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Abstract

Conventional deep image inpainting methods are based
on auto-encoder architecture, in which the spatial details
of images will be lost in the down-sampling process, lead-
ing to the degradation of generated results. Also, the struc-
ture information in deep layers and texture information in
shallow layers of the auto-encoder architecture can not be
well integrated. Differing from the conventional image in-
painting architecture, we design a parallel multi-resolution
inpainting network with multi-resolution partial convolu-
tion, in which low-resolution branches focus on the global
structure while high-resolution branches focus on the local
texture details. All these high- and low-resolution streams
are in parallel and fused repeatedly with multi-resolution
masked representation fusion so that the reconstructed im-
ages are semantically robust and textually plausible. Ex-
perimental results show that our method can effectively fuse
structure and texture information, producing more realistic
results than state-of-the-art methods.

1. Introduction

Image inpainting, which aims at synthesizing meaning-
ful and plausible contents in missing regions, is a funda-
mental computer vision task. This process not only de-
mands meaningful texture content but also expects harmony
between the filled regions and the background. Conven-
tional image inpainting methods [2, 3, 4, 10] utilize the
background information to fill the missing regions. They
can inpaint simple low-resolution images with promising
results, but fail to inpaint high-resolution images with af-
fordable time. Also, these methods perform poorly for im-
ages with complex scenes or large missing regions.

In recent years, deep neural network has made a huge
breakthrough in the field of image inpainting, such as
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[26, 18, 38, 25, 39, 28, 35, 41]. In general, most of the
deep image inpainting networks are based on auto-encoder
architecture which is prevalent in image generation tasks.
Some other deep inpainting networks employ the variants
of auto-encoder like U-net architecture [34, 23]. Further, a
series of methods [40, 15, 37] integrate the idea of multi-
resolution into auto-encoder architecture. However, there
exist two drawbacks for applying auto-encoder architecture
to image inpainting. Firstly, all these methods are composed
of series-connected high-to-low resolution sub-networks,
following low-to-high resolution sub-networks, with down-
sampling and up-sampling. Due to down-sampling, there
will be high-resolution information loss and high-resolution
inpainting cannot be maintained all the time. Secondly, con-
sidering the receptive field size for each layer in a deep neu-
ral network, it is generally believed that low-resolution fea-
ture maps (representations) from the deeper layers contain
high-level information (i.e., global structure information)
while high-resolution feature maps (representations) from
the shallower layers contain low-level information (i.e., lo-
cal texture details) [22, 31]. Hence, texture information and
structure information can not be well integrated into a se-
rial conventional network like auto-encoder structure. To
solve the second problem, a mutual encoder-decoder with
feature equalization is proposed to correlate filled structures
with textures in [22]. Although the consistency between
structures and textures within missing regions is enhanced,
this method lacks sufficient information exchange between
high-resolution and low-resolution feature maps, which still
leads to blur and artifacts.

In order to maintain the high quality of image restoration
as well as enhance the coherence between structure and tex-
ture, we propose a parallel multi-resolution fusion network
for image inpainting. There have been a wide range of com-
puter vision tasks benefited from multi-resolution networks,
like classification [33, 29, 16, 31], object detection [5, 36],
human pose estimate [30], segmentation [7, 45, 27, 13],
and face parsing [49]. Similar to [30], our overall network
architecture has four parallel branches with four different
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resolutions, in which each branch consists of multiple sub-
networks with one sub-network belonging to one stage. The
information from different branches is exchanged at the end
of each stage. Compared with [30], we first make two slight
modifications: (1) the main body of our network starts from
four resolutions at the beginning to focus on both local and
global information; (2) we add two extra stages to guarantee
adequate stages for inpainting missing regions. As shown
in Figure 1, our network starts from high-resolution branch,
followed by the main body containing six stages. In each
stage, there are four sub-networks with different resolutions
in parallel. Relying on this architecture, our approach can
maintain high-resolution inpainting with more detailed tex-
ture information instead of recovering images from low-
resolution to high-resolution, which effectively avoids the
information loss caused by downsampling in auto-encoder
architecture.

To further tailor our network for image inpainting, we
make two major improvements: mask-aware representation
fusion and attention-guided representation fusion. First of
all, we replace the convolution layers with partial convolu-
tion layers [21] and restore the missing regions with multi-
resolution inpainting priorities, which guides the branches
to focus on inpainting texture in the high-resolution or struc-
ture information in the low-resolution, respectively. After
each stage of the first five stages, we conduct mask-aware
representation fusion by fusing both masks and representa-
tions among all branches to make the reconstructed images
structurally robust and textually plausible. Prior to the last
stage, we use a fused self-attention map learned from all res-
olution feature maps to guide the refinement of each resolu-
tion feature map. Experiments conducted on three datasets
show that our method is superior to the state-of-the-art ap-
proaches. In summary, the main contributions of our work
are as follows:

• This is the first work to introduce parallel multi-
resolution network architecture into image inpainting,
which is able to maintain high-resolution inpainting in
the whole process and generate promising texture pat-
terns for the inpainted images.

• Built on parallel multi-resolution network architecture,
we propose novel mask-aware representation fusion
and attention-guided representation fusion, which can
fuse the low- and high-resolution representations more
effectively.

• Extensive experiments validate that our method can
produce more reasonable and fine-detailed results than
other state-of-the-art methods.

2. Related Work
In this section, we will briefly introduce conventional im-

age inpainting methods and deep image inpainting methods.

2.1. Conventional Image Inpainting

Conventional image inpainting methods attempted to re-
store the corrupted area with background content, which
can be divided into two main categories: diffusion-based
methods and exemplar-based methods. Diffusion-based
methods [3, 1, 12] diffusely propagated background infor-
mation into the missing area while exemplar-based methods
[2, 10, 17] selected similar exemplar patches from back-
ground regions to fill in the missing regions. Although
these methods are successful in processing image with low-
resolution and simple structure, they are incapable of deal-
ing with complex scenes due to a lack of broad understand-
ing of the image.

2.2. Deep Image Inpainting

Deep learning has brought great performance improve-
ment to image inpainting task. Generally, most of the deep
image inpainting networks are based on auto-encoder ar-
chitecture. In [26, 18, 21], one stage auto-encoder archi-
tecture was used for image inpainting. Yu et al. [38, 39]
first proposed a two-stage auto-encoder network to refine
the inpainting process from coarse to fine. U-net architec-
ture was applied by [34, 23] as the variant of auto-encoder
to enhance the connection between features in the encoder
and decoder. These methods lack thoughtful consideration
of the integration of the multi-resolution information.

2.3. Multi-Resolution Image Inpainting Network

There are also some image inpainting methods exploit-
ing the idea of multi-resolution more or less when designing
their network. Zeng et al. [40] proposed a pyramid-context
encoder to progressively learn attention map from a high-
level feature map and transfer attention map to the previous
low-level feature map. Hong et al. [15] designed a U-Net
architecture embedded with multiple fusion blocks to ap-
ply multi-scale constraints at image level. Yi et al. [37]
proposed a contextual residual aggregated technique that
enables high-quality inpainting of ultra-high-resolution im-
age. To solve the inconsistency between structures and tex-
tures within hole regions, Liu et al. [22] proposed a mutual
encoder-decoder with feature equalization, which still lacks
a continuous fusion process for structures and textures. All
these methods make use of the multi-resolution information
in a serial way. Distinctive from them, we propose a parallel
multi-resolution image inpainting architecture that connects
the high-to-low resolution branches in parallel and repeat-
edly exchanges the information across multi-resolutions.

3. Background

In this section, we will introduce the background knowl-
edge on partial convolution and self-attention, which are
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Figure 1. An illustration of our proposed parallel multi-resolution fusion network. Masked images and masks are input to the network, and
then we have four branches corresponding to four different resolutions. The main network has six stages and mask-aware representation
fusion is performed at the end of each stage for the first five stages. Before the last stage, attention-guided representation fusion is applied.

the basis of our multi-resolution partial convolution and
attention-guided representation fusion, respectively.

3.1. Partial Convolution

Partial convolution (PConv) [21, 8, 9] is designed for
image inpainting task to alleviate color discrepancy issues,
which performs convolution based on both feature map and
mask. In our multi-resolution image inpainting network, we
augment the partial convolution layer with multi-resolution
inpainting priority that can guide the network to concentrate
on structure information or texture information for each res-
olution. At the end of each stage, the information of dif-
ferent resolutions is fused with mask-aware representation
fusion. We first introduce partial convolution, which is pro-
posed to propagate information from background regions
to the missing regions. Let W be the convolution filter
weights and b be the corresponding bias. Considering the
convolution window p, Xp (resp., Mp) represents the fea-
tures (resp., binary mask) for this window. Mask value 1
(resp., 0) indicates unmasked (resp., masked) pixel. We first
state how the mask changes after performing partial convo-
lution. The mask value at the center of convolution window
p will be updated as

m′ =

{
1 if sum(Mp) > 0,
0 otherwise,

(1)

in which sum(·) calculates the sum of the elements. After
applying partial convolution, the center pixel of a convolu-
tion window will become an unmasked pixel as long as at
least one pixel in the window is unmasked. Therefore, some
masked pixels will turn to unmasked pixels, which means
that the masked area is inpainted.

The feature value at the center of convolution window p
will be updated as

x′ =

{
Ωp

sum(Mp)
W ∗ (Xp ⊙Mp) + b if m′ = 1,

0 otherwise,

(2)
in which Ωp is the area of convolution window p, ⊙ is
element-wise product, and ∗ is convolution operation.

3.2. Self-Attention Mechanism

Attention modules are able to effectively capture long-
range dependencies from image and have been proved ef-
fective in image inpainting [46, 44, 48]. Zhang et al. [42]
first proposed the self-attention mechanism to draw global
dependencies of image and learn a better image generator.
In self-attention mechanism, the attention score of the fea-
ture map, which represents pairwise feature similarity for
pixels x in the feature map, can be calculate as follows,

ai,j =
exp(sij)∑N
j=1 exp(sij)

, sij = f(xi)
T g(xj), (3)

where N is the number of pixels in the feature map, f(x) =
Wfx, g(x) = Wgx. The obtained ai,j indicates the
weight to which the model refers to the j-th pixel when syn-
thesizing the i-th pixel. Then, the output feature yi of the
i-th pixel is

oi =

N∑
j=1

ai,jxj , yi = oi + xi. (4)
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4. Method

In this section, we will first present the overall network
architecture. Then, we will introduce mask-aware represen-
tation fusion with inpainting priorities, and attention-guided
representation fusion. Finally, the loss functions used in our
network will be mentioned.

4.1. Multi-Resolution Image Inpainting Network

In this paper, we suppose the ground-truth complete im-
age is Igt. M denotes the mask of corrupted image, which
is a binary matrix where 0 indicates the missing area and 1
indicates the background area. Im = Igt ⊙ M represents
the masked corrupted image.

The overview of our multi-resolution image inpainting
network is shown in Figure 1. Our network is built on [30]
but have clear differences specifically designed for image
inpainting: (1) the main body of our network starts from
four resolutions at the beginning rather than adding reso-
lution gradually, which can focus on both local and global
information; (2) we add two extra stages tailored for image
inpainting to provide missing areas with adequate comple-
tion time; (3) we replace vanilla convolution with partial
convolution, which has been proved beneficial for image
inpainting. For simplicity, in Figure 1, we only show the
feature maps with arrows indicating the data flow and omit
the arrows within four residual blocks in each sub-network.
The detailed network architecture can be found in the sup-
plementary.

4.2. Mask-Aware Representation Fusion

As introduced in Section 3.1, partial convolution pro-
vides an innovative perspective for isolating the features of
the unmasked regions from the masked regions, in which
the mask updating procedure reflects the inpainting order.
Partial convolution has been widely used in previous image
inpainting methods [21, 32, 20, 22]. However, one draw-
back of partial convolution is that it treats different pixels
equally (see the mask updating rule in Eqn. 1) without con-
sidering the specific situations for different pixels. For ex-
ample, some pixels may contain obvious structure informa-
tion that can be easily inpainted in low-resolution layers,
while the other pixels may include texture information that
is unconscious in low-resolution layers. Hence, we should
assign different inpainting priorities to different pixels, and
also distinguish different layers with various resolutions.

4.2.1 Inpainting Priorities

We notice that the conventional image inpainting method
[10] assigns priorities to the pixels in the missing region
and fills these pixels according to the assigned priorities. In-
spired by [10, 43], we also assign inpainting priorities and

guide the layer to first restore the pixels with higher prior-
ities. Similar to Eqn. (1), we update the mask value as:

m′ =

{
1 if m = 1 or q ≥ δ · qmax,
0 if sum(Mp) = 0,

(5)

where sum(Mp) is the same as in Eqn. 2, m is the current
mask value of the pixel p and q is the priority to be defined.
q is only calculated on the border of the mask area, which
means m = 0 and 0 < sum(Mp) < Ωp. We only allow
the pixels with priorities higher than the threshold δ · qmax

to be inpainted for each partial convolution layer, in which
δ is a hyper-parameter and qmax is the maximum value of q
for all the border pixels. We empirically set δ = 0.5 for all
the branches of our model. Specifically, for pixel x at the
center of convolution window p, its priority q is defined as:

q = sum(Mp)× ρl(x), (6)

where the resolution level l ∈ {3, 2, 1, 0} represents
{2562, 1282, 642, 322} feature map size, respectively. The
defined priority is the product of two parts: common prior-
ity sum(Mp) and resolution-specific priority ρl(x) for the
l-th resolution, which will be detailed later on.
Common Priority: The first part sum(Mp) in Eqn. 6 is
the common priority for different layers with various reso-
lutions, which calculates the number of unmasked pixels in
the current convolution window. This term can be recog-
nized as a confidence score of filling this pixel. Intuitively,
inside the convolution window p, the more pixels surround-
ing the pixel x are unmasked (already known), the more
confidently the pixel x can be inpainted with more context
information to reduce the uncertainty. Therefore, we first
inpaint the pixels with higher common priorities. In Fig-
ure 2 (a), we demonstrate the pixels with high common pri-
orities with green and red color.

The second part ρl(·) in Eqn. 6 is resolution-specific pri-
orities. This means that the form of ρl(·) is different for
low-resolution layers and high-resolution layers. As shown
in Figure 1, we treat the top three branches (l ∈ {3, 2, 1}) as
high-resolution layers and the bottom branch (l = 0) as low-
resolution layer. We will introduce ρl(·) for low-resolution
layers and high-resolution layers separately below.
Low-Resolution Priority: In the proposed multi-resolution
inpainting network, we hope that the low-resolution (l = 0)
network can focus on the structure information, because the
receptive field of low-resolution feature map is large and
thus helpful for collecting global structure information. Fol-
lowing [10], we define ρ0(x) as:

ρ0(x) = |np · ∇X⊥
p |, (7)

where np is the normal vector of the mask border calculated
based on Mp. ∇X⊥

p is the isophote (perpendicular to gra-
dient vector) calculated based on the channel-wise mean of
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Figure 2. (a) Illustration of common priority and contour striking (resolution-specific) priority, where the green pixels are with high common
priority, yellow pixels are with high contour striking priority, red pixels are with both high common priority and contour striking priority;
(b) a sample image; (c) contextual residue; (d) masked image; (e) inpainted results; (f) low-resolution priority; (g) norm of low-resolution
gradients; (h) high-resolution priority without contextual residue; (i) norm of high-resolution gradients without contextual residue; (j) high-
resolution priority with contextual residue; (k) norm of high-resolution gradients with contextual residue; (l) visualization of low-resolution
feature map (averaged by channels); (m) visualization of high-resolution feature map.

the feature map X in each partial convolution layer. The
pixels with a higher value of |np · ∇X⊥

p |, where the norm
(intensity) of ∇X⊥

p is large or the direction of ∇X⊥
p is close

to the normal vector of the mask border, are more likely to
be from structurally informative regions such as the edges
on the mask border. This type of inpainting priority is called
“contour striking” priority [10], which often “strikes” the
mask border on the pixels with high structural intensity.
With contour striking priority, broken edges inside the miss-
ing regions tend to be connected, which follows the “Con-
nectivity Principle” in Gestalt vision psychology [19, 6, 10].
In Figure 2 (a), we demonstrate the pixels with high contour
striking priorities with yellow and red color.
High-Resolution Priority: For the rest of branches with
higher resolution (l ∈ {3, 2, 1}), we expect these branches
to focus on the texture information. Here we leverage con-
textual residue information to represent texture information
in the feature map. Precisely, for a feature map f at reso-
lution level l, we downsample the feature map to half res-
olution, then upsample the feature map to the original res-
olution resulting a new feature map f↓↑. The contextual
residue is defined as f − f↓↑. Note that the downsam-
ple/upsample functions we used are bilinear interpolation.
Then, ρl(·) for l ∈ {3, 2, 1} is defined as:

ρl(x) = |np · ∇(Xp −Xp↓↑)
⊥|. (8)

ρl(·) has the same format as a contour striking priority com-
pared with low-resolution priority, but changes Xp to con-
textual residue Xp − Xp↓↑. Higher ρl(·) value means the
pixel is more different in high-resolution and the informa-
tion for that pixel may be unconscious in low-resolution.
In Figure 2 (b) and (c), we demonstrate the difference be-
tween original image and contextual residue. We can see

that the contextual residue contains more high-frequency
information with low-intensity. We also show the norm
of gradient maps ∇Xp and ∇(Xp − Xp↓↑) in Figure 2 (i)
and (k), and visualize the low- and high-resolution feature
map in Figure 2 (l) and (m). Compared with the norm of
low-resolution gradient map (Figure 2 (g)) which ignores
texture information, the norm of ∇Xp is high on the pix-
els for both structure and texture information, while the
norm of ∇(Xp − Xp↓↑) only focuses on textual informa-
tion. In Figure 2 (h) and (j), we show the difference between
high-resolution priorities with and without using contextual
residue, which proves that using contextual residue for cal-
culating high-resolution priority will encourage the high-
resolution branch to focus on inpainting texture patterns of
the images.

4.2.2 Fusing Representation with Masks

At the end of each stage for the first five stages (see Fig-
ure 1), we add a mask-aware representation fusion module
to integrate the feature maps of different resolutions. Three
types of feature maps, if exist, are used to obtain the fused
feature map for each resolution level l: (1) for the feature
map coming from the same resolution level l, we directly
add the feature map; (2) for the feature map coming from
resolution level k < l, we upsample the feature map to res-
olution level l (3) for the features coming from resolution
l + 1, we follow [16] to use 3× 3 convolution with stride 2
to achieve resolution level l.

When fusing multi-resolution representations, masks
and representations are both summed at first. After summa-
tion, the feature value x and the mask value m are updated
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by

(x′,m′) =

{
( x
m , 1) if m > 0,

(0, 0) otherwise.
(9)

4.3. Attention-Guided Representation Fusion

To further fuse high-level features (low-resolution) and
low-level features (high-resolution) in our multi-resolution
network, we propose an attention-guided representation fu-
sion method based on self-attention. Since self-attention
mechanism has been proved to effectively capture long-
range dependencies from image, we use it to extract the
global relation from each resolution. Then we fuse the at-
tention map calculated from each resolution to a shared at-
tention map which is applied to all resolutions. By means
of multi-resolution attention fusion, the lower-resolution
branches are able to learn a better global relation from
different scales and the higher-resolution branches gain a
more comprehensive understanding both of the overall im-
age structure and local texture from lower-resolution, which
completes a whole image better and faster.

Specifically, we first downsample the feature maps from
higher-resolution (l ∈ {3, 2, 1}) to the size (N = 322) of
the lowest-resolution (l = 0). Then, we concatenate the
downsampled feature maps Xl for l ∈ {3, 2, 1, 0}, based
on which the attention score map a ∈ RN×N is calcu-
lated as described in Section 3.2. After that, we apply a to
the feature maps with different resolutions to provide global
structure information:

ql
i =

N∑
j=1

ai,jp
l
j , yl

i = ql
i + pl

i, (10)

where l ∈ {3, 2, 1, 0}, ai,j is the (i, j)-th entry in a, pl
j

is the j-th patch to synthesize the i-th patch pl
i at resolu-

tion level l. As the size of higher-resolution feature maps
(2562, 1282, 642) is larger than N (322), the size of higher-
resolution patch pl

i, l ∈ {3, 2, 1} is 82, 42, 22, respectively,
which captures the local patch information for the each res-
olution. Finally, ql

i is fused with the feature map pl
i to ob-

tain the output feature map yl
i at each resolution level l. A

visualization of the effect of this fusion method is placed in
the supplementary.

4.4. Loss Function

The final inpainted result Ig is generated from a combi-
nation of feature maps at different resolution levels. Specifi-
cally, we concatenate the feature maps from four resolutions
(low-resolution feature maps are upsampled to the highest
resolution) and use two convolution layers to output the fi-
nal result. Besides, we also generate inpainted results with
lower resolution I l

g, l ∈ {0, 1, 2} as side outputs.
We use the reconstruction loss Lrec to compute the l1

distance between the final result Ig and the ground-truth

image Igt:
Lrec = ∥Igt − Ig∥1. (11)

We also apply reconstruction loss Lmrec to each side
output I l

g, l ∈ {0, 1, 2} with the corresponding ground-truth
image I l

gt:

Lmrec =

2∑
l=0

∥I l
gt − I l

g∥1. (12)

To encourage the final result Ig to be realistic, we lever-
age Generative Adversarial Network [14] and employ dis-
criminator D to Ig . The adversarial loss for D is defined
as:

LD
adv = −EIgt [logD(Igt)]− EIg log[1−D(Ig)], (13)

while the adversarial for the multi-resolution network (gen-
erator) is defined as:

LG
adv = −EIg [logD(Ig)]. (14)

The overall loss function Ltol is

Ltol = λmrecLmrec + λrecLrec + Ladv, (15)

where the hyper-parameters λmrec and λrec are empirically
set as 20. Ladv stands for LG

adv (resp., LD
adv) when optimiz-

ing the generator (resp., discriminator).

5. Experiments
We evaluate quantitative results and the visual quality

of our method with state-of-the-art methods. More exper-
iments on high-resolution image, model complexity, infer-
ence time and user study are placed in the supplementary.

5.1. Datasets and Implementation Details

We implement our model using Pytorch 1.5.0 and the
details of our model architecture are illustrated in the sup-
plementary. We train the model on a single NVIDIA TI-
TAN RTX GPU (24GB) with a batch size of 4, optimized
by Adam optimizer with learning rate 0.0001, β1 = 0.001
and β2 = 0.99. Three benchmark datasets including
CelebA [24], Paris Street View [11], and Places2 [47] are
utilized to validate our model. All the images are resized to
256 × 256 with regular holes or irregular holes in random
positions.

5.2. Qualitative Comparisons

To qualitatively evaluate the inpainted results, we com-
pare our model with other methods for both regular and ir-
regular holes. In Figure 3, Figure 4, Figure 5, we provide
detailed examples with local magnification on Paris Street
View, CelebA, Places dataset, respectively. Due to space
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Figure 3. The visual comparison results on Places2 [47]. Best viewed by zooming in.

Figure 4. The visual comparison results on Paris Street View [11].
Best viewed by zooming in.

limitations, please zoom in to check the details and the com-
parisons for regular hole are provided in the supplementary.
We omit the results of MEDFE in CelebA due to the perfor-
mance of the released pretrained model on irregular holes is
very bad and omit results of HF on CelebA and Paris Street
View since only the pretrained test model on Places2 are of-
ficially released. It can be seen that the results produced by
GC, EC and HF tend to contain blurry, distorted content or
artifacts. The results of SF have severe color discrepancies.
Although MEDFE generates a balanced result in texture and
structure, there still exist some blurry textures and unrea-

Figure 5. The visual comparison results on CelebA [24]. Best
viewed by zooming in.

sonable semantics. By means of multi-resolution inpainting
architecture combined with multiple fusion techniques, our
method is able to generate results with fine-grained textures
and reasonable structures.

5.3. Quantitative Comparisons

Fair quantitative comparisons with the state-of-the-art
methods GC [39], EC [25], SF [28], HF [37], MEDFE [22]
are conducted on the Places2 dataset using different mask
ratios. We randomly select 10,000 images from Places2
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Mask GC [39] EC [25] SF [28] HF [37] MEDFE [22] Ours

ℓ 1
(%

)↓

0-10% 1.74 1.18 2.71 2.41 1.30 1.12
10-20% 2.38 1.91 3.51 3.38 2.09 1.74
20-30% 3.36 2.91 4.55 4.67 2.66 2.60
30-40% 4.55 4.06 5.69 6.13 3.85 3.65
40-50% 5.96 5.42 7.00 7.93 5.31 4.89
50-60% 8.52 7.66 9.12 10.7 7.91 7.24
Ave% 4.41 4.42 5.43 5.87 4.60 3.54

SS
IM

↑

0-10% 0.951 0.964 0.898 0.917 0.960 0.971
10-20% 0.913 0.921 0.855 0.859 0.925 0.934
20-30% 0.859 0.863 0.801 0.788 0.882 0.884
30-40% 0.799 0.802 0.745 0.714 0.819 0.827
40-50% 0.732 0.733 0.685 0.632 0.747 0.761
50-60% 0.640 0.646 0.610 0.536 0.649 0.669
Ave% 0.816 0.806 0.765 0.741 0.805 0.840

PS
N

R
↑

0-10% 31.085 32.441 28.609 28.825 31.707 33.690
10-20% 27.454 27.941 25.522 25.255 27.422 28.924
20-30% 24.466 24.931 23.121 22.635 25.855 25.871
30-40% 22.195 22.787 21.336 20.672 23.271 23.487
40-50% 20.395 21.043 19.818 18.903 21.211 21.659
50-60% 18.022 18.957 17.981 16.841 18.738 19.220
Ave% 23.937 25.700 22.732 22.188 25.220 25.475

FI
D

↓

0-10% 1.40 1.60 3.74 1.95 1.46 1.25
10-20% 2.60 3.18 5.00 5.20 3.27 2.30
20-30% 4.18 5.87 6.92 11.54 7.23 4.14
30-40% 7.20 9.90 9.47 22.36 14.34 6.57
40-50% 11.70 15.65 13.07 39.98 25.78 10.61
50-60% 19.88 25.55 21.70 70.91 43.90 16.99
Ave% 7.71 13.58 9.98 25.32 22.68 6.98

Table 1. Quantitative results of different methods on Places2 [47].

testset and test on irregular mask dataset provided by [21],
in which masks are split into several groups according
to the relative masked area ratio: 0∼10%, 10%∼20%,
20%∼30%, 30%∼40%, 40%∼50%, 50%∼60%. We adopt
the following four evaluation metrics: relative l1, Structural
Similarity (SSIM), Peak Signal-to-Noise Ratio (PSNR), and
Frechet Inception Distance (FID). The evaluation results on
Places2 are shown in Table 1. It can be seen that our method
outperforms existing methods for all groups of masks. Be-
sides, extra comparisons conducted on the CelebA dataset
are placed in the supplementary due to limited space.

5.4. Ablation Study

In this section, we conduct ablative studies for our pro-
posed parallel multi-resolution fusion network. Additional
ablative studies for our network architecture modifications
and inpainting priority are placed in the supplementary.
Effectiveness of Partial Convolution and Attention-
Guided Representation Fusion: We investigate the effec-
tiveness of our proposed modules by ablating each mod-
ule: (a) w/o partial convolution, inpainting priority, and
multi-resolution attention-guided representation fusion, this
ablated version can be treated as slightly modified HR-
Net (“HRNet”); (b) w/o partial convolution and inpainting
priority (“w/o PConv”); (c) w/o multi-resolution attention-
guided representation fusion (“w/o ARF”). The results are
shown in Table 2. All the results are tested on Places2

Settings ℓ1 (%)↓ SSIM↑ PSNR↑ FID↓

HRNet 3.81 0.831 24.866 10.49
w/o PConv 3.69 0.835 25.007 8.56
w/o ARF 3.60 0.840 25.283 8.41

w/o MRF 1 3.57 0.838 25.420 7.43
w/o MRF 3 3.67 0.836 25.283 7.95
w/o MRF 5 3.85 0.821 24.789 11.32

Full-Fledged 3.54 0.841 25.475 6.98

Table 2. Ablative studies for fusion modules.

datasets and averaged over six mask groups in Table 1.
We can see that partial convolution with inpainting prior-
ity is necessary in our proposed model, and the proposed
attention-guided representation fusion module is helpful.
Repeated Mask-Aware Multi-Resolution Fusion: We in-

vestigate the effectiveness of repeatedly performing mask-
aware representation fusion in the network. The results are
shown in Table 2 “w/o MRF” part. Note that we origi-
nally perform mask-aware representation fusion at the end
of each stage. Now we remove the fusion modules for spe-
cific stages (e.g., “w/o MRF 3” represent we remove first
three fusion modules). We observe that the more fusion
modules are removed, the poorer performance the network
obtains, which proves that repeatedly fusing the represen-
tations of different resolutions can improve the quality of
generated images.

6. Conclusion

In this paper, we have proposed a parallel multi-
resolution fusion network for image inpainting to yield se-
mantically reasonable and visually realistic results. It can
maintain the high-resolution inpainting and low-resolution
inpainting at the same time. Besides, two fusion tech-
niques (mask-aware and attention-guided representation fu-
sion) have been proposed to fuse multi-resolution represen-
tations repeatedly, which can enhance the coherence be-
tween structure and texture. Experiments on several bench-
mark datasets have shown the effectiveness of our method
for filling regular or irregular holes.
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