
Low-Rank Tensor Completion by Approximating the Tensor Average Rank

Zhanliang Wang, Junyu Dong*, Xinguo Liu, Xueying Zeng
Ocean University of China

wangzhanliang@hotmail.com,{dongjunyu;liuxinguo;zxying}@ouc.edu.cn

Abstract

This paper focuses on the problem of low-rank tensor
completion, the goal of which is to recover an underlying
low-rank tensor from incomplete observations. Our method
is motivated by the recently proposed t-product [8] based
on any invertible linear transforms. First, we define the new
tensor average rank under the invertible real linear trans-
forms. We then propose a tensor completion model using
a nonconvex surrogate to approximate the tensor average
rank. This surrogate overcomes the discontinuity of the ten-
sor average rank and alleviates the bias problem caused by
the convex relaxation. Further, we develop an efficient algo-
rithm to solve the proposed model and establish its conver-
gence. Finally, experimental results on both synthetic and
real data demonstrate the superiority of our method.

1. Introduction

Tensors are multi-dimensional arrays, which are the gen-
eralization of vectors and matrices to higher dimensions
[12]. Due to their high-dimensionality, tensors are used to
represent the multi-way data in science and engineering ap-
plications. With the advances in data collection and storage
capabilities, tensors have received increased attention. They
have many applications in computer vision [24], signal pro-
cessing [22], collaborative filtering [6] and so on.

This paper studies the low-rank tensor completion prob-
lem, one of the most concerned problems in tensor applica-
tions, aiming to recover a low-rank tensor from incomplete
observations. That is because that the elements of tensor
data are usually highly correlated in real applications, which
indicates that the tensor data are approximately low-rank
[12]. Meanwhile, real-world data are often incomplete due
to various unavoidable reasons. Low-rank tensor comple-
tion is greatly important and has already found many appli-
cations in various fields, such as image and video inpainting
[15, 31], multitask learning [21], audio classification [19]
and many more.

*Junyu Dong is the corresponding author.

Low-rank matrix completion can be considered as a spe-
cial case of tensor completion. It aims to estimate the miss-
ing elements of a partially observed matrix [3]. Mathemat-
ically, it can be formulated as

min
X

rank(X), s.t. PΩ(X) = PΩ(M), (1)

where M denotes the observed matrix and PΩ denotes the
projection on the observed set Ω. The operation rank(·) is
the rank function of matrix. Due to the discontinuity of the
matrix rank function, the matrix rank minimization prob-
lem (1) is generally NP-hard and very difficult to solve di-
rectly [3]. A commonly used approach is to approximate the
matrix rank function by the matrix nuclear norm, which is
the tightest convex lower bound of the matrix rank function
[20]. Many effective algorithms for solving the obtained
convex model are proposed [3, 2, 20]. Matrix completion
has been well studied in the recent decade.

It seems natural to extend the existing matrix completion
algorithms to the tensor case. Nevertheless, the structure of
tensors is more complex than matrices, and the tensor rank
cannot be uniformly defined like the matrix case. There are
different definitions of tensor rank related to particular ten-
sor decompositions. Based on the CP decomposition, the
CP rank is defined as the smallest number of rank-one ten-
sors [9]. However, this tensor rank is in general NP-hard
to calculate [4]. Hence, it is very challenging to develop
efficient CP rank based tensor completion methods. The
traditional approach is to decompose the tensors into ma-
trices and then apply the matrix completion models. Thus
the Tucker rank [23], defined on the unfolded matrices, has
been studied more widely. A number of tensor completion
models based on the Tucker rank are proposed and success-
fully applied in image processing [15, 27, 7, 28]. How-
ever, directly unfolding the high-order tensors into matrices
will inevitably destroy the internal structure of tensor data,
resulting in information loss and performance degradation
[11, 17, 32].

Based on the tensor-tensor product (t-product) and ten-
sor singular value decomposition (t-SVD) [11], the tensor
tubal rank has been used to map the intrinsic structure of
the tensor data [10, 31, 32, 13]. The tensor nuclear norm

4612

(TNN) is developed and has shown excellent performance
in tensor applications [31, 16]. Recently, the authors give a
generalized definition of t-product based on any invertible
linear transforms [8]. Based on this general t-product, the
corresponding definitions of the tensor tubal rank and ten-
sor nuclear norm are proposed in [17]. It has been proved
that under suitable assumptions, a three-order tensor can be
reconstructed effectively by solving the TNN minimization
model [17]. While the TNN based models have achieved
great success, they cause a bias problem since the convex
relaxation over-penalizes larger singular values in the trans-
form domain [18]. On the other hand, since the tubal rank
uses the number of nonzero tubes in transform domain to
measure the complexity of tensor, it ignores the sparsity of
singular values in transform domain.

To overcome the above drawbacks, we introduce a new
tensor rank definition deduced by the invertible real linear
transforms, called the tensor average rank. It essentially
measures the sparsity of singular values in the transform do-
main. Due to the discontinuity of the tensor average rank,
we develop a new tensor completion model that uses a non-
convex surrogate to approximate the tensor average rank.
This surrogate can continuously approximate the tensor av-
erage rank while alleviating the bias problem caused by the
convex relaxation. A proximal block coordinate descent
algorithm is developed to solve our proposed model and
some convergence results are established. Experimental re-
sults about recovering synthetic data, images, and videos
demonstrate that our method is competitive with some ex-
isting low-rank tensor completion methods in recovery per-
formance and efficiency.

The rest of this article is organized as follows. Basic
notations and preliminaries are provided in Section 2. Sec-
tion 3 gives the proposed tensor completion model and algo-
rithm. Numerical experiments performed on synthetic data
and real-world datasets are shown in Section 4. The sum-
mary is drawn in Section 5.

2. Notations and Preliminaries
We introduce our notations and give some necessary pre-

liminary results in this section.

2.1. Notations

In this article, tensors and matrices are denoted by bold-
face calligraphic letters and boldface uppercase letters, e.g.
A and A, respectively. Vectors and scalars are denoted by
boldface lowercase letters and lowercase letters, e.g. a and
a.

For a three-order tensor A ∈ Rn1×n2×n3 , we use Aijk

to represent its (i, j, k)-th entry. The i-th frontal slice of
A is represented by A(i), which is a n1 × n2 matrix. The
(i, j)-th tube of A is represented by A(i, j, :), which is a
n3 sized vector. The inner product of A and B with same

size is defined as ⟨A,B⟩ =
∑

ijk AijkBijk. Similar to
matrix algebra, two commonly used norms of tensors can be
defined. We denote the Frobenius norm induced by above

tensor product by ∥A∥F =
√∑

ijk A
2
ijk, and the infinity

norm by ∥A∥∞ = maxijk |Aijk|. We transform a three-
order tensor to a block diagonal matrix by operator bdiag.
Let A ∈ Rn1×n2×n3 , then bdiag(A) is an n1n3 × n2n3

matrix defined as

bdiag(A) =

A(1)

A(2)

. . .
A(n3)

 .

2.2. Preliminary Results

Definition 2.1 (Mode-3 product) [14] The mode-3 (ma-
trix) product of A ∈ Rn1×n2×n3 and U ∈ Rn3×n3 is given
by

(A×3 U)ijk =

n3∑
s=1

AijsUks.

Definition 2.2 (Face-wise product) [8] The face-wise
product of A ∈ Rn1×l×n3 and B ∈ Rl×n2×n3 , denoted by
C = A⊙B, is given by

C(i) = A(i)B(i), i = 1, · · · , n3.

The work [8] introduces the definition of t-product based
on any invertible linear transform. In this work, we consider
the linear transform L : Rn1×n2×n3 → Rn1×n2×n3 , which
is defined as

Ā = L(A) = A×3 L, (2)

where L ∈ Rn3×n3 can be any invertible matrix. Clearly, L
is invertible with the inverse transform defined as

A = L−1(Ā) = Ā×3 L
−1.

We will denote by Ā the block diagonal matrix of Ā, i.e.,
Ā = bdiag(Ā). With the face-wise product and invertible
linear transform L, the definition of t-product can be given
as follows.

Definition 2.3 (T-product) [8, 17] Suppose L is an invert-
ible linear transform in (2), A ∈ Rn1×l×n3 and B ∈
Rl×n2×n3 . Then the t-product of A and B under L, denoted
by C = A∗LB, is defined such that L(C) = L(A)⊙L(B).

Because L(C) = L(A) ⊙ L(B), we can get that C̄ =
ĀB̄. The tensor-tensor product in tensor domain is essen-
tially a matrix-matrix product under linear transform. It can
be efficiently computed by Algorithm 1.

We need some further definitions, including tensor trans-
pose, identity tensor, orthogonal tensor, to define the t-SVD.
They are the high-order extensions of the definitions in ma-
trix theory.

4613

Algorithm 1 General T-product [8, 17]
Input: A ∈ Rn1×l×n3 , B ∈ Rl×n2×n3 and linear trans-

form L in (2).
1. Calculate Ā = L(A) and B̄ = L(B).
2. Calculate all slices C̄(i) by
for i = 1, · · · , n3 do

C̄
(i)

= Ā
(i)
B̄

(i)
;

end for
3. Calculate C = L−1(C̄).

Output: C ∈ Rn1×n2×n3 .

Definition 2.4 (Tensor transpose) [8, 17] Suppose L is an
invertible linear transform in (2), the transpose of a tensor
A ∈ Rn1×n2×n3 under L is a n2 × n1 × n3 tensor A⊤

which satisfies L(A⊤)(i) = (L(A)(i))⊤, i = 1, · · · , n3.

Definition 2.5 (Identity tensor) [8, 17] Suppose L is an
invertible linear transform in (2), the tensor I ∈ Rn×n×n3

is an identity tensor under L if all frontal slices of L(I) are
identity matrices.

Definition 2.6 (Orthogonal tensor) [8, 17] Suppose L is
an invertible linear transform in (2), the orthogonal tensor
O under L is a n×n×n3 tensor which satisfies O∗LO⊤ =
O⊤ ∗L O = I .

Definition 2.7 (F-diagonal) [11] A three-order tensor is a
f-diagonal tensor if its all frontal slices are diagonal matri-
ces.

Theorem 2.1 (T-SVD) [8, 17] Suppose L is an invertible
linear transform in (2), and A ∈ Rn1×n2×n3 . There ex-
ist tensors U ∈ Rn1×n1×n3 , S ∈ Rn1×n2×n3 , and V ∈
Rn2×n2×n3 such that

A = U ∗L S ∗L V⊤, (3)

where U and V are orthogonal tensors under L, and S is a
f-diagonal tensor.

Note that A = U ∗L S ∗L V⊤ in tensor domain is actu-
ally equivalent to Ā = Ū S̄V̄

⊤ in transform domain. That
means that we can obtain the t-SVD of a tensor by calculat-
ing the matrix SVD. Technically, we need to calculate the
matrix SVD of all frontal slice Ā

(i) in transform domain,
i.e., Ā(i)

= Ū
(i)
S̄

(i)
(V̄

(i)
)⊤, then transform Ū , S̄, V̄ to

tensor domain by the inverse transform L−1. See Algorithm
2 for the details of calculating the t-SVD.

For any invertible linear transform in (2), it holds that
L(0) = L−1(0) = 0. Then S and S̄ are f-diagonal, the ten-
sor tubal rank is defined as the number of nonzero singular
tubes.

Algorithm 2 General T-SVD [8, 17]
Input: A ∈ Rn1×n2×n3 and linear transform L in (2).

1. Calculate Ā = L(A).
2. Calculate all slices Ū (i), S̄(i), V̄ (i) by
for i = 1, · · · , n3 do

[Ū
(i)
, S̄

(i)
, V̄

(i)
] = SVD(Ā

(i)
);

end for
3. Calculate U = L−1(Ū), S = L−1(S̄), and V =
L−1(V̄).

Output: U ∈ Rn1×n1×n3 , S ∈ Rn1×n2×n3 , and V ∈
Rn2×n2×n3 .

Definition 2.8 (Tensor tubal rank) [17] Suppose L is an
invertible linear transform in (2), and A ∈ Rn1×n2×n3 .
The tensor tubal rank of A under L is defined as the number
of nonzero singular tubes of S, i.e.,

rankt(A) = ♯{i|S(i, i, :) ̸= 0}, (4)

where S is from the t-SVD of A = U ∗L S ∗L VT.

Based on the t-SVD, the tensor tubal rank gives a scalar
measure of tensor complexity. Further, the singular values
of all frontal slices in the transform domain can be obtained
by calculating the t-SVD. We then define a new tensor rank
to characterize the sparsity of the singular values in the
transform domain.

Definition 2.9 (Tensor average rank) Suppose L is an in-
vertible linear transform in (2), and A ∈ Rn1×n2×n3 . The
tensor average rank of A under L is defined as the aver-
age across the ranks of all frontal slices in the transform
domain, i.e.,

ranka(A) =
1

n3

n3∑
i=1

rank(Ā(i)
). (5)

The tensor average rank measures the sparsity of the sin-
gular values in the transform domain. Let A = U ∗L S ∗L
VT be the t-SVD of A under L, ranka(A) is equal to the
number of nonzero elements of S̄ times the factor 1

n3
, i.e.,

ranka(A) =
1

n3

∑
i,k

δ(S̄iik), (6)

where δ(x) is the Kronecker delta function defined as

δ(x) =

{
1, if x > 0,

0, if x = 0.
(7)

In next section, we study the tensor completion problem
by an approximate tensor average rank minimization model.

4614

For this purpose, we set an assumption on the linear trans-
form in (2), e.g.,

L⊤L = LL⊤ = In3 , (8)

where In3
is the n3 × n3 sized identity matrix. If the trans-

form L in (2) satisfies (8), we call it real orthogonal trans-
form. Under this transform, we can get that

⟨A,B⟩ = ⟨Ā, B̄⟩ = ⟨Ā, B̄⟩, (9)

and
∥A∥F = ∥Ā∥F = ∥Ā∥F. (10)

3. Main Result
In this section, we introduce a new nonconvex relaxation

model for tensor completion. We then develop an efficient
algorithm to solve the proposed model and establish its con-
vergence.

The definition of tensor averaged rank in (5) has a factor
1
n3

. Note that this factor has no effect on minimizing the
tensor average rank. For brevity, we temporarily omit this
factor in this section and modify the tensor average rank as

ranka(A) =

n3∑
i=1

rank(Ā(i)
) =

∑
i,k

δ(S̄iik). (11)

3.1. The Proposed Model

Using the tensor average rank to measure the sparsity of
singular values, we solve the following tensor completion
model

min
X

ranka(X), s.t. PΩ(X) = PΩ(M), (12)

where M ∈ Rn1×n2×n3 denotes the observed tensor data
and PΩ denotes the projection on the observed set Ω. Let
X = U ∗LS ∗LVT be the t-SVD of X , we can equivalently
reformulate (12) in transform domain as

min
X

∑
i,k

δ(S̄iik), s.t. PΩ(X) = PΩ(M). (13)

Directly solving (13) is difficult due to the discontinuous
nature of the Kronecker delta function. As an extension of
the low-rank matrix completion, the work [17] presents the
tensor nuclear norm minimization model, which uses the ℓ1
norm as a surrogate of δ(x) in (13). In this paper, we use
a nonconvex function to approximate the Kronecker delta
function and propose a novel surrogate of the tensor average
rank. For λ > 0, we let

ϕλ(x) := min{1, 1

2λ
x2}, x ≥ 0. (14)

Compared with the popular nonconvex regularizers in [26],
the function ϕλ(x) relaxes δ(x) near zero using l2-norm.

Hence, it is not concave. However, ϕλ(x) overcomes the
discontinuity of δ(x) near zero, while still keeps unbiased
when x is greater than the threshold

√
2λ. Moreover, for any

x ≥ 0, ϕλ(x) closely matches δ(x) as λ decreasing to zero,
i.e., limλ→0+ ϕλ(x) = δ(x). Replacing the Kronecker delta
function with ϕλ(x) in (13), the tensor average rank of X
can be approximated by

Φλ(X) =
∑
i,k

ϕλ(S̄iik). (15)

Using Φλ(X) as a surrogate of the tensor average rank, we
propose the following low-rank tensor completion model

min
X

Φλ(X), s.t. PΩ(X) = PΩ(M). (16)

3.2. Tensor Hard Thresholding

We will rewrite the proposed model (16) into an equiva-
lent form that facilitates us to develop efficient algorithms.
To this aim, we introduce the hard thresholding rule in the
tensor case. Let λ > 0 and x be a scalar variable, the hard
thresholding operator Hλ is defined as

Hλ(x) =

{
x if |x| >

√
2λ,

0 if |x| ≤
√
2λ.

It can be extended to tensor space by element-wise opera-
tion, i.e.,

(Hλ(A))ijk = Hλ(Aijk). (17)

Let X = U ∗LS ∗LVT be the t-SVD of X . For any λ > 0,
we define the tensor hard thresholding (THT) operator Dλ :
Rn1×n2×n3 → Rn1×n2×n3 as

Dλ(X) = U ∗L Sλ ∗L V⊤, (18)

where
Sλ = L−1(Hλ(L(S))), (19)

with Hλ being defined in (17).
The THT operator applies the hard-thresholding rule to

the singular values of each frontal slice of L(S), which can
shrink the small singular values to zero. The following the-
orem demonstrates that the THT operator is essentially the
proximal operator related to the tensor average rank.

Theorem 3.1 Suppose L is a real orthogonal transform in
(2) and X ∈ Rn1×n2×n3 . For any λ > 0, the THT operator
obeys

Dλ(X) ∈ argmin
Y

1

2λ
∥Y −X∥2F + ranka(Y). (20)

Theorem 3.1 indicates that the THT operator Dλ(X) has
its closed-form. The tensor operator is actually an extension

4615

Algorithm 3 Tensor Hard Thresholding (THT)
Input: X ∈ Rn1×n2×n3 , real orthogonal transform L, and

λ > 0.
1. Calculate X̄ = L(X).
2. Apply matrix hard thresholding to all slices X̄(i) by
for i = 1, · · · , n3 do

[U ,S,V] = SVD(X̄
(i)
);

D̄
(i)

= UHλ(S)V
⊤;

end for
3. Calculate Dλ(X) = L−1(D̄).

Output: Dλ(X) ∈ Rn1×n2×n3 .

of matrix hard thresholding [5]. We summarize the details
of computing Dλ(X) in Algorithm 3.

The next proposition gives a separable structure of Φλ.
Moreover, Φλ can accurately approximate the tensor aver-
age rank when the parameter λ is small to a certain extent.

Proposition 3.1 Suppose L is a real orthogonal transform
in (2) and X ∈ Rn1×n2×n3 . For any λ > 0, we have

Φλ(X) = min
Y

1

2λ
∥Y −X∥2F + ranka(Y). (21)

Moreover, Φλ(X) = ranka(X) when λ ≤
min
i,k

S̄2
iik

2 .

Proposition 3.1 ensures that the proposed model (16) can
be converted as the following two-variables problem

min
Y,X

{ 1

2λ
∥Y−X∥2F+ ranka(Y)}, s.t. PΩ(X) = PΩ(M).

(22)
Suppose that (Y∗,X ∗) is a solution of (22), by Proposition
3.1, it must hold that X ∗ solves (16) and Y∗ = Dλ(X ∗).
Thus we can solve (22) instead of solving (16) directly. The
obvious advantage of (22) is that its objective function has
a good separable structure which helps us to use the alter-
nating minimization type algorithms to solve it.

3.3. Algorithm

Problem (22) is a joint minimization problem with re-
spect to variable (Y ,X) and it can be solved by the block
coordinate descent (BCD) algorithm. Note that the conver-
gence of direct BCD algorithm requires various conditions
of the objective function [30, 25]. That motivates us to pro-
pose a proximal BCD algorithm to solve (22). Specifically,
at each iteration we generate X̃ k := (1 − µ)Yk + µX k

with µ ∈ (0, 1) being a weight which balances both terms
Yk and X k, the iterative scheme of the proposed algorithm

for (22) is indicated as below
Yk+1 ∈ argmin

Y

1

2λ
∥Y − X̃ k∥2F + µranka(Y),

X k+1 = argmin
X

∥X −Yk+1∥2F, s.t.PΩ(X) = PΩ(M).

(23)
We next show that both subproblems in (23) have closed-
form solutions.

The first subproblem of updating Yk+1, by Theorem 3.1,
can be directly solved by performing the THT operator on
X̃ k, e.g.,

Yk+1 = Dλµ(X̃ k). (24)

Therefore, Yk+1 can be efficiently computed by Algorithm
3. The second subproblem of updating X k+1 can be exactly
solved by

X k+1 = PΩ(M) + PΩc(Yk+1), (25)

where Ωc is the complement of Ω.

3.4. Convergence Analysis

Let E(Y ,X) denote the objective function of (22), i.e.,

E(Y ,X) =
1

2λ
∥Y −X∥2F + ranka(Y). (26)

The following theorem demonstrates some crucial proper-
ties of the sequences {E(Yk,X k)} and {(Yk,X k)} gen-
erated by (23).

Theorem 3.2 Let {(Yk,X k)} be generated by (23), then
it satisfies the following properties:

(1) {E(Yk,X k)} is monotonically decreasing and there-
fore converges.

(2) lim
k→∞

∥Yk+1−Yk∥F = 0 , lim
k→∞

∥X k+1−X k∥F = 0.

(3) The tensor average rank of Yk keeps invariant after a
finite iteration, i.e., there exists two positive constants
K and r such that ranka(Yk) = r for all k > K.

Theorem 3.2 shows that the average rank of the sequence
Yk stabilizes after finitely many iterations. This is because
the location of nonzero singular values in the transform do-
main remains unchanged after limited iterations. It implies
that the tubal rank also stabilizes and converges.

3.5. Algorithm Implementation

The parameter λ is crucial for the proposed model (16)
and algorithm (23). It reflects the nonconvexity of Φλ(X)
and measures its approximation accuracy to ranka(X). By
Proposition 3.1, the function Φλ(X) is equivalent to the
tensor average rank when λ is small enough. Unfortunately,

4616

the nonconvexity of model (16) becomes stronger as λ de-
creases. Therefore, directly choosing a small λ in algorithm
(23) would make the algorithm converge slowly and trap in
a shallow local minima.

To avoid the above issue, a coarse-to-fine continuation
minimization strategy is used in our algorithm. It has been
usually applied to solve some nonconvex problems, which
can empirically yield a better local minimal solution [1].
The details of algorithm implementation are summarized in
Algorithm 4.

Algorithm 4 Low-rank tensor completion
Input: Observed tensor M ∈ Rn1×n2×n3 , and parameters
µ, λmin, λmax, ρ, δ, ε.
Initialize: Y0, X 0, λ0 = λmax.
while not converged do

1. Update Yk+1 by (24).
2. Update X k+1 by (25).
3. Update λk+1 by λk+1 = max(ρλk, λmin) if
min(∥Yk+1 −Yk∥∞, ∥X k+1 −X k∥∞) ≤ δ.

4. Check the stopping criteria:
min(∥Yk+1 −Yk∥∞, ∥X k+1 −X k∥∞) ≤ ε,
min(∥Yk+1 −Yk∥∞, ∥X k+1 −X k∥∞) ̸= 0.

end while
Output: Yk+1, X k+1.

As shown in Algorithm 4, we start our algorithm with
a relatively large λmax and then progressively decrease it
when the algorithm achieves a certain level of convergence.
Then the solution at the current iteration is used as a feasible
initial pair to minimize Φλ(X) with a smaller λ at the next
iteration. Moreover, the second part of the stopping criteria
ensures that the parameter λ can be reduced to a small value
λmin effectively. Finally, our algorithm will converge to a
low-rank solution since the λmin is sufficiently small.

Here we give a simple example to verify the effect of the
coarse-to-fine continuation minimization idea. We generate
a tensor X ∈ R10×10×10 with ranka(X) = 1 and the sam-
pling rate p = 0.5. Figure 1 shows the relative square errors
of the two experiments: (1) fixed-parameter λ = λmin = 1;
(2) Algorithm 4. We can observe that Algorithm 4 achieves
excellent recovery performance while setting a fixed small
λ fails to get a good solution. Furthermore, Algorithm 4
converges much faster than the algorithm with a fixed small
λ. As a result, the idea of gradually updating λ can acceler-
ate the algorithm (23).

4. Experiments

In this section, we conduct some numerical experiments
to demonstrate the advantages of our proposed model. We
first explore the recovery capability of the proposed model.
Then we use it to recover real data and compare the perfor-

0 50 100 150 200

number of iterations

0

0.2

0.4

0.6

0.8

R
S

E

 Fixed =
min

 Algorithm 4

Figure 1. The effect of adaptively updating parameter λ.

mance with some popular tensor completion methods. With
regard to the selection of transforms, we use the discrete co-
sine transform (DCT) in our experiments.

4.1. Synthetic Experiments

We investigate the capability of our model by recovering
synthetic data. Here, we generate an average rank r tensor
X ∈ Rn1×n2×n3 by X = P ∗L Q, where the elements of
P ∈ Rn1×r×n3 and Q ∈ Rr×n2×n3 are obtained from a
normal distribution. In this way, the average rank is made
equal to the tubal rank, so that we can compare our model
with the TNN-DCT model [17]. Finally, we obtain the ob-
served tensor by taking pn1n2n3 elements uniformly from
X , where p is the sampling rate. The Relative Square Error
(RSE) is defined as

RSE =
∥X − X̂∥F

∥X∥F
,

where X̂ denotes the solution obtained by an algorithm. If
RSE ≤ 10−3, then we claim that the recovery is successful.

We examine the recovery phenomenon by varying the
average rank of X and the sampling rate p. In this ex-
periment, we consider tensor X ∈ Rn×n×n of two dif-
ferent sizes: (1) n = 40 and (2) n = 50. We choose
r = [1, 2, · · · , 32] in the first case and r = [1, 2, · · · , 38]
in the second case. We set p = [0.01 : 0.01 : 0.99] in both
cases. For each (r, p) pair, we repeat the experiments for 10
times.

The exhaustive comparison between TNN-DCT and our
method is shown in Figure 2. The color of each cell reflects
the empirical recovery rate ranging from 0 to 1 (blue = 0
; yellow = 1). It can be seen that the yellow region of our
method is more extensive than that of TNN-DCT in both
cases. For example, when the sampling rate is 0.5, the max-
imum rank which can be recovered by our method is four
higher than that of TNN-DCT in both cases. These results
verify the effectiveness of our proposed model.

4617

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

5

10

15

20

25

30

r

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

5

10

15

20

25

30

35

r

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

5

10

15

20

25

30

r

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

5

10

15

20

25

30

35

r

0

0.2

0.4

0.6

0.8

1

Figure 2. Comparison our model with TNN-DCT. Upper left: The
TNN-DCT model in the case n = 40; Upper right: The TNN-
DCT model in the case n = 50; Lower left: Our model in the case
n = 40; Lower right: Our model in the case n = 50.

4.2. Applications to Real Data

This method can be applied in color image, hyperspec-
tral image and video inpainting tasks, and background ini-
tialization in videos. In this subsection, we use our tensor
completion method to recover incomplete color images and
videos. We test five low-rank tensor completion methods
and compare their performance: (1) HaLRTC [15]: high
accuracy Tucker rank based method; (2) SPC [29]: smooth
PARAFAC tensor completion method; (3) T-SVD [31]: t-
SVD based method; (4) TNN [16]: TNN based method (via
the discrete Fourier transform); (5) TNN-DCT [17]: TNN
based method (via the discrete cosine transform); (6) Ours:
our proposed tensor completion method. We apply the com-
monly used PSNR metric, defined as

PSNR = 10 log10

(
∥X∥2∞

1
n1n2n3

∥X − X̂∥2F

)
,

to evaluate the recovery performance.

4.2.1 Image Inpainting

We apply our tensor completion model to the image inpaint-
ing task. For a color image of size m×n, it can be regarded
as a three-order tensor X ∈ Rm×3×n, where the lateral
slice corresponds to each color channel of the image. Mean-
while, most natural images have a low-rank structure. Then
we can fill in the missing elements of a partially observed
image by the low-rank tensor completion method.

Figure 3. Test color images: airplane, baboon, barbara, boats, but-
terfly, house, lena, peppers (from left to right).

We use several standard images to evaluate our method.
All the images, shown in Figure 3, have the same size of
256 × 256 × 3. Table 1 presents the average PSNR values
on this dataset with different sampling rates and the average
runtime of all methods. Our method has achieved good per-
formance under different sampling rates. SPC works well
when the sampling rate is very low. In regard to algorithm
runtime, our method is the fastest. It is about two times
faster than TNN, which is the second fastest method. Figure
4 shows the inpainting results on two images under differ-
ent removal masks. It is obvious that our method can also
deal with the details of images. In summary, our method
achieves good inpainting results and runs fast.

Table 1. Comparison of PSNR and runtime on the standard images.
Method 0.2 0.4 0.6 0.8 Runtime (s)

HaLRTC [15] 20.74 25.17 29.52 35.20 4.46
SPC [29] 24.51 27.58 30.45 34.15 39.83

T-SVD [31] 20.68 25.62 30.48 36.82 14.10
TNN [16] 22.02 26.65 31.22 36.92 2.19

TNN-DCT [17] 22.17 26.83 31.47 37.24 4.59
Ours 23.01 28.20 33.13 39.09 0.91

We also use the commonly used Berkeley Segmentation
Database 1 (CBSD68) to evaluate the performance of meth-
ods. This database contains 68 color images, each of size
321× 481× 3 or 481× 321× 3. Table 2 shows the average
PSNR values on CBSD68 with different sampling rates and
the average runtime of all methods. It can be concluded that
our method performs well and runs quite fast. These results
confirm the advantages and robustness of our method.

Table 2. Comparison of PSNR and runtime on the CBSD68.
Method 0.2 0.4 0.6 0.8 Runtime (s)

HaLRTC [15] 22.30 27.40 31.77 37.72 13.17
SPC [29] 26.37 29.46 32.38 36.16 115.38

T-SVD [31] 23.67 29.08 35.37 44.37 39.37
TNN [16] 25.14 30.33 36.07 44.20 5.95

TNN-DCT [17] 25.32 30.57 36.43 44.51 10.82
Ours 26.04 31.80 37.82 44.74 2.05

4.2.2 Video Inpainting

In this experiment, we test our method and other methods
on two YUV videos 2. “Akiyo” and “Container” are rela-
tively static and dynamic videos, respectively. Each video
contains 300 frames, and the size of a frame is 144 × 176

1https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2http://trace.eas.asu.edu/yuv/

4618

(a) Orignal (b) Observation (c) HaLRTC (d) SPC (e) T-SVD (f) TNN (g) TNN-DCT (h) Ours

Figure 4. Results of image inpainting. (a) Original image. (b) Incomplete image. (c)-(h) Inpainting results of HaLRTC, SPC, T-SVD,
TNN, TNN-DCT, Ours, respectively.

(a) Orignal (b) Observation (c) HaLRTC (d) SPC (e) T-SVD (f) TNN (g) TNN-DCT (h) Ours

Figure 5. Results of video inpainting. (a) Original frame of video. (b) Incomplete frame of video. (c)-(h) Inpainting results of HaLRTC,
SPC, T-SVD, TNN, TNN-DCT, Ours, respectively.

pixels. For the sake of saving computation cost, we conduct
numerical experiments by using the first 30 frames of the
two videos and display the 15-th frame of the videos.

Table 3. Comparison of PSNR and runtime on the “Akiyo”.
Method 0.2 0.4 0.6 0.8 Runtime (s)

HaLRTC [15] 26.09 30.88 35.46 41.24 8.20
SPC [29] 31.52 33.21 35.13 38.28 77.32

T-SVD [31] 35.25 40.46 44.83 49.88 43.80
TNN [16] 35.26 40.22 44.56 49.82 20.72

TNN-DCT [17] 36.40 42.43 47.58 53.80 26.44
Ours 37.39 43.71 48.75 54.83 4.49

Table 4. Comparison of PSNR and runtime on the “Container”.
Method 0.2 0.4 0.6 0.8 Runtime (s)

HaLRTC [15] 23.95 28.26 32.57 38.08 7.88
SPC [29] 29.17 31.12 33.07 36.13 83.86

T-SVD [31] 33.52 38.50 42.48 47.71 42.98
TNN [16] 33.42 38.46 42.73 47.78 20.74

TNN-DCT [17] 36.10 44.35 49.69 54.57 27.02
Ours 37.36 45.66 51.17 55.64 3.86

Table 3 and Table 4 report the evaluation metrics of the
two videos under different sampling rates, respectively. Fig-
ure 5 shows the inpainting results for the testing videos

when the sampling rate is 0.2. Form the inpainting results
and PSNR values, our method has achieved better recov-
ery performance compared with other methods. As for the
algorithm runtime, our method is still fastest. These results
illustrate that the proposed method is effective and runs fast.

5. Conclusion
Benefited from the development of tensor theory, espe-

cially the t-product based on linear transform [8], we define
a tensor average rank based on invertible real linear trans-
form. We then propose a new tensor completion model us-
ing a nonconvex function to approximate the average rank.
This surrogate can continuously approximate the tensor av-
erage rank. We develop an efficient algorithm for solving
our tensor completion model and establish its convergence.
Experimental results clearly illustrate that our method is
competitive with other methods in terms of both recovery
performance and efficiency.

Acknowledgment
This work was supported in part by the National Key

Research and Development Program of China under Grant
2018AAA0100602, in part by the National Natural Science
Foundation of China under Grant 11771408 and 11871444.

4619

References
[1] A. Blake and A. Zisserman. Visual Reconstruction. MIT

Press, 1987.
[2] J.-F Cai, E. J. Candès, and Z. Shen. A singular value thresh-

olding algorithm for matrix completion. Siam Journal on
Optimization, 20(4):1956–1982, 2008.

[3] E. J. Candès and B. Recht. Exact matrix completion via con-
vex optimization. Foundations of Computational Mathemat-
ics, 9(6):717–772, 2009.

[4] C. J. Hillar and L.-H. Lim. Most tensor problems are np-
hard. Journal of the ACM, 60(6), 2013.

[5] P. Jain, R. Meka, and I. S. Dhillon. Guaranteed rank mini-
mization via singular value projection. In Advances in Neu-
ral Information Processing Systems, pages 937–945, 2010.

[6] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.
Multiverse recommendation: n-dimensional tensor factor-
ization for context-aware collaborative filtering. In Proceed-
ings of ACM conference on Recommender systems, pages
79–86, 2010.

[7] H. Kasai and B. Mishra. Low-rank tensor completion: a rie-
mannian manifold preconditioning approach. In Proceedings
of International Conference on Machine Learning, pages
1012–1021, 2016.

[8] E. Kernfeld, M. Kilmer, and S. Aeron. Tensor–tensor prod-
ucts with invertible linear transforms. Linear Algebra and its
Applications, 485:545 – 570, 2015.

[9] H. A. L. Kiers. Towards a standardized notation and ter-
minology in multiway analysis. Journal of Chemometrics,
14(3):105–122, 2000.

[10] M. E. Kilmer, K. S. Braman, N. Hao, and R. C. Hoover.
Third-order tensors as operators on matrices: A theoreti-
cal and computational framework with applications in imag-
ing. SIAM Journal on Matrix Analysis and Applications,
34(1):148–172, 2013.

[11] M. E. Kilmer and C. D. Martin. Factorization strategies for
third-order tensors. Linear Algebra and Its Applications,
435(3):641–658, 2011.

[12] T. G. Kolda and B. W. Bader. Tensor decompositions and
applications. Siam Review, 51(3):455–500, 2009.

[13] H. Kong, X. Xie, and Z. Lin. t-schatten-p norm for low-rank
tensor recovery. IEEE Journal of Selected Topics in Signal
Processing, 12(6):1405–1419, 2018.

[14] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilin-
ear singular value decomposition. SIAM Journal on Matrix
Analysis and Applications, 21(4):1253–1278, 2000.

[15] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor com-
pletion for estimating missing values in visual data. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
35(1):208–220, 2013.

[16] C. Lu, J. Feng, Z. Lin, and S. Yan. Exact low tubal rank ten-
sor recovery from gaussian measurements. In Proceedings
of International Joint Conference on Artificial Intelligence,
pages 2504–2510, 2018.

[17] C. Lu, X. Peng, and Y. Wei. Low-rank tensor completion
with a new tensor nuclear norm induced by invertible linear

transforms. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5989–5997,
2019.

[18] N. Meinshausen and B. Yu. Lasso-type recovery of sparse
representations for high-dimensional data. Annals of Statis-
tics, 37(1):246–270, 2009.

[19] N. Mesgarani, M. Slaney, and S. A Shamma. Discrimina-
tion of speech from nonspeech based on multiscale spectro-
temporal modulations. IEEE Transactions on Audio Speech
and Language Processing, 14(3):920–930, 2006.

[20] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-
rank solutions of linear matrix equations via nuclear norm
minimization. Siam Review, 52(3):471–501, 2010.

[21] B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, and M.
Pontil. Multilinear multitask learning. In Proceedings of In-
ternational Conference on Machine Learning, pages 1444–
1452, 2013.

[22] J. Salmi, A. Richter, and V. Koivunen. Sequential unfold-
ing svd for tensors with applications in array signal process-
ing. IEEE Transactions on Signal Processing, 57(12):4719–
4733, 2009.

[23] L. Tucker. Some mathematical notes on three-mode factor
analysis. Psychometrika, 31(3):279–311, 1966.

[24] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace
analysis of image ensembles. In Proceedings of European
Conference on Computer Vision, 2003.

[25] Y. Xu and W. Yin. A block coordinate descent method
for regularized multiconvex optimization with applications
to nonnegative tensor factorization and completion. SIAM
Journal on Imaging Sciences, 6(3):1758–1789, 2015.

[26] Q. Yao, J. T. Kwok, T. Wang, and T. Liu. Large-scale low-
rank matrix learning with nonconvex regularizers. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
41(11):2628–2643, 2019.

[27] T. Yokota, B. Erem, S. Guler, S. K. Warfield, and H. Hon-
tani. Missing slice recovery for tensors using a low-rank
model in embedded space. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8251–8259, 2018.

[28] T. Yokota and H. Hontani. Simultaneous visual data com-
pletion and denoising based on tensor rank and total varia-
tion minimization and its primal-dual splitting algorithm. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 3843–3851, 2017.

[29] T. Yokota, Q. Zhao, and A. Cichocki. Smooth parafac de-
composition for tensor completion. IEEE Transactions on
Signal Processing, 64(20):5423–5436, 2016.

[30] Y. Zhang and Z. Lu. Penalty decomposition methods for rank
minimization. In Advances in Neural Information Process-
ing Systems, pages 46–54. 2011.

[31] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer. Novel
methods for multilinear data completion and de-noising
based on tensor-svd. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 3842–
3849, 2014.

[32] P. Zhou, C. Lu, Z. Lin, and C. Zhang. Tensor factorization
for low-rank tensor completion. IEEE Transactions on Image
Processing, 27(3):1152–1163, 2018.

4620

