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Abstract

Predictor-based algorithms have achieved remarkable
performance in the Neural Architecture Search (NAS) tasks.
However, these methods suffer from high computation costs,
as training the performance predictor usually requires
training and evaluating hundreds of architectures from
scratch. Previous works along this line mainly focus on re-
ducing the number of architectures required to fit the pre-
dictor. In this work, we tackle this challenge from a differ-
ent perspective - improve search efficiency by cutting down
the computation budget of architecture training. We pro-
pose NOn-uniform Successive Halving (NOSH), a hierar-
chical scheduling algorithm that terminates the training of
underperforming architectures early to avoid wasting bud-
get. To effectively leverage the non-uniform supervision sig-
nals produced by NOSH, we formulate predictor-based ar-
chitecture search as learning to rank with pairwise com-
parisons. The resulting method - RANK-NOSH, reduces the
search budget by ⇠ 5⇥ while achieving competitive or even
better performance than previous state-of-the-art predictor-
based methods on various spaces and datasets.

1. Introduction
Neural Architecture Search has demonstrated its effec-

tiveness in discovering high-performance architectures for
various computer vision tasks, including image classifica-
tion [6, 23, 44], semantic segmentation [21, 32], and image
generation [14, 15, 16]. Concretely, NAS methods attempt
to identify the best architecture from a vast search space ac-
cording to a predefined performance metric (e.g., accuracy,
latency, etc.). Pioneering works in this field require train-
ing and evaluating thousands of architectures in the search
space [26, 50, 51]. For example, the reinforcement learning
method proposed by Zoph et al. [51] trains over 20,000 net-
works. The tremendous amount of computation overhead
largely limits their practical usage. Since then, improving
the efficiency of architecture search algorithms has become
a central topic in the NAS community.

Recently, weight-sharing technique witnesses much suc-

cess in improving the search efficiency of NAS [2, 7, 23,
29, 44]. Those methods train a supernet that encompasses
all architectures in the search space, and use the pretrained
supernet to evaluate the performance of architectures. De-
spite their search efficiency, weight-sharing methods are not
generally applicable to arbitrary search spaces due to the
restrictions in constructing supernets [27, 46]. Moreover,
they also suffer from various inductive biases caused by the
weight-sharing mechanism [6, 33, 38, 47, 48], which has a
tendency towards parameter-free operations and wide, shal-
low structures.

On the other hand, predictor-based NAS methods are
free from the aforementioned disadvantages. Starting from
a pool of randomly selected architectures, previous methods
iteratively conduct the following steps: 1) train and evalu-
ate all the architectures in the pool fully; 2) fit a surrogate
performance predictor; 3) use the predictor to propose new
architectures and add them to the pool for the next round
[12, 40, 45]. Compared with previous RL and evolution-
based NAS methods, using a performance predictor can re-
duce the number of networks evaluated from scratch. How-
ever, training all the architectures in the candidate pool fully
is still extremely computationally expensive. Most comple-
mentary advances alone this line focus on developing better
predictors that require a smaller training pool [12, 40, 45],
but the potential to further cut down the search cost by re-
ducing the training length of individual architectures in the
pool has not drawn much attention.

In this work, we aim to investigate the possibility of re-
ducing the search cost of predictor-based NAS by reduc-
ing the number of epochs required to train every architec-
ture in the candidate pool. Inspired by successive halving
[17], our key idea is that the learning process of poor archi-
tectures can be terminated early to avoid wasting budgets.
However, it is non-trivial to integrate successive halving to
predictor-based NAS formulations. Firstly, predictor-based
algorithms iteratively add new architectures to the candidate
pool [12, 40, 45], whereas regular successive halving only
removes underperforming candidates from the initial pool.
Secondly, with successive halving, architectures in the pool
will be trained for different number of epochs, so their val-
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idation accuracy are not directly comparable in a semanti-
cally meaningful way. Standard regression-based predictor
fitting, which requires the exact validation accuracy for each
architecture when fully trained, will be problematic in this
setting.

To tackle those challenges in a unified way, we propose
RANK-NOSH, an efficient predictor-based framework with
significantly improved search efficiency. RANK-NOSH
consists of two parts. The first part is NOn-Uniform Suc-
cessive Halving (NOSH), which describes a multi-level
scheduling algorithm that allows adding new candidates and
resuming terminated training process. It is non-uniform in
the sense that NOSH maintains a pyramid-like candidate
pool of architectures trained for various epochs without dis-
carding any candidates. For the second part, we construct
architecture pairs and use a pairwise ranking loss to train the
performance predictor. The predictor is essentially a rank-
ing network and can efficiently distill useful information
from our candidate pool consisting of architectures trained
for different epochs. Moreover, the proposed framework
naturally integrates recently developed proxies that measure
architecture performance without training [1, 5, 25], which
allows more architectures to be included in the candidate
pool at no cost.

Extensive experimental evaluations on multiple search
spaces, datasets, and budgets demonstrate the effectiveness
and generality of the proposed method. On DARTS space,
NAS-Bench-101, and NAS-Bench-201, RANK-NOSH can
reduce the search budget of SOTA predictor-based methods
by 5x while achieving similar or even better results.

2. Related Work
One-shot NAS with Weight-Sharing One-shot NAS
methods construct a weight-sharing supernet that encom-
passes all child models in the search space, and use the
pretrained supernet to evaluate child models [2, 6, 7, 23,
29, 44]. In this paper, we separate one-shot NAS from
predictor-based methods based on whether the weight-
sharing technique is used.

Predictor-based NAS Predictor-based algorithms learn a
surrogate performance predictor that can be used to pro-
pose new architectures [27, 40, 45]. The surrogate predictor
is defined as a regressor of the network’s validation accu-
racy [27, 40, 45]. Predictor-based methods have the advan-
tage of being generally applicable to arbitrary DAG search
spaces and free from the inductive biases caused by weight-
sharing (e.g., bias towards parameter-free operations, wide
and shallow structure) [6, 9, 33, 38, 47, 48]. However, these
methods also require full training of hundreds of architec-
tures, which remains a major bottleneck of their search effi-
ciency. Existing works in this category mainly focus on im-
proving the sample efficiency, i.e., reducing the number of

architectures required to train the predictor [27, 45]. Their
improvement mainly comes from a better architecture en-
coding, such as LSTM [22, 24, 36], Path-Encoding [40],
GCN [12, 27], and unsupervised pretraining [45].

Learning to Rank The idea of adding pairwise compar-
isons to help training the predictors has been explored be-
fore [12, 27, 42]. Our work differs from them in the fol-
lowing two aspects: 1) Prior methods still require accurate
validation accuracy obtained from fully-trained networks.
Instead, we use pairwise ranking loss, which doesn’t have
such restriction and therefore can largely reduce the search
cost. 2) Our motivation behind formulating the search prob-
lem as learning to rank is to effectively utilize non-uniform
successive halving, but pairwise comparison mainly serves
as a regularization in previous developments [12, 27]. Wis-
tuba et al. [42] proposes to study from a partial learning
curve with extrapolation models. Their work is orthogonal
to ours, as their method can also be used to compare mod-
els at intermediate epochs in our Non-Uniform Successive
Halving algorithm.

Successive Halving Successive halving [18] is an effec-
tive technique to reduce the search computation budget.
It trains a pool of randomly generated configurations and
gradually eliminates poor performers from the pool accord-
ing to a predefined schedule. It is adopted in Bandit litera-
ture [18] and also studied in the context of hyperparameter
optimization [13, 17, 19]. Liam et al. [20] also applies suc-
cessive halving as a baseline. Previous successive halving
methods are uniform in the sense that candidates in the pool
at any time are trained for the same number of epochs as
it simply discards poor performers. We extend successive
halving to the non-uniform setting to support our iterative
search algorithm. In our method, new architectures are it-
eratively added to the pool, and we keep poor candidates to
construct architecture pairs to perform predictor training.

3. Methodology
In this section, we lay out the proposed RANK-NOSH

framework. We first introduce the motivations behind our
method in Section 3.1. The two key components of RANK-
NOSH: Non-Uniform Successive Halving algorithm and
search via learning to rank are described in Section 3.2 and
3.3 respectively. The complete search algorithm is provided
in Section 3.4.
Preliminaries In this work, we focus on cell-based search
space [11, 23, 46] consisting of repeated searchable cells.
Each cell is represented as a Direct Acyclic Graph (DAG)
G = (V, E), where V and E denote the set of nodes and
edges respectively. Each node in the DAG will be assigned
an operation o from the search space |O|. The discrete rep-
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Figure 1: Percentage of architectures with bottom-50% val-
idation accuracy at intermediate epochs that remain at bot-
tom 50% when fully trained on NAS-Bench-201.

resentations of these architectures can be characterized by
the one-hot operation matrix H 2 R|V|⇤|O| and the adja-
cency matrix A 2 R|V|⇤|V|, which will serve as the inputs
for a GIN encoder [45]. Note that the nodes here correspond
to the edges in DARTS’ DAG following Yan et al. [45].

3.1. Motivation

Existing predictor-based methods follow an iterative
pipeline, which allows the predictor to focus on top per-
formers and improves data efficiency [12]. Starting with a
pool of randomly selected architectures, they train these ar-
chitectures fully to obtain the validation accuracy as the re-
gression label. Then they fit the performance predictor with
those labels, and use it to propose new architectures that
will be added to the pool for the next round. The computa-
tion cost of this pipeline is dominated by total number of
epochs required to train the architectures in the pool, which
we refer to as the search budget. For example, training a
pool of 100 architectures to 200 epochs requires a search
budget of 20,000 epochs, which significantly limits their
practical usages. Therefore, reducing the search budget is
crucial for speeding up predictor-based NAS.

During the search process of previous predictor-based
methods, all architectures in the pool consume the same
amount of training budget, regardless of their relative per-
formance. Therefore, identifying underperforming archi-
tectures and terminating their training early could lead to
significant savings. Figure 1 shows that we can safely termi-
nate inferior candidates at the early stage. For every train-
ing epoch, we plot the percentage of architectures with a
bottom-50% validation accuracy at the current epoch that
remains in bottom-50% when fully trained on NAS-Bench-
201. As we can see, a majority of the poor architectures can

be determined at early stages with increasing confidence as
the training epoch increases. Specifically, when training for
ten epochs, we observe that ⇠ 70% of architectures that lose
at the starting line cannot catch up from behind when fully
trained. Consequently, we can stop their training and spare
the resources without a big sacrifice of the search perfor-
mance. The trajectory of Spearman correlation in the Ap-
pendix further supports our observation. This is also the in-
tuition behind early termination methods such as successive
halving [17, 19] adopted in hyperparameter optimization.

However, applying the idea of successive halving to
predictor-based NAS requires special care. First, due to the
iterative nature of predictor-based algorithms, the candidate
pool keeps growing, while regular successive halving only
removes candidates from the pool. Second, successive halv-
ing discards poor candidates at termination, resulting in a
reduced number of training examples for the predictor. To
solve the above issues in a unified framework, we propose
RANK-NOSH that consists of two parts: a Non-Uniform
Successive Halving (NOSH) scheduling algorithm that ex-
tends successive halving to handle growing candidate pools
challenge, and a learning to rank algorithm to effectively
utilize the non-uniform pool containing terminated candi-
dates to train the performance predictor. Next, we discuss
each part of the RANK-NOSH framework.

Algorithm 1: NOSH: Non-Uniform Successive
Halving

Input: Candidate pool S , schedule E = {e(l)}Nl=1,
move ratio r, Proposal size K (use Kinit

during the initialization round)
Result: updated training pool S
for level l = 0 ⇠ (N � 1) do

if l == 0 then
Sort all architectures in level-l according to
their prior scores;

else
Sort all architectures in level-l according to
their current validation accuracy;

end
Train top rK architectures in level-l to epoch
e(l+1) and upgrade them to level-(l + 1);
K ⇤= r;

end

3.2. Non-Uniform Successive Halving (NOSH)

The key idea in NOSH is to maintain a pyramidal struc-
ture of the architecture pool that supports two operations:
1) Initialization, which populates the pyramid with the ini-
tial pool, and 2) Update, which inserts new candidates to
the existing pyramid. We show a N -level NOSH Pyramid
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Figure 2: A N-level NOSH pyramid, including its initialization (left) and update (middle & right) processes. Equation inside
each level represents the corresponding number of architectures. All architectures in level-i will be trained to epoch e(i).
Left: During initialization, we populate the pool pyramid. Then we train the predictor and propose K new architectures.
Middle: We train the K new candidates for e(i) epochs and move Top-rK architectures from level-1 to level-2. Right: The
pyramid after the update. Then we retrain the predictor and perform the next update, this process continues until a maximum
pool size M is achieved.

in Figure 2. Each level of the pyramid contains architec-
tures trained for the same epoch (training epoch); and the
training epoch increases as we level up, with the top level
representing fully trained architectures.

We introduce two parameters to control the level assign-
ment - the training epoch schedule E and move ratio r. The
schedule E = {e(i)}Ni=1 represents the training epoch for
every architecture at each level, where e(i) < e(i+1), i =
1 ⇠ (N � 1), and e(N) is the maximum number of epochs
(fully trained). The move ratio r 2 (0, 1) denotes the per-
centage of architectures moved when we proceeds from the
current level to the next level. We then describe the process
of initializing and updating the NOSH Pyramid below.

Initialization Starting with a pool of Kinit untrained ar-
chitectures, we first train these architectures for e(1) epochs.
From there, architectures with the validation accuracy in the
bottom Kinit(1 � r) will be terminated (kept in level 1),
while the top Kinitr architectures will be trained further to
e(2) epochs and upgrade to level 2. This process repeats
until the maximum training epoch e(N) is reached. After
initialization, level-1 will contain Kinit(1 � r) candidates
and level-N will contain Kinitr(N�1) candidates.

Update Following previous predictor-based NAS algo-
rithms [12, 40, 45], we continuously propose new architec-
tures and add them to the candidate pool. In this case, the
existing pyramid should be updated accordingly. After ini-
tialization, we train the predictor accordingly and propose
new architectures, which will compete against the existing

architectures in the pool to level up. Concretely, suppose
there are K new architectures (untrained) to be added to
the pool. We first insert them into level-1 of the pyramid
by training them for e(1) epochs. From there, the top rK
architectures will be selected to move to level-2, leaving
(Kinit + K)(1 � r) architectures in the new level-1 layer.
The process repeats itself until we reach the top level.

Train-free prior scores as level-0 Several recent works
explore proxy metrics that produce a rough measurement
of networks’ performance without training, including met-
rics used for network pruning and Covariance of Jacobian at
network initialization [1, 5, 25]. These metrics can be natu-
rally integrated into our framework to allow more architec-
tures added to the candidate pool at no cost. To do so, we
simply add an extra level-0 to NOSH, where architectures
are scored using training-free proxy metrics instead of their
validation accuracy. These prior scores are cheap to evalu-
ate, at the expense of low granularity especially among top
configurations. Table 1 illustrates the spearman correlation
between architectures ranked by those training-free scores
and validation accuracy when fully trained. As shown, the
training-free metrics perform much better when ranking all
architectures in the space than just the top-1% architectures
selected by their true validation accuracy. Therefore, they
can serve nicely as the level-0 information in our frame-
work, since the distinction between top configurations can
be refined at higher levels.

We summarize NOSH process in Algorithm 1. Note that
NOSH differs from the regular successive halving in that
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Figure 3: Ranker Network

1) It is non-uniform in the sense that it maintains a candi-
date pool of architectures trained with different number of
epochs without discarding any of them, which will be uti-
lized to fit the ranker-based predictor. 2) Previously termi-
nated architectures might have the chance to resume train-
ing if they outperform the newly added architectures.

Table 1: Spearman ranking correlation between architec-
tures ranked by training-free metrics and true validation ac-
curacy on CIFAR-10 in NAS-Bench-201 space.

Prior Scores Whole Space Top 1% Architectures
grad norm [1] 0.58 0.42
jacob cov [25] 0.73 0.13
mag [35] 0.76 0.37

3.3. NAS via Pairwise Ranking
After running NOSH, the candidate pool contains archi-

tectures trained with different number of epochs, where the
pairwise ranking label of these architectures can be obtained
directly: an architecture is considered to be better than an-
other if it is either trained for more epochs (in a higher level
of the pyramid), or have higher validation accuracy when
their training epochs are the same (in the same level):

y(↵1,↵2) =

(
{e↵1 < e↵2} e↵1 6= e↵2

{acc↵1 < acc↵2} e↵1 = e↵2 ,
(1)

where acc stands for the validation accuracy and is the
indicator function. We therefore formulate the search pro-
cess as learning to rank from pairwise {0, 1} labels, which
naturally leverages the pairwise comparisons produced by
NOSH. Concretely, given a pair of architectures, we use a
ranker model to predict which one is better. The objective

can be written as:

min
M

E(↵1,↵2)⇠X

⇥
`(M(↵1,↵2), y(↵1,↵2))

⇤
(2)

X =
�
(↵1,↵2)|↵1 2 S,↵2 2 S,↵1 6= ↵2

 
, (3)

where M denotes the ranker model, ` is the loss function,
and X denotes the set of all pairs of architectures from pool
S . At inference time, a global ranking among architectures
of the whole space (or a large subspace) can be obtained to
propose top architectures.

We use a small Siamese network to model the ranker.
The network consists of two MLPs on top of a pair of
Siamese GIN encoders with shared weights. Figure 3 il-
lustrates its structure. This ranker model is simple, yet ex-
pressive enough for our task, although using more advanced
ranking networks [28] might further boost the performance.

Algorithm 2: RANK-NOSH Main Search
Input: Max candidate pool size M , init pool size

Kinit, proposal size K, schedule
E = {e(l)}Nl=1, move ratio r

Result: Discovered best architecture ↵⇤

Randomly select Kinit architectures and add them
to S;

Initialize Pyramid: S = NOSH(S , E, r, Kinit);
M += Kinit;
while |S| < M do

Generate pairwise labels according to Eq. (1);
Fit the ranker model with labeled S;
Use the ranker to propose top min(K,M � |S|)
architectures and add them to S;

Update Pyramid: S = NOSH(S , E, r, K);
M += K;

end
↵⇤ = argmax↵2S V alid Acc↵

3.4. Search Algorithm
The search process is conducted in the standard iterative

manner. First, we initialize the pool by randomly sampling
Kinit architectures from the search space. The architec-
tures in the pool will be updated via NOSH algorithm de-
scribed above. After that, {0, 1} pairwise labels can be ob-
tained for all pairs of architectures in the pool using Eq. (1),
which will be used to fit the ranker model. Then, the ranker
model sorts architectures in the search space, and proposes
K new architectures to be added to the pool for the next it-
eration. Since enumerating the entire search space is often
expensive, we follow previous works [45, 12] to use a large
randomly selected subset of the search space instead. The
above process is repeated until a predefined maximum can-
didate pool size M is reached. Algorithm 2 summarizes the
entire search procedure.
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Table 2: Comparison with state-of-the-art NAS methods on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet16-120
validation test budget validation test budget validation test budget

DARTS [23] 39.77± 0.00 54.30± 0.00 - 38.57± 0.00 38.97± 0.00 - 18.87± 0.00 18.41± 0.00 -
SNAS [43] 90.10± 1.04 92.77± 0.83 - 69.69± 2.39 69.34± 1.98 - 42.84± 1.79 43.16± 2.64 -
GDAS [10] 90.01± 0.46 93.23± 0.23 - 71.14± 0.27 70.61± 0.26 - 41.70± 1.26 41.84± 0.90 -
PC-DARTS [44] 89.96± 0.15 93.41± 0.30 - 67.12± 0.39 67.48± 0.89 - 40.83± 0.08 41.31± 0.22 -
ENAS [29] 39.77± 0.00 54.30± 0.00 - 15.03± 0.00 15.61± 0.00 - 16.43± 0.00 16.32± 0.00 -
Prior Score: jacob cov [25] 89.69± 0.73 92.96± 0.80 - 69.87± 1.22 70.03± 1.16 - 43.99± 2.05 44.43± 2.07 -
Prior Score: mag [35] 89.94± 0.34 93.35± 0.04 - 70.18± 0.66 70.47± 0.18 - 42.57± 2.14 43.17± 2.57 -
RE [30] ? 91.04± 0.51 93.81± 0.46 1, 200 72.18± 0.91 72.06± 0.97 20, 000 45.78± 0.72 45.67± 0.83 20, 000
RS [3] ? 90.91± 0.41 93.69± 0.42 1, 200 71.36± 0.84 71.32± 0.95 20, 000 45.26± 0.67 45.24± 0.84 20, 000
REINFORCE [41] ? 90.32± 0.85 93.21± 0.76 1, 200 70.95± 1.22 70.87± 1.23 20, 000 44.66± 1.44 44.63± 1.52 20, 000
arch2vec-BO [45] ? 91.4± 0.35 94.24± 0.21 1, 200 73.29± 0.41 73.41± 0.22 20, 000 46.27± 0.39 46.32± 0.27 20, 000
RANK-NOSH 91.4± 0.18 94.26± 0.17 292 73.49± 0.00 73.51± 0.00 5,550 46.37± 0.0 46.34± 0.0 5,550
oracle 91.61 94.37 - 73.49 73.51 - 46.77 47.31 -
? Reproduced by directly searching on every dataset with a candidate pool size of 100 architectures following [45]. Note that the original arch2vec paper [45]

measures the search budget in seconds, which translates to approximately 100 architectures on all three datasets.

4. Experimental Results
In this section we present empirical evaluations of the

proposed method on three widely used search spaces: NAS-
Bench-101, NAS-Bench-201 and DARTS space. We com-
pare the proposed method with previous SOTA predictor-
based algorithms based on two metrics: 1) the best and
average test errors of the searched architectures and 2) the
search budget, defined in Section 3.1 as the total number
of epochs required to train all architectures in the pool.

4.1. Implementation Details
Ranker We use arch2vec [45] to pretrain the GIN encoder
in the ranker model as it improves the quality of architec-
tural representations. The detailed optimization and hyper-
parameter settings can be found in the Appendix.

NOSH For level 1 ⇠ N that use the validation accuracy
to evaluate architectures, we set r to 1

2 . For level-0 that uses
train-free prior scores, we reduce the ratio to 1

3 to accom-
modate more architectures in the training pool at no cost. In
all our experiments, the prior score is set as the magnitude
of weights at initialization (“mag” in Table 1). For each
search space, we determine the schedule E according to the
standard full training epoch for a fair comparison (ablate in
Section 5.3). Regarding the candidate pool size, we set the
maximum pool size M to the amount that leads to ⇠ 5x
speedup compared with previous predictor-based methods.
The initial pool size Kinit is always set as 16 ⇤ 3, and the
architecture proposal size K is set as 10 ⇤ 3. Note that only
1
3 of those architectures will consume search budget, as the
rest of them remain untrained at level-0.

4.2. Results on NAS-Bench-201
NAS-Bench-201 [11] is a recently developed search

space that supports weight-sharing NAS methods. This
benchmark contains 15,625 architectures evaluated on three

datasets: CIFAR-10, CIFAR-100, and ImageNet16-120.
Following previous works [11, 45], we use the results
when training the architecture for 12 epochs on CIFAR-
10, and 200 epochs on CIFAR-100 and ImageNet16-120.
Therefore, we set E = (1, 2, 3, 12) for CIFAR-10, E =
(10, 50, 100, 200) for CIFAR-100 and ImageNet16-120 to
match the maximum training epochs. The candidate pool
size M is set as 100 ⇤ 3, which amounts to a search budget
of 292 epochs for CIFAR-10 and 5,550 epochs for CIFAR-
100 and ImageNet16-120.

As shown in Table 2, RANK-NOSH obtains near-oracle
performance on all three datasets, consistently outperform-
ing previous predictor-based NAS methods with a search
cost of only 24% on CIFAR-10 and 28% on CIFAR-100
and ImageNet16-120.

4.3. Results on NAS-Bench-101
NAS-Bench-101 [46] is a cell-based search space that

provides validation and test accuracy of 423,624 architec-
tures trained for 108 epochs on CIFAR-10. The search
space is general, as each cell can have an arbitrary DAG
structure that consists of at most seven nodes and nine
edges. Since one-shot NAS with weight-sharing cannot
be applied to this space [46], we compare RANK-NOSH
with methods without weight-sharing exclusively. As NAS-
Bench-101 only provides intermediate results for epoch 4,
12, 36, and 108, we set the schedule E = (12, 36, 108).
The maximum candidate pool size M is set to 200 ⇤ 3,
which amounts to a search budget of 8,400 total epochs. As
shown in Table 4, our method achieves competitive results
than previous SOTA methods with 19% of the budget.

4.4. Results on DARTS Space
The DARTS space [23] is the most widely used search

space for evaluating NAS algorithms at scale. It contains
two types of searchable cells: the normal cell that pre-
serves spatial dimensions, and the reduction cell that halves
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Table 3: Comparison with state-of-the-art NAS methods on DARTS Space.

Architecture Test Error(%) Param
(M)

Search Budget
(#epochs)

Search
MethodBest Avg

RSWS [20] 2.71 2.85± 0.08 4.3 - Weight Sharing
DARTS [23] 2.76± 0.09? - 3.6 - Weight Sharing
SNAS [43] - 2.85± 0.02 2.8 - Weight Sharing
BayesNAS [49] 2.81± 0.04? - 3.4 - Weight Sharing
ProxylessNAS [4] 2.08† - 4.0 - Weight Sharing
ENAS [29] 2.89† - 4.6 - Weight Sharing
P-DARTS [8] 2.50 - 3.4 - Weight Sharing
PC-DARTS [44] 2.57± 0.07? - 3.6 - Weight Sharing
SDARTS-ADV [6] - 2.61± 0.02 3.3 - Weight Sharing
Random Search [23] 3.29± 0.15? - 3.2 2,400 Random
GATES [27] 2.58† - 4.1 64,000 Predictor
BRP-NAS (high) [12] - 2.59± 0.11 - 36,000 Predictor
BRP-NAS (med) [12] - 2.66± 0.09 - 18,000 Predictor
BANANAS [40] 2.57 2.64 3.6 5,000 Predictor
arch2vec-BO [45] 2.48 2.56± 0.05 3.6 5,000 Predictor
RANK-NOSH 2.50 2.53± 0.02 3.5 990 Predictor
† Obtained on different search spaces than DARTS.
? Error bars are computed by retraining the best discovered architecture multiple times.

Table 4: Comparison with SOTA methods on NAS-Bench-
101. We report the avg test accuracy for our method over
10 random seeds.

Methods Search Budget
(#epochs)

Test Accuracy
(%)

Prior Score: jacob conv [25] - 89.11
Prior Score: mag [35] - 92.66
Random Search [46] 108,000 93.54
REINFORCE [46] 108,000 93.58
Regularized Evolution [46] 108,000 93.72
NAO [24] 108,000 93.74
BANANAS [40] 54,000 94.08
arch2vec-BO [45] 43,200 94.05
RANK-NOSH 8,400 93.97

the dimension. Following previous works [22, 45], we use
the same cell structure for both normal and reduction cell,
which amounts to 109 possible architectures. This space
is too large for predictor-based methods to enumerate, we
therefore randomly sample 600k architectures from the full
space and run our algorithm on this subset as did in previous
works [12, 45].

CIFAR-10 We use a schedule of (10, 20, 30, 50) to match
the maximum training epoch 50 used in previous predictor-
based methods [40, 45]. We set the maximum size of the
candidate pool as 50⇤3 architectures for this space. The re-
sulting search budget is 990 epochs, which is only 1.65x
the cost to retrain an architecture following the DARTS
protocol (600 epochs) [23]. As a comparison, previous
SOTA predictor-based methods like BANANAS [40] and
arch2vec [45] use a search budget of 5000 epochs, which

is 8.3x the cost of standard retraining. As a result, RANK-
NOSH drastically improves search efficiency.

We repeat the search algorithm under different random
seeds and report the best and mean test errors of the archi-
tectures discovered. For architecture evaluation on CIFAR-
10, we keep all the retrain settings identical to DARTS
[23]. As shown in Table 3, RANK-NOSH achieves a best
test error of 2.50% and an average test error of 2.53% on
CIFAR-10 with over 5x search budget reduction than pre-
vious SOTA predictor-based NAS methods. Our algorithm
has better average performance and lower variance.

ImageNet We further evaluate the discovered architecture
on ImageNet under transfer learning settings [23, 45]. Ta-
ble 5 shows that the discovered architecture achieves 25.2%
top-1 and 7.7% top-5 test error, ranking top among NAS
methods with comparable search spaces.

Table 5: Transfer learning results on ImageNet
Architecture Test Error(%) Params (M)
NASNet-A [51] ? 26.0 5.3
AmoebaNet-A [31] ? 25.5 5.1
PNAS [22] ? 25.8 5.1
SNAS [43] ? 27.3 4.3
DARTS [23] ? 26.7 4.7
SDARTS-ADV [6] 25.2 4.8
arch2vec-BO [45] ? 25.5 5.2
RANK-NOSH 25.2 5.3
? Results obtained from the arch2vec paper [45].
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5. Ablation Study
In this section, we conduct ablation studies on the pro-

posed method. We focus on evaluating search algorithms
based on the validation accuracy, which is directly opti-
mized by predictor-based NAS methods. NAS-Bench-201
is utilized in this section since it provides per-epoch results
for all architectures in the space. We use the 200-epoch ver-
sion for all three datasets in NAS-Bench-201 in this section.

5.1. Train-free Prior scores
Table 4 and Table 2 include the results of solely based on

training-free metrics for architecture search on NAS-Bench-
101 and NAS-Bench-201. Following Mellor et al. [25], we
sample 1,000 architectures from the search space and then
select the best architecture according to the training-free
prior scores. It could be clearly observed that relying on
prior scores alone leads to poor performance (worse than
random search). The reason is that those scores cannot dis-
tinguish between top architectures as suggested by Table 1.

5.2. Comparison with Early Stopping
A straightforward way to reduce the search budget of

predictor-based NAS is by early stopping, i.e., simply termi-
nate all architectures at an intermediate epoch. This simple
strategy does not train any architecture to the end, suffering
the gap between intermediate and final epochs. We compare
the proposed methods with arch2vec [45] + early stopping
under various budgets. We set the candidate pool size to 100
for arch2vec following their paper [45], and compute the
termination epoch based on the corresponding budgets. As
summarized in Table 6, the performance of arch2vec with
early stopping drops drastically at low budgets, whereas our
method stays relatively stable. RANK-NOSH also enjoys
much smaller variance.

Table 6: Validation accuracy (%) of the final architectures
obtained by RANK-NOSH v.s. arch2vec-BO with early
stopping on NAS-Bench-201.

Dataset Search Budget arch2vec-BO RANK-NOSH

CIFAR-10 5,550 91.00± 0.61 91.60± 0.02
2,969 90.35± 0.62 91.56± 0.07

CIFAR-100 5,550 73.23± 0.61 73.49± 0.00
2,969 71.88± 1.19 73.44± 0.09

ImageNet16-120 5,550 46.08± 0.75 46.37± 0.00
2,969 45.10± 1.07 46.43± 0.21

5.3. NOSH Schedules
Here we ablate the effect of different NOSH schedules

on the proposed method. As discussed before, there are two
parameters that define the resource allocation in NOSH: E
and r. We keep all other settings identical to Section 4.2
and only vary those two parameters. We start with testing
RANK-NOSH under different E while fixing r = 1

2 . The

Table 7: Validation Accuracy of final architectures from
RANK-NOSH on CIFAR-10 under various schedules and
move ratios. Our method is relatively stable across various
E and r.

E Search Budget Valid Accuracy (%)
(10,50,200) 6,750 91.60± 0.03

(10,50,100,200) 5,550 91.60± 0.02
(5,25,50,200) 4,075 91.59± 0.03
(5,10,25,200) 3,400 91.57± 0.06

(a) Under different E

r Search Budget Valid Accuracy (%)
0.7 9,750 91.58± 0.06
0.6 7,400 91.59± 0.06
0.5 5,550 91.60± 0.02
0.4 4,100 91.58± 0.08
0.3 2,950 91.40± 0.16

(b) Under different r

results are summarized in Table 7a. Our method performs
stably under different schedules regardless of the number of
levels and epoch intervals.

Next, we fix E to (10, 50, 100, 200) as in Section 4 and
vary r for level-1 to N . As shown in Table 7b, RANK-
NOSH is robust for a wide range of r. Results for CIFAR-
100 and ImageNet16-120 show similar trends to CIFAR-10.
We include them in the Appendix due to space limitations.
In practice, we recommend using r = 0.5 for level 1 to N as
done in successive halving [17] and vary E to accommodate
for different search budgets.

6. Conclusions
We present RANK-NOSH, an efficient predictor-based

NAS algorithm that significantly reduces the computation
overhead. Concretely, we propose Non-Uniform Succes-
sive Halving (NOSH) - a scheduling algorithm that termi-
nates underperforming architectures early to avoid wast-
ing budget, and formulate the search process as learning
to rank to harness the pairwise comparison labels gen-
erated. Experimental results on multiple search spaces
and datasets demonstrate the effectiveness of the proposed
method. RANK-NOSH achieves comparable or even bet-
ter results with a significantly reduced search cost. More-
over, the proposed framework could be extended to other
applications. For instance, RANK-NOSH can be applied to
hyperparameter optimization by concatenating the hyperpa-
rameters with the architecture embeddings, which we will
explore in future work.
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