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Abstract

Deep CNN-based methods have so far achieved the state
of the art results in multi-view 3D object reconstruction.
Despite the considerable progress, the two core modules of
these methods - view feature extraction and multi-view fu-
sion, are usually investigated separately, and the relations
among multiple input views are rarely explored. Inspired
by the recent great success in Transformer models, we re-
formulate the multi-view 3D reconstruction as a sequence-
to-sequence prediction problem and propose a framework
named 3D Volume Transformer. Unlike previous CNN-
based methods using a separate design, we unify the feature
extraction and view fusion in a single Transformer network.
A natural advantage of our design lies in the exploration of
view-to-view relationships using self-attention among mul-
tiple unordered inputs. On ShapeNet - a large-scale 3D re-
construction benchmark, our method achieves a new state-
of-the-art accuracy in multi-view reconstruction with fewer
parameters (70% less) than CNN-based methods. Experi-
mental results also suggest the strong scaling capability of
our method. Our code will be made publicly available.

1. Introduction

Learning 3D object representation from multi-view im-
ages is a fundamental and challenging problem in 3D mod-
eling, virtual reality, and computer animation. Recently,
deep learning approaches have greatly promoted the re-
search in multi-view 3D reconstruction, where the deep
convolutional neural network (CNN) based approaches
have so far achieved the state of the art results in this task
[26, 28, 27].

To learn effective 3D representation from multiple in-
put views, most recent CNN-based approaches follow the
design principle of divide-and-conquer, where a common
practice is to introduce a CNN for single-view feature ex-
traction and multi-view fusion for integrating the features
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or reconstruction results from multiple views. Despite the
strong connection between the two modules, their method-
ology designs are investigated separately. Also, during the
CNN feature extraction stage that processes each view im-
age separately, the relations in different views are rarely ex-
plored. Although some recent approaches have introduced
recurrent neural network (RNN) to learn object relation-
ships among different views [5, 12], such a design lacks
computational efficiency, and the input views of the RNN
model are permutation-sensitive [22], which is not compat-
ible with a set of unordered input views. It is also shown
in recent researches that CNN-based reconstruction meth-
ods may suffer from the model scaling problem. For exam-
ple, when the number of input views exceeds a particular
scale (e.g., 4), the accuracy of methods will be saturated,
showing the difficulty of learning complementary knowl-
edge from a large set of independent CNN feature extraction
units [28, 27].

Considering the above challenges, we propose a new
framework named “3D Volume Transformer” and explore
the potential of the self-attention-based Transformer model
for the multi-view 3D object reconstruction task. We refor-
mulate the multi-view 3D reconstruction as a sequence-to-
sequence prediction problem and unify the feature extrac-
tion and view fusion in a single Transformer network. On
the one hand, in multi-view 3D reconstruction, we need to
learn the underlying 3D representation by exploring the re-
lationships among multiple input views since we can only
see part of the 3D structure from a particular view. On
the other hand, in a Transformer model, the self-attention
mechanism has recently shown its great power in learning
complex semantic abstractions within an arbitrary number
of input tokens [6, 20] and is naturally suitable for explor-
ing the view-to-view relationships of a 3D object’s differ-
ent semantic parts. Given all this, the structure of Trans-
former [21, 8] becomes a natural and attractive solution for
the multi-view 3D reconstruction.

Our Transformer-based framework contains a 2D-view
Transformer encoder and a 3D-volume Transformer de-
coder, as presented in Figure 1. The 2D-view Transformer
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encoder encodes and fuses multiple 2D-view information
by exploring their “2D-view × 2D-view” relationships of
different inputs. The 3D-volume Transformer decoder de-
codes and fuses the multi-view features from the encoder
and generates a 3D probabilistic voxel output for each spa-
tial query token. The attention layers in the decoder learn
“2D-view × 3D-volume” relationships between each of the
output voxel grids and input views. Meanwhile, volume at-
tention layers in the decoder further learn “3D-volume ×
3D-volume” relationships by exploiting correlations among
different 3D locations. By using the above unified design,
the “2D-view × 2D-view”, “3D-volume × 3D-volume”,
and “2D-view × 3D-volume” relationships can be jointly
explored by multiple attention layers in both the encoder
and decoder networks.

Based on the above encoder-decoder Transformer struc-
ture design, we further investigate the “attention unifor-
mity” problem in a Transformer model and propose an ef-
fective solution for enhancing the effectiveness of a Trans-
former model in the multi-view reconstruction task. In
Transformers, self-attention possesses a solid inductive bias
towards “token uniformity” [7], which encourages feature
representations of input tokens to converge. However, this
convergence may further cause the problem of “attention
uniformity” in deeper layers, which makes a Transformer
model loses expressive power speedily with respect to net-
work depth [7]. We show that this problem is particularly
prominent in the multi-view 3D reconstruction task and will
limit the Transformer’s capability to explore and abstract
multi-view associations at a deeper level. To tackle it, we
further propose the divergence-enhanced Transformer that
can slow down the divergence decay in self-attention lay-
ers by enhancing the discrepancy of the embeddings from
different views.

The contributions can be summarized as follows:

• We propose a brand new Transformer-based frame-
work for multi-view 3D object reconstruction. Dif-
ferent from the previous CNN-based methods that use
a separate design of feature extraction + view fu-
sion, we unify these two stages into a single Trans-
former network and re-frame the 3D reconstruction as
a “sequence-to-sequence” prediction problem.

• The proposed method can jointly and naturally explore
multi-level correspondence and associations between
the 2D input views and 3D output volume within our
encoder-decoder Transformer structure.

• We investigate the problem of “divergence decay”
in the proposed framework and propose a view-
divergence enhancing operation in our self-attention
layers to avoid such degradation.

• Our method achieves a new state-of-the-art for multi-

view 3D reconstruction on ShapeNet with only 30%
amount of parameters of recent CNN-based methods.
Our method also shows better scaling capability on the
number of input views.

2. Related Work
2.1. Multi-view 3D Reconstruction

Multi-view 3D object reconstruction has long been a
research hot-spot in both computer vision and computer
graphics. Traditional methods [30, 9] of this field are typ-
ically designed based on hand-crafted geometric features.
Some representatives of early methods like Structure from
Motion (SfM) [30], Simultaneous Localization and Map-
ping (SLAM) [9] can produce 3D reconstruction with sat-
isfactory quality. However, they typically capture multiple
images of the same object using well-calibrated cameras,
which is not practical in some situations. Recently, CNN-
based approaches, without requiring complex camera cali-
bration, have gained increasing attention in 3D reconstruc-
tion [5, 12] and have shown promising results.

In CNN-based methods, a 2D-CNN single-view encoder,
a 3D-CNN single-view decoder, and a multi-view fusion
model are usually separately designed for 3D reconstruc-
tion. Among them, the fusion model plays a central role
in the integration of multi-view feature information. Pre-
vious multi-view fusion methods can be roughly grouped
into three categories, i.e., pooling-based fusion, learnable
weighted-sum fusion, and RNN-based fusion. The pooling-
based fusion only learns partial information of multiple
views and ignores the view associations [11, 15]. The learn-
able weighted-sum fusion models are introduced to resolve
these problems [26, 28, 27]. The RNN-based fusion meth-
ods [5, 12] can learn effective view-to-view relations but are
computationally expensive and permutation-variant [22].

In this paper, different from the above CNN-based meth-
ods, we propose a Transformer-based 3D reconstruction
method that unifies the feature extraction and view fusion
in a single model and naturally explores the relationship be-
tween input views.

2.2. Transformer

In natural language processing, Transformer models
have achieved great success in various tasks such as ma-
chine translation, text classification, and question answer-
ing [1]. The key to the Transformer is the multi-head self-
attention operation, which aggregates features among ev-
ery token pair of the embedding sequence. Recently, Trans-
former has also been successfully adapted to the computer
vision field [2, 8, 4] and has shown promising application
prospects. DETR [2] provides a new framework for object
detection that combines a 2D CNN with a Transformer and
directly predicts (in parallel) the final object detection as a
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Figure 1. Illustration of EVolT for Multi-view 3D Object Reconstruction (left). The proposed view-divergence enhancing function in our
EVolT (right).

sequence of tokens. ViT [8] applies Transformer directly to
sequences of image patches for the image classification task
without using CNN features and achieves comparable and
even higher image classification accuracy when pretrained
on a large-scale dataset.

In CNN-based multi-view 3D reconstruction methods, it
is still challenging to design a fusion model that can ex-
plore the deep relationship between views while maintain-
ing the permutation-invariant capability. A natural advan-
tage of Transformer in multi-view 3D reconstruction is that
its token embedding can be abstracted and learned layer by
layer in a disorderly manner, which can naturally ease the
pain points of CNN-based methods.

2.3. 3D Representation

There are different 3D representations, i.e., coordinate-
based implicit representation [14, 18, 29, 24, 3], voxel-
[17, 26] and mesh-based [23] representations. In terms of
learning 3D representation, our method is voxel-based and
trained across multi-scenes for 3D reconstruction instead of
optimizing 3D scenes individually [17, 23, 14, 18]. Besides,
our method is learned without requiring camera parameters,
while coordinate-based implicit 3D representation methods
are primarily for view synthesis and require camera param-
eters [14, 29, 24].

3. Methodology

The proposed 3D volume Transformer model, as shown
in Figure 1, consists of a 2D-view encoder and a 3D-
volume decoder. The inputs are multi-view images of an

object. The 2D-view encoder encodes the relevant informa-
tion among different views via view attention layers. The
3D-volume decoder learns global correlations of different
spatial locations in volume attention layers and decodes the
relationships between the view and spatial domains. In the
decoder, we uniformly split the 3D space into a set of tokens
as inputs. The predicted volumes for each token are finally
stitched into the final 3D reconstruction as the output. The
output contains occupancy voxel predictions where each de-
fines the object-occupancy probability in its voxel.

In this paper, we implement three different versions of
method based on the proposed framework: Vanilla 3D Vol-
ume Transformer (VolT), Vanilla 3D Volume Transformer+
(VolT+), and view-divergence-Enhanced 3D Volume Trans-
former (EVolT).

• VolT: A baseline implementation of our method em-
ploying vanilla Transformer model and using standard
VGG16 [16] features as our initial view embeddings.

• VolT+: Using 2D-view embeddings obtained from an
advanced pretrained CNN compared with VolT. We
use it to testify the impact of 2D-view embeddings on
our Transformer-based framework for reconstruction.

• EVolT: A full implementation of our method adopting
the proposed view-divergence enhancing function and
using standard VGG16 [16] for 2D-view embeddings.

Here, to obtain 2D-view initial embeddings, we use a pre-
trained CNN shared among multiple views.
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3.1. Divergence-enhanced 2D-view Encoder

Suppose I = {I1, I2, · · · , IM} denotes the multi-view
image set of an object to be reconstructed. For each view
Im, we first use a pretrained view-shared CNN to obtain its
initial view embedding xm ∈ R1×d, where d is the feature
dimension. Then, the 2D-view encoder takes in the initial
view embeddings X0 = [x1;x2; · · · ;xM ] ∈ RM×d and
refines the multi-view representations by exploring global
relationships among multiple views using a series of self-
attention layers. Here, to keep permutation invariant for
the view sequence, the positional encodings of a stan-
dard Transformer are removed. We build our divergence-
enhanced 2D-view encoder based on DETR [2] by stacking
N = 6 basic blocks. Each basic block consists of a multi-
head divergence-enhanced view attention layer (denoted as
MH-DEAtt, Eq. (2)) and a position-wise feed-forward net-
work (FFN, Eq. (3)). The 2D-view encoder is formulated
as follows:

X0 = [x1;x2; · · · ;xM ], (1)
X̄l = Norm(MH-DEAtt(Xl−1,X0) +Xl−1), (2)
Xl = Norm(FFN(X̄l) + X̄l), (3)

where “Norm” denotes layer normalization and l is the in-
dex of a basic block (l = 1, · · · , L). The embeddings of the
block L are used as the output of our 2D-view encoder.

As shown in the right side of Figure 1, the scaled dot-
product attention (denoted as Attn, Eq. (5)) aggregates the
feature representations among multiple views by learning
view-to-view relationships. In the meantime, we propose a
view-divergence enhancing function (DiView, Eq. (4)) to
ease the discrepancy degradation of the multi-view repre-
sentations in deeper layers. Specifically, DiView introduces
skip connections and concatenates the internal view features
with the input view embeddings in the feature dimension.
The MH-DEAtt layer is defined as follows:

MH-DEAtt(Xl−1,X0) = DiView(A,X0)Wview,

whereA = cat(A1, · · · ,AH), (4)

Ah = Attn(Qh,Kh,Vh).

Here, “cat” denotes the concatenation operation and h
is the number of head in MH-DEAtt layer. Wview ∈
R(Hdk+d)×d denotes the parameter matrix of the linear
function, and dk is the feature dimension in each head. In
the h-th head, M queries stacked in Qh ∈ RM×dk are
projected from M view embeddings stacked in Xl−1 with
the parameter matrix Wh

Q ∈ Rd×dk (Qh = Xl−1W
h
Q).

Similarly, the keys and values stacked in Kh ∈ RM×dk

and Vh ∈ RM×dk are obtained with parameter matrices
Wh

K ∈ Rd×dk ,Wh
V ∈ Rd×dk , respectively.

Specifically, in the Attention function “Attn”, the output
for a query is represented as an attention-score weighted

sum of the values. The Attn function is formulated as

Attn(Q,K,V) = softmax(
QKT

√
dk

)V, (5)

3.2. 3D-volume Decoder

The 3D-volume decoder learns the global correlation
among different spatial locations and explores the relation-
ship between the view and spatial domains. Given an ob-
ject, we denote [y1;y2; · · · ;yN ] as a sequential learnable
3D-volume queries at the input end of the decoder, where
yn ∈ R1×d corresponds to the n-th 3D-volume. The 3D-
volume embeddings, denoting a set of 3D sub-volumes for
an object, are optimized end-to-end together with the net-
work parameters and shared across all potential inputs (like
object queries in [2]). These volume embeddings are not
view-conditional variables but can provide a global prior for
the dataset.

Positional encodings Epos are added to 3D-volume em-
beddings to keep the position information in the spatial do-
main. Each positional encoding informs each sub-volume
of its 3D spatial location in an object. It is calculated in a
similar way to [2] using sine and cosine functions of dif-
ferent frequencies. In the decoder, a basic block contains a
volume attention layer, a view-volume attention layer, and
a FFN. The decoder can be formulated as follows:

Y0 = [y1;y2; · · · ;yN ] +Epos, (6)
Ȳl = Norm(MH-VolAttn(Yl−1) +Yl−1), (7)

Ŷl = Norm(MH-ViewVolAttn(Ȳl,XL) + Ȳl), (8)

Yl = Norm(FFN(Ŷl) + Ŷl), (9)

where MH-VolAttn (in Eq.(7)) and MH-ViewVolAttn (in
Eq.(8)) denote the multi-head volume attention layer and
the multi-head view-volume attention layer, respectively.

In our decoder, the MH-VolAttn layer learns global de-
pendencies among different 3D volumes as follows:

MH-VolAttn(Yl−1) = cat(A1, · · · ,AH)Wvol,

where Ah = Attn(Yl−1W
h
Q,Yl−1W

h
K ,Yl−1W

h
V ).

(10)

The MH-ViewVolAttn layer integrates the relevant informa-
tion across the view and spatial domains, and is calculated
as follows:

MH-ViewVolAttn(Ȳl,XL) = cat(A1, · · · ,AH)W,

where Ah = Attn(ȲlW
h
Q,XLW

h
K ,XLW

h
V ). (11)

where Wvol ∈ RHdk×d and W ∈ RHdk×d are the param-
eter matrices of the corresponding linear functions.

Finally, after the decoder block L, we use a linear func-
tion to project the embeddings of each 3D volume to their
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Table 1. Parameter sizes and pretrained CNNs for the initial 2D-
view embeddings in competing methods.

Param.
(M)

Pretrained CNN used for
2D-view embeddings

Pix2Vox-A [26] 114.24 VGG16 [16]
Pix2Vox++/A [27] 96.31 ResNet50 [10]
VolT 28.63 VGG16 [16]
VolT+ 96.76 2D-CNN+3D-DCNN
EVolT 29.03 VGG16 [16]

3D output space. Then the predicted 3D volumes are re-
shaped and grouped to the reconstruction output. We use
binary cross-entropy between the voxel label and the output
as our loss function.

4. Experiment
4.1. Dataset

We utilize the ShapeNet dataset [25] to evaluate the pro-
posed methods and other compared methods. We follow
3D-R2N2 [5] and use the same setting for a fair compari-
son. Specifically, we use a subset of ShapeNet, which con-
sists of 13 categories and 43,783 common 3D objects. For
each 3D object, 24 2D images are rendered from different
viewing angles circling the object. For each category, we
follow [27] and randomly split samples into 70% training,
10% validation, 20% test. Categories in training are the
same as those in evaluation. During training, the input-view
number can be varied.

4.2. Evaluation Metrics

4.2.1 IoU

The mean Intersection-over-Union (IoU) calculates the
matching degree between predicted 3D voxel grids and
ground-truth grids. A higher IoU value means a better re-
construction result. For each voxel grid, the IoU is defined
as:

IoU =

∑
(i,j,k) I(y(i, j, k) > t)I(ȳ(i, j, k))∑

(i,j,k) I[I(y(i, j, k) > t) + I(ȳ(i, j, k))]
, (12)

where y(i, j, k) denotes the predicted occupancy probabil-
ity, which is binarized with an optimal fixed voxelization-
threshold t for compared methods. ȳ(i, j, k) is the ground
truth at (i, j, k). I(·) is an indicator function.

4.2.2 F-Score

Compared with IoU, F-score [19, 27] explicitly evaluates
the distance between object surfaces, which is more inter-
pretable. F-score is formally defined as the harmonic mean
between precision P(d) and recall R(d) with a distance

threshold d:

F-Score(d) =
2P(d)R(d)

P(d) + R(d)
, (13)

A higher F-score with a stringent distance threshold indi-
cates a better reconstruction result.

In F-Score, P(d) estimates the reconstruction accuracy
by counting the portion of reconstructed points lying within
the distance d = 1% to the ground truth. R(d) quantifies the
reconstruction completeness by counting the percentage of
ground-truth points lying within the distance d to the recon-
struction. These two metrics are defined as follows:

P(d) =
1

|R|
∑
r∈R

[min
g∈G

∥r− g∥ < d], (14)

R(d) =
1

|G|
∑
g∈G

[min
r∈R

∥g − r∥ < d]. (15)

where [·] is the Iverson bracket. G is the ground-truth point
set, and R is the reconstructed point set being evaluated.
We apply F-Score with the same setting in [27].

4.2.3 Divergence measurement for multi-view repre-
sentations

We also define a metric to explore the convergence of multi-
view representations in different layers. Since the conver-
gence has a positive correlation with the divergence decay
of multi-view attentions, we utilize a similarity measure
based on multi-view attentions to evaluate the divergence
enhancing ability in our method.

In each view attention layer, an attention-score matrix
S = softmax(QKT

√
dk

) contains view-to-view attention vec-
tors. The m-th row of S, denoted as sm, is an attention-
score vector where each element represents its attention
weight to another view. For 3D reconstruction of a spe-
cific object, the mean absolute deviation (MAD) measur-
ing the similarity of multi-view attentions, is calculated as
D = 1

Nview

∑
m ∥sm − s̄∥2, where s̄ = 1

Nview

∑
m sm.

Here, a small D means a more considerable similarity and
the convergence of multi-view representations.

4.3. Implementation Details

We set the batch size to 64 and the view image size to
224× 224 for training. The 3D spatial size of the voxelized
output is set to 32× 32× 32. The VolT and its two variants
VolT+, and EVolT are trained by an AdamW optimizer [13]
with a β1 of 0.9 and a β2 of 0.999.

Table 1 shows the parameter sizes and pretrained CNNs
for the initial view embeddings used in different com-
peting methods. Compared with Pix2Vox-A [26] and
Pix2Vox++/A [27], the parameter size of EVolT is only
around 30% of them. To obtain the reported best results,
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Table 2. Comparison of 24-views reconstruction on ShapeNet using IoU and F-Score. The best score for each category is in bold.
24-views IoU 24-views F-Score@1%

Category
Pix2-
Vox-A

Pix2-
Vox++/A VolT VolT+ EVolT Pix2-

Vox-A
Pix2-
Vox++/A VolT VolT+ EVolT

airplane 0.731 0.729 0.719 0.725 0.741 0.635 0.614 0.604 0.618 0.636
bench 0.679 0.686 0.678 0.682 0.707 0.525 0.522 0.513 0.525 0.548
cabinet 0.822 0.829 0.825 0.825 0.832 0.448 0.456 0.452 0.455 0.464
car 0.880 0.883 0.884 0.885 0.894 0.598 0.598 0.604 0.609 0.624
chair 0.620 0.647 0.645 0.641 0.681 0.318 0.341 0.339 0.340 0.373
display 0.599 0.613 0.635 0.613 0.674 0.320 0.335 0.366 0.339 0.403
lamp 0.475 0.493 0.478 0.481 0.520 0.335 0.351 0.320 0.338 0.366
speaker 0.751 0.762 0.762 0.753 0.772 0.309 0.326 0.327 0.317 0.339
rifle 0.676 0.686 0.663 0.693 0.711 0.615 0.624 0.597 0.634 0.653
sofa 0.764 0.782 0.781 0.776 0.800 0.427 0.454 0.449 0.448 0.478
table 0.644 0.666 0.649 0.658 0.675 0.398 0.419 0.407 0.418 0.431
telephone 0.837 0.849 0.857 0.850 0.867 0.659 0.666 0.678 0.675 0.687
watercraft 0.655 0.668 0.670 0.670 0.693 0.441 0.460 0.456 0.470 0.494
Overall 0.706 0.720 0.714 0.716 0.738 0.462 0.473 0.468 0.475 0.497

Table 3. Comparison of multi-view reconstruction on ShapeNet using IoU and F-Score. The best score for each view number is in bold.
F-Score@1% 24 23 22 21 20 18 16 14 12 8 6 4
3D-R2N2 [5] - - - - 0.383 - 0.382 - 0.382 0.383 - 0.378
AttSets [28] - - - - 0.448 - 0.447 - 0.445 0.444 - 0.430
Pix2Vox-A [26] 0.462 0.462 0.462 0.462 0.462 0.461 0.461 0.461 0.460 0.458 0.456 0.452
Pix2Vox++/A [27] 0.473 - - - 0.462 - 0.461 - 0.460 0.459 - 0.457
VolT 0.468 0.467 0.467 0.465 0.464 0.461 0.459 0.456 0.450 0.430 0.410 0.356
VolT+ 0.475 0.475 0.474 0.474 0.474 0.473 0.472 0.471 0.469 0.464 0.460 0.451
EVolT 0.497 0.496 0.495 0.494 0.492 0.489 0.486 0.481 0.475 0.448 0.423 0.358
IoU
3D-R2N2 [5] - - - - 0.636 - 0.636 - 0.636 0.635 - 0.625
AttSets [28] 0.694 - - - 0.693 - 0.692 - 0.688 0.685 - 0.675
Pix2Vox-A [26] 0.706 0.706 0.706 0.706 0.706 0.705 0.705 0.705 0.704 0.702 0.700 0.697
Pix2Vox++/A [27] 0.720 - - - 0.719 - 0.718 - 0.717 0.715 - 0.708
VolT 0.714 0.713 0.712 0.711 0.711 0.708 0.706 0.703 0.699 0.681 0.662 0.605
VolT+ 0.716 0.716 0.716 0.715 0.715 0.714 0.714 0.713 0.711 0.707 0.704 0.695
EVolT 0.738 0.738 0.737 0.735 0.735 0.732 0.729 0.726 0.720 0.698 0.675 0.609

Pix2Vox-A and Pix2Vox++/A both adopt an additional 3D-
CNN-based refiner containing another 3D-CNN and 3D-
DCNN. In contrast, our proposed end-to-end methods do
not need additional refiner and can also achieve the best
results. To testify the impact of 2D-view embeddings on
our Transformer-based framework, in VolT+, we apply an
advanced CNN feature extraction model for 2D-view em-
beddings from the 2D-CNN and 3D-DCNN without the last
layer in Pix2Vox-A.

4.4. Multi-view 3D Object Reconstruction

4.4.1 Quantitative results

Here, we show the quantitative results of compared meth-
ods on ShapeNet using different evaluation metrics. Table
2 shows the comparison of 24-view object reconstruction

on ShapeNet using IoU and F-Score metrics. The high-
est value for each category is highlighted in bold. This ta-
ble shows that EVolT reaches the highest IoU and F-score
among the compared methods. VolT gets moderate results
between Pix2Vox-A and Pix2Vox++/A. VolT+ works better
than VolT because it uses better initial features. However,
VolT+ still falls behind EVolT even EVolT is based on the
plain VGG features. These observations indicate that the
view-divergence enhancing function in EVolT plays an in-
dispensable role in increasing its performance against the
compared methods.

Table 3 shows the multi-view object reconstruction re-
sults on ShapeNet. The best score for each number of views
(column label) is highlighted in bold. This table shows that
the performances of our methods increase appreciably as
the number of views increases. In comparison, other com-
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Figure 2. Qualitative 3D object reconstruction results on ShapeNet based on different number of input 2D-view images.

pared methods increase slightly when the view number en-
larges. For example, the mean IoU of EVolT increases by
0.04 from 8 views to 24 views, which is eight times the
improvement of Pix2Vox++/A. This observation indicates
that the proposed Transformer-based methods have better
scaling ability and can learn a more comprehensive 3D rep-
resentation with the increase of view number. We can also
see from this table that our proposed methods get the best
F-Score when the view number is larger than 6 and get the
best IoU when the view number is higher than 12.

4.4.2 Qualitative results

In Figure 2, we show the qualitative results of 3D object re-
construction of different methods on ShapeNet. In each ob-
ject sample, we provide object reconstruction results from
different numbers of input views, i.e., 12 views, 18 views,

Figure 3. Effect of the view-divergence enhancing function on 3D
reconstruction results.
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Figure 4. Multi-view attention-matrix visualization in VolT and EVolT.

Figure 5. Divergence among multi-view representations in VolT
and EVolT.

and 24 views. The first two rows on the left part of Figure 2
show the 12 input views of an object. The corresponding re-
construction results of competing methods are shown in the
second row on the right. Similarly, the first three rows on
the left are the 18 input views corresponding to the results
on the right.

Figure 2 shows that EVolT can obtain more accurate and
complete 3D reconstruction against compared methods. For
example, the EVolT results in the last column successfully
recover chair legs and monitor stand while other methods
only show incomplete parts. More qualitative results can be
found in our Supplementary Material.

4.5. Ablation Study

4.5.1 Effect on 3D reconstruction accuracy

In Figure 3, we quantitatively evaluate the influence of the
view-divergence enhancing function on 3D reconstruction
results by comparing EVolT with VolT and Pix2Vox-A.
From Figure 3, we can observe that EVolT significantly out-
performs VolT that achieves better results than Pix2Vox-A.
This indicates the positive effect of the view-divergence en-
hancing function on 3D reconstruction results.

4.5.2 Effect on the view divergence

In Figure 4, we visualize the view-to-view attention matrix
in different layers by VolT and EVolT. We set the input view
number to 24 in this experiment. In the attention matrix at
each layer, the m-th row shows an attention vector where
each element is the attention weight of the m-th view to
another view. From the top of Figure 4, we can observe
that rows become more similar in a standard transformer as
the attention layers go deeper. As a comparison, in EVolT,
we can see the diversity of multi-view attention still keeps
in deep layers, which means that the divergence enhancing
function in EVolT can effectively slow down the conver-
gence degradation of multi-views in deeper layers.

In Figure 5, the similarity measurement score D is also
recorded to analyze the convergence among multi-view rep-
resentations in each layer. For 100 randomly chosen ob-
jects, we plot D in different layers displayed in Figure 5.
A small D suggests a significant convergence among multi-
view representations. As shown in Figure 5, the value of
D obtained by VolT declines gradually with deepening the
2D-view encoder layer while the value of D of EVolT at the
same layer keeps higher than that of VolT.

The ablation studies indicate that the view-divergence
enhancing function plays an essential role in improving the
proposed EVolT performance and relieving the convergence
among multi-view representations in different layers.

5. Conclusion

This paper proposes a Transformer-based framework for
multi-view 3D reconstruction, which achieves state-of-the-
art accuracy on ShapeNet with fewer parameters than CNN-
based methods. The proposed framework explores view and
spatial domain relationships for multi-view 3D reconstruc-
tion. We also explore the problem of divergence decay for
the multi-view information in deeper layers and propose a
view-divergence enhancing function to ease such a problem.
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