1. Since pre-trained models for Meta-RCAN are un-
available, we used officially released codes for re-training.
Note that, we also fine-tuned Meta-RDN and Meta-RCAN
on our training set for fair comparison. Comparative results
are shown in Table 3 and Fig. 8.
Quantitative Results. It can be observed from Table 3 that
our ArbEDSR, ArbRDN and ArbRCAN achieve compara-
ble performance to their corresponding baseline networks
on integer scale factors. For SR with non-integer scale
factors, our networks significantly outperform their base-
line networks. For example, our ArbEDSR is on par with
EDSR for ×2 SR on Set5 (38.19 vs. 38.19) while produc-
ing much better results for ×1.6/1.55 SR (40.64/40.94 vs.
40.39/40.71).

Compared to Meta-RDN and Meta-RCAN, our ArbRDN
and ArbRCAN achieves comparable or better performance
for most scale factors. For example, our ArbRCAN pro-
duces notable performance improvements for ×3.4/3.65
SR on Manga109 (33.12/32.29 vs. 33.00/32.22). Moreover,
our ArbRDN and ArbRCAN achieve much better efficiency
than Meta-RDN and Meta-RCAN, respectively. Compared
to RCAN, Meta-RCAN has a comparable model size with
larger memory consumption and longer running time. In

1To perform SR with non-integer scale factors (e.g., ×1.6) using base-
line networks (e.g., RCAN), the LR image is first super-resolved for ×2 SR
and then bicubicly downscaled to the expected resolution. More analyses
are included in the supplemental material.
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Table 3. PSNR results achieved on 5 benchmark datasets for symmetric scale factors. Note that, the memory consumption is calculated
on an LR image with a size of 100 × 100. The running time is averaged over B100 on ×2/3/4 SR. “+ft” means that the networks are
fine-tuned on our training set.

Params. Memory* Time* Set5 Set14 B100 Urban100 Manga109
×2 ×1.6 ×1.55 ×2 ×1.5 ×1.65 ×2 ×1.4 ×1.85 ×2 ×1.9 ×1.95 ×2 ×1.7 ×1.95

Bicubic - - - 33.66 36.10 36.24 30.24 32.87 31.83 29.56 32.95 30.11 26.88 27.25 27.05 30.80 32.91 31.12
EDSR-×2 [16](+Bicubic) 39.7M 0.9G 0.05s 38.19 40.39 40.71 33.95 37.10 35.95 32.36 36.79 33.02 32.95 33.06 32.69 39.18 40.88 39.13
ArbEDSR (Ours) 39.2M 1.0G 0.23s 38.19 40.64 40.94 34.05 37.51 36.22 32.37 36.92 33.23 33.02 33.61 33.30 39.22 41.20 39.24
RDN-×2 [10](+Bicubic) 21.6M 0.4G 0.08s 38.24 40.51 40.53 34.01 37.24 36.10 32.34 36.83 33.15 32.89 33.05 32.79 39.18 41.06 39.31
Meta-RDN [14] 21.4M 1.1G 0.38s 38.23 40.66 40.94 34.03 37.52 36.24 32.35 36.93 33.21 33.03 33.60 33.26 39.31 41.33 39.60
Meta-RDN [14]+ft 21.4M 1.1G 0.38s 38.21 40.65 40.94 34.05 37.53 36.26 32.34 36.91 33.21 33.01 33.61 33.27 39.32 41.35 39.61
ArbRDN (Ours) 22.6M 0.6G 0.18s 38.23 40.67 40.95 34.07 37.53 36.27 32.37 36.93 33.21 33.00 33.51 33.19 39.28 41.32 39.54
RCAN-×2 [12](+Bicubic) 15.2M 0.3G 0.27s 38.27 40.53 40.77 34.12 37.23 36.08 32.40 36.86 33.16 33.18 33.17 32.84 39.42 41.15 39.39
Meta-RCAN [14] 15.5M 0.9G 0.40s 38.22 40.66 40.93 34.00 37.51 36.17 32.36 36.95 33.22 33.12 33.62 33.30 39.32 41.30 39.59
Meta-RCAN [14]+ft 15.5M 0.9G 0.40s 38.21 40.63 40.93 34.03 37.50 36.20 32.35 36.95 33.22 33.10 33.63 33.32 39.34 41.31 39.61
ArbRCAN (Ours) 16.6M 0.5G 0.29s 38.26 40.69 40.97 34.09 37.53 36.28 32.39 36.93 33.23 33.14 33.55 33.25 39.37 41.32 39.56

×3 ×2.4 ×2.75 ×3 ×2.8 ×2.95 ×3 ×2.2 ×2.15 ×3 ×2.3 ×2.35 ×3 ×2.7 ×2.55

Bicubic - - - 30.39 32.41 31.06 27.55 27.84 27.46 27.21 28.88 29.12 24.46 25.91 25.72 26.95 27.77 28.27
EDSR-×3 [16](+Bicubic) 42.5M 1.0G 0.05s 34.68 36.45 35.35 30.53 30.90 30.49 29.27 31.38 31.78 28.82 31.13 30.91 34.19 35.18 35.75
ArbEDSR (Ours) 39.2M 1.3G 0.13s 34.73 36.54 35.34 30.61 31.04 30.56 29.30 31.46 31.70 28.90 31.36 31.11 34.28 35.40 36.06
RDN-×3 [10](+Bicubic) 21.7M 0.4G 0.08s 34.71 36.46 35.27 30.57 30.88 30.53 29.26 31.30 31.65 28.80 31.25 31.07 34.13 35.41 36.00
Meta-RDN [14] 21.4M 1.9G 0.32s 34.73 36.55 35.33 30.58 30.97 30.57 29.30 31.41 31.69 28.93 31.33 31.13 34.40 35.58 36.21
Meta-RDN [14]+ft 21.4M 1.9G 0.32s 34.70 36.55 35.35 30.58 30.97 30.57 29.28 31.42 31.67 28.88 31.33 31.12 34.42 35.59 36.22
ArbRDN (Ours) 22.6M 0.8G 0.13s 30.71 36.55 35.35 30.59 30.98 30.58 29.30 31.45 31.69 28.86 31.33 31.14 34.43 35.60 36.20
RCAN-×3 [12](+Bicubic) 15.3M 0.3G 0.27s 34.76 36.51 35.31 30.62 30.90 30.53 29.31 31.31 31.68 29.01 31.34 31.15 34.42 35.50 36.06
Meta-RCAN [14] 15.5M 1.7G 0.41s 34.76 36.58 35.36 30.58 31.00 30.56 29.29 31.44 31.70 28.96 31.43 31.20 34.40 35.55 36.21
Meta-RCAN [14]+ft 15.5M 1.7G 0.41s 34.72 36.59 35.38 30.58 30.99 30.56 29.28 31.46 31.70 28.93 31.44 31.22 34.44 35.60 36.24
ArbRCAN (Ours) 16.6M 0.8G 0.29s 34.76 36.59 35.39 30.64 31.01 30.59 29.32 31.48 31.72 28.98 31.48 31.26 34.55 35.64 36.27

×4 ×3.1 ×3.25 ×4 ×3.2 ×3.95 ×4 ×3.2 ×3.55 ×4 ×3.7 ×3.85 ×4 ×3.4 ×3.65

Bicubic - - - 28.42 29.89 29.21 26.00 26.98 25.68 25.96 26.91 26.32 23.14 23.38 23.14 24.89 25.97 25.41
EDSR-×4 [16](+Bicubic) 42.1M 1.2G 0.05s 32.47 34.25 33.35 28.81 29.95 28.63 27.73 28.84 28.25 26.65 27.06 26.69 31.04 32.51 31.79
ArbEDSR (Ours) 39.2M 1.7G 0.10s 32.51 34.48 33.92 28.83 30.07 28.72 27.74 28.91 28.30 26.62 27.12 26.73 31.26 32.90 32.14
RDN-×4 [10](+Bicubic) 21.7M 0.3G 0.07s 32.47 34.36 33.91 28.81 30.01 28.69 27.72 28.85 28.25 26.61 27.17 26.83 31.00 32.70 31.99
Meta-RDN [14] 21.4M 2.6G 0.29s 32.49 34.42 33.93 28.86 30.06 28.75 27.75 28.90 28.31 26.70 27.24 26.91 31.34 33.02 32.24
Meta-RDN [14]+ft 21.4M 2.6G 0.29s 32.46 34.41 33.91 28.86 30.06 28.74 27.75 28.90 28.30 26.68 27.20 26.87 31.35 33.02 32.24
ArbRDN (Ours) 22.6M 1.2G 0.13s 32.42 34.43 33.92 28.82 30.08 28.71 27.73 28.90 28.30 26.61 27.15 26.85 31.35 32.99 32.24
RCAN-×4 [12](+Bicubic) 15.2M 0.3G 0.23s 32.63 34.37 33.92 28.85 30.00 28.72 27.75 28.86 28.27 26.75 27.20 26.89 31.20 32.76 32.04
Meta-RCAN [14] 15.5M 3.1G 0.39s 32.56 34.46 33.98 28.85 30.08 28.73 27.75 28.86 28.30 26.71 27.25 26.93 31.33 33.00 32.22
Meta-RCAN [14]+ft 15.5M 3.1G 0.39s 32.55 34.44 33.99 28.85 30.08 28.73 27.75 28.88 28.30 26.71 27.24 26.93 31.35 33.02 32.23
ArbRCAN (Ours) 16.6M 1.1G 0.29s 32.55 34.50 34.03 28.87 30.08 28.74 27.76 28.93 28.33 26.68 27.22 26.90 31.36 33.12 32.29

* Officially released codes for Meta-RDN and Meta-RCAN are used to test the memory consumption and running time. Since generating an input matrix for
the weight prediction network (Line 224 of trainer.py in the Github repository of Meta-SR) and post-processing (Line 235 of trainer.py) are also necessary
for a single inference of Meta-SR, these operations are included for a fair comparison of running time.

contrast, our ArbRCAN takes shorter running time (0.29s
vs. 0.39s) and much less memory consumption (1.1G vs.
3.1G). This clearly demonstrates the high efficiency of our
plug-in module.
Qualitative Results. Figure 8 compares the visual results
achieved on two images of the Manga109 and Urban100
datasets. From the zoom-in regions, we can see that our Ar-
bRCAN produces results with better perceptual quality and
fewer artifacts. For the second test image, Meta-RDN and
Meta-RCAN cannot faithfully recover the stripes and suf-
fer distorted artifacts. In contrast, our ArbRCAN produces
clearer and finer details.

4.5. Results for SR with Asymmetric Scale Factors

In this section, we test our ArbEDSR, ArbRDN and Ar-
bRCAN on the SR task with asymmetric scale factors2.

2To perform SR with asymmetric scale factors (e.g., ×2.5
×3.5

) using base-
line networks (e.g., RCAN) and Meta-SR (e.g., Meta-RCAN), the LR im-
age is first super-resolved for ×4 and ×3.5 SR, respectively. Then, the

Comparative results are presented in Table 4, while visual
comparison is provided in Fig. 9.
Quantitative Results. It can be observed from Table 4
that baseline networks (e.g., RCAN) have limited perfor-
mance on asymmetric scale factors since their filters are
fixed. Meta-RCAN uses meta-learning to generate filters
for different scale factors to produce better results, with
PSNR values being improved from 37.48/33.31/33.82 to
37.74/33.61/34.23 on Manga109. Moreover, fine-tuning
Meta-RCAN on our training set further introduces marginal
improvements (37.80/33.67/34.28 vs. 37.74/33.61/34.23).
However, the performance is still inferior to our ArbRCAN
even after fine-tuning. Using scale-aware convolutions to
dynamically customize filters conditioned on the scale in-
formation, our ArbRCAN can adapt to the input scale fac-
tor to achieve better performance (37.93/33.81/34.41 vs.
37.80/33.67/34.28).

resultant images are resized to the expected resolution using bicubic inter-
polation. More analyses are included in the supplemental material.
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Table 4. PSNR results achieved for asymmetric scale factors. Note that, the memory consumption is calculated on an LR image with a size
of 100× 100 for ×2

×4
SR. The running time is averaged over B100 on ×2

×4
SR.

Params. Memory Time
Set5 Set14 B100 Urban100 Manga109

×1.5
×4

×1.5
×3.5

×1.6
×3.05

×4
×2

×3.5
×2

×3.5
×1.75

×4
×1.4

×1.5
×3

×3.5
×1.45

×1.6
×3

×1.6
×3.8

×3.55
×1.55

×2.5
×2

×2.8
×3.5

×3.35
×2.7

Bicubic - - - 30.01 30.83 31.40 27.25 27.88 27.27 27.45 28.86 27.94 25.93 24.92 25.19 29.61 26.47 26.86
EDSR [16]+Bicubic 42.1M 0.7G 0.04s 33.95 34.89 35.59 30.29 30.91 31.36 29.33 31.24 29.96 30.61 28.77 29.23 37.08 32.99 33.46
ArbEDSR (Ours) 39.2M 0.9G 0.14s 34.32 35.33 36.02 30.51 31.15 31.46 29.52 31.38 30.20 31.06 29.32 29.98 37.70 33.54 34.16
RDN [10]+Bicubic 21.7M 0.4G 0.08s 34.12 35.04 35.63 30.32 31.02 31.16 29.34 31.29 29.98 30.68 28.75 29.30 37.43 33.27 33.77
Meta-RDN [14]+Bicubic 21.4M 3.1G 0.49s 34.19 35.17 35.79 30.39 31.06 31.36 29.43 31.28 30.09 30.77 29.04 29.63 37.74 33.61 34.22
Meta-RDN [14]+Bicubic+ft 21.4M 3.1G 0.49s 34.22 35.19 35.80 30.42 31.06 31.35 29.47 31.30 30.12 30.85 29.11 29.70 37.80 33.64 34.26
ArbRDN (Ours) 22.6M 0.7G 0.13s 34.31 35.26 35.98 30.47 31.12 31.42 29.52 31.36 31.19 31.02 29.23 29.91 37.88 33.74 34.36
RCAN [12]+Bicubic 15.2M 0.4G 0.27s 34.14 35.05 35.67 30.35 31.02 31.21 29.35 31.30 29.98 30.72 28.81 29.34 37.48 33.31 33.82
Meta-RCAN [14]+Bicubic 15.5M 2.8G 0.61s 34.20 35.17 35.81 30.40 31.05 31.33 29.43 31.26 30.09 30.73 29.03 29.67 37.74 33.61 34.23
Meta-RCAN [14]+Bicubic+ft 15.5M 2.8G 0.61s 34.26 35.24 35.86 30.46 31.10 31.40 29.47 31.30 30.14 30.86 29.14 29.75 37.80 33.67 34.28
ArbRCAN (Ours) 16.6M 0.7G 0.29s 34.37 35.40 36.05 30.55 31.27 31.54 29.54 31.40 30.22 31.13 29.36 30.04 37.93 33.81 34.41

Bicubic Meta-RDN+Bicubc ArbRDN Meta-RCAN+Bicubic ArbRCAN GT

2


3

3
.5



3.1

LR Image

Figure 9. Visual comparison for SR with asymmetric scale factors on Urban100.

In addition to higher PSNR results, our ArbRCAN also
has much smaller memory cost (0.7G vs. 2.8G) and shorter
running time (0.29s vs. 0.61s) as compared to Meta-RCAN.
Since Meta-RCAN needs to super-resolve an LR image to a
size larger than the expected one before bicubic downscal-
ing to perform asymmetric SR, redundant computational
and memory cost is involved. In contrast, our ArbRCAN
can directly super-resolve the LR image to the expected size
with better efficiency.
Qualitative Results. Figure 9 illustrates the visual results
achieved on two images of the Urban100 dataset. It can
be observed from the zoom-in regions that our ArbRCAN
produces better results for different asymmetric scale fac-
tors. Specifically, we can see from the second row that,
our ArbRDN and ArbRCAN faithfully recover the stripes
while other methods suffer blurring artifacts. This further
demonstrates the superior performance of our networks on
asymmetric scale factors.

4.6. Results for SR in the Wild

In many real-world applications, continuous magnifica-
tion of an image to an arbitrary size is favored by customers
such that they can stretch an image to any resolution they
like. However, all existing SR network including RDN,
RCAN and Meta-RCAN rely on post-processing (i.e., bicu-
bic interpolation) to achieve scale-arbitrary SR, which is
difficult to obtain optimal performance. In contrast, our net-
work provides an end-to-end framework to produce better
results. In this section, ArbRCAN is used to super-resolve
a real-world image (an HR image in B200 [29]) to differ-
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Figure 10. Visual comparison on a real-world image.

ent resolutions for visual comparison, as shown in Fig. 10.
When the input image is continuously magnified, the text
becomes easier for recognition and our ArbRCAN consis-
tently produces better perceptual quality than other meth-
ods.

5. Conclusions

In this paper, we proposed a plug-in module to enable
existing image SR networks for scale-arbitrary SR with a
single model. Experimental results show that baseline net-
works equipped with our module can produce promising re-
sults on SR tasks with non-integer and asymmetric scale
factors, while maintaining state-of-the-art performance on
integer scale factors. Moreover, our module can be eas-
ily adapted to scale-specific networks with small additional
computational and memory cost.
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