
RDI-Net: Relational Dynamic Inference Networks

Huanyu Wang Songyuan Li Shihao Su Zequn Qin Xi Li*
Zhejiang University

{huanyuhello, leizungjyun, shihaocs}@zju.edu.cn
zequnqin@gmail.com, xilizju@zju.edu.cn ∗

Abstract

Dynamic inference networks, aimed at promoting com-
putational efficiency, go along an adaptive executing path
for a given sample. Prevalent methods typically assign a
router for each convolutional block and sequentially make
block-by-block executing decisions, without considering the
relations during the dynamic inference. In this paper, we
model the relations for dynamic inference from two aspects:
the routers and the samples. We design a novel type of
router called the relational router to model the relations
among routers for a given sample. In principle, the cur-
rent relational router aggregates the contextual features of
preceding routers by graph convolution and propagates its
router features to subsequent ones, making the executing
decision for the current block in a long-range manner. Fur-
thermore, we model the relation between samples by intro-
ducing a Sample Relation Module (SRM), encouraging cor-
related samples to go along correlated executing paths. As
a whole, we call our method the Relational Dynamic Infer-
ence Network (RDI-Net). Extensive experiments on CIFAR-
10/100 and ImageNet show that RDI-Net achieves state-of-
the-art performance and computational cost reduction.

1. Introduction

Recent years have witnessed a growing research inter-
est in dynamic inference networks, which have been used
in a wide range of applications, e.g., image classifica-
tion [40, 51, 48, 1, 41], action recognition [21, 33], and
object detection [55]. Dynamic inference networks, aimed
at reducing computational redundancy, execute an adaptive
path for a given sample at the inference time. A typical
solution [40, 44, 51] is to assign a router to each convolu-
tional block to decide whether the current block should be
executed based on the output of the last block.

In essence, prevalent routers for dynamic inference make
executing decisions in a short-range manner. Since a router

∗Corresponding author

cat

skip

(a) Prevalent methods

cat

skip skip

feature propagation

(b) Our proposed relational routers

Figure 1. Illustration of our relational routers. (a) The traditional
router (circle) only considers the output features of the last block
(rectangle). (b) With a relation graph, the proposed relational
router aggregates the features of preceding routers and makes the
executing decision in a long-range manner. In principle, the fur-
ther the distance between routers, the less the effect from preced-
ing routers to the current one.

only takes the output of the last convolutional block as
the input, an executing path is composed of a sequence of
block-by-block executing decisions by individual routers.
In this way, the features of the preceding routers are ne-
glected when a subsequent router makes executing decision.
Here arises a question: do the features of preceding routers
benefit the decisions of subsequent ones? In this paper, we
manage to explicitly model the relation between routers, en-
abling routers to make decisions in a long-range manner.

We propose a novel relational router to relate the current
router to others: a relational router aggregates the features
of preceding routers and propagates its features to subse-
quent ones. Specifically, the current relational router em-
ploys a router-wise directed relation graph, taking a certain
amount of preceding routers into account. In the relation
graph, a node stands for a relational router, and a directed
edge stands for the effect of a router on another router where
the further the distance between routers, the less the effect.
Based on the relation graph, the current relational router

4621



performs graph convolution [26] to aggregate the features
of preceding routers and make an executing decision for the
current convolutional block, as shown in Figure 1. In this
way, routers make decisions in a long-range manner.

The relational routers mentioned above establish the re-
lation between routers given a single sample. Furthermore,
how about the relation between executing paths of different
samples? It is intuitive that correlated samples should go
along correlated executing paths. Therefore, we propose to
introduce the correlation between samples to their executing
paths, namely, making correlated samples go along corre-
lated executing paths. However, because samples and their
executing paths are distributed in distinct spaces [44], di-
rectly regularizing on executing paths according to the dis-
tance between samples is challenging. To address this prob-
lem, we propose an alternative solution, making the ranking
of executing paths consistent with that of the distance be-
tween samples. Specifically, we present a Sample Relation
Module (SRM) that measures the distance between samples
and regularizes their executing paths in triplets based on the
ranking of the distance, i.e., the closer the distance, the more
similar their executing paths.

As a whole, our proposed method, namely, the Rela-
tional Dynamic Inference Network (RDI-Net), models the
relation between routers and the relation between samples.
The main contributions are summarized as follows:

• We design a novel type of router called relational router
for dynamic inference to aggregate and propagate fea-
tures of historical routers so that executing decisions are
made in a long-range manner.

• Considering different samples, we model their relation
and regularize their executing paths to encourage corre-
lated samples to go along correlated executing paths.

• Extensive experiments show that the proposed method
obtains the state-of-the-art results w.r.t. performance and
computational cost reduction.

2. Related Work
We introduce relevant methods in three categories: dy-

namic inference networks, early prediction networks and
model compression methods. Specifically, dynamic infer-
ence networks and early prediction networks are typical
sample-adaptive methods. The former focuses on skipping
part of units, while the latter is characterized by multiple
exits. Differently, model compression methods concentrate
on reducing the number of parameters of networks, which
adopt the sample structure to all samples.

Dynamic inference networks. Dynamic inference net-
works emerge as a promising technique for inference ac-
celeration [40, 51, 48, 1, 41]. Most of these methods selec-

Table 1. Notations
Fn the n-th block of a dynamic network
xn the input of the Fn and the output of Fn−1

Rn the n-th router feature extractor
un the discrete executing decision of Fn

vn the continuous relaxation of un

sn the features of the relational router of Fn

r the number of earlier routers being considered
γ the decay rate of a router affects the next one

Xi the i-th sample in a training batch
Pi the executing path of Xi

D the distance matrix of samples
M the sorted indices of matrix D

tively skip unnecessary network components by specially
designed modules, e.g., the gates in Conv-AIG [40], Skip-
Net [51] and the policy network in BlockDrop [48]. Spatial
dynamic convolutions are proposed in [42, 53, 37, 50, 8] by
masking regions in a feature map. Channel-based dynamic
routing methods [36, 25] are introduced as well. They selec-
tively drop channels according to input samples. Recently
performance-oriented methods employ the idea of dynamic
inference. Multi-kernel methods [4] select different CNN
kernels. DR-ResNet [11] recursively utilized convolutional
layers. The dynamic inference is also applied to other appli-
cations, such as action recognition [21, 33] and object de-
tection [55]. Different from these approaches which focus
on enabling the dynamic inference on different tasks, we ex-
plore dynamic inference from the perspective of modeling
the relations between the routers and between the samples.

Early prediction networks. Early prediction networks
are characterized by multiple exits. The networks exit once
a criterion is satisfied at an intermediate layer. Cascade de-
tectors [7, 43] are the earliest methods that exploit this idea
in computer vision. Initially, methods like [35, 17, 10, 8, 29]
proposed a halting unit to realize early prediction. Consid-
ering multi-scale inputs, [32, 18, 52] introduced early-exit
branches based on DenseNet [20]. Instead of bypassing
residual units, the methods [9, 49] generated decisions to
save the computational cost for channels. Different from
our method, these techniques dynamically execute different
modules of a network model by different exits. We also
compare RDI-Net with these methods in Section 4.2.

Model compression methods. Compression methods are
proposed for reducing the number of parameters of heavy
models with little performance compromised. Knowledge
distillation [16, 3, 5, 54], low-rank factorization [22, 31, 23],
and quantization [13, 47, 34] have been widely used to com-
press the structures and to prune the parameters of neural
networks. Besides, recent research tends to prune unimpor-

4622



Relation
Graph GCN Relation

Graph GCN Relation
Graph GCN

Figure 2. Illustration of feature propagation considering two previous routers (r = 2). The router features of the preceding two relational
routers are aggregated to the current one. For example, the n-th relational router aggregates router features sn−1 and sn−2.

tant filters or features [28, 15, 30, 45, 19] to compress or
speed up the model. They identify ineffective channels or
layers by examining the magnitude of the weight or acti-
vation. Recently, Neural Architecture Search achieves low-
cost models as well, including MnasNet [38], Proxyless-
NAS [2], EfficientNet [39], and FbNet [46]. In contrast to
these works, we concentrate on dynamically deciding the
network topology according to different samples at infer-
ence time.

3. Methods
In this section, we illustrate our Relational Dynamic In-

ference Network (RDI-Net) in detail. First, we formu-
late the problem of dynamic inference. Then, we estab-
lish the relations for dynamic inference from two aspects:
we explicitly model the relation between routers with the
relational routers and design the Sample Relation Module
(SRM) for modeling the relation between samples. Finally,
we illustrate the optimization strategy. For convenience, Ta-
ble 1 summarizes the notations we use.

3.1. Problem Formulation

A dynamic inference network typically assigns a router
to make an executing decision for each convolutional block
depending on the sample. Formally, given an N -block net-
work F , let Fn be the n-th block, where n ∈ {1, · · · , N}.
The router of Fn makes a binary executing decision un for
Fn; un is either 0 (skip the block) or 1 (execute the block).
Then, given the input features of Fn, denoted by xn, the
output features are

xn+1 = un · Fn(xn) + (1− un) · xn. (1)

The routers of prevalent dynamic inference networks
make executing decisions in a short-range manner. For in-
stance, the router of Fn inputs the output features of the
last block, i.e., xn, obtains its router features, denoted by
sn, and makes executing decision un. Let Rn(·) be the
router feature extractor, and U(·) be the function that con-
verts router features into a binary executing decision. Then,
the executing decision un for Fn is

un := Un(sn),where sn = Rn(xn). (2)

In this way, the executing path P of a sample X consists of a
sequence of isolated executing decisions (u1, u2, · · · , uN ).

We propose to establish the relation between routers,
making decisions in a long-range manner. The router
of Fn considers not only xn but also the router features
sn−1, · · · , sn−r of r preceding routers. Then, the execut-
ing decision un becomes

un := Un(sn),where sn = Rn(xn, sn−1, · · · , sn−r). (3)

3.2. Modeling Relation between Routers

In this section, we design relational routers to model
the relation between routers. A relational router employs
a router-wise relation graph to represent the relation be-
tween routers. Based on the relation graph, the relational
router performs graph convolution to aggregate features of
preceding routers to the current router. Finally, with the ag-
gregated feature, the relational router makes the executing
decision for the current block.

Router-wise relation graphs. To model the effects of
preceding routers on subsequent ones, we build a directed
weighted graph where a node stands for a router and an edge
for the effect of a router on another one. Suppose that the
effect of a router on subsequent routers decays at a constant
rate γ ∈ [0, 1]. Then, the effect that the m-th router affects
the n-th router is γn−m. Taking r preceding routers into
consideration, the router-wise relation graph can be repre-
sented as an adjacency matrix A ∈ [0, 1](r+1)×(r+1), where

Am,n =

{
γn−m n ≥ m,

0 n < m.
(4)

Note that the effects of subsequent routers on preceding
ones are assigned to zeros because the subsequent executing
decisions cannot affect preceding routers. To clarify special
cases, if r is larger than n, the dimension of A would be
n × n. When γ = 0, it means that there is no relation be-
tween routers, resulting in a short-range manner.

4623



i.i.d. Gumbel Sampling

Conv Block 

Relational Router

Relation Graph

Propagate to Laters

Feature Propagation among Routers The Executing Decision

Router Feature

Figure 3. Overview of the relational router for the n-th convolution block. Feature propagation among routers: First, we apply global
average pooling to xn. Then, we align the pooling result ŝn by an FC layer and get s̃n. Next, we gather and aggregate router features
sn−r, · · · , sn−1 from previous relational routers and obtain sn. The executing decision: We make the executing decision based on the
router feature sn. Orange arrows represent router feature propagation. Best viewed in color.

Feature propagation among routers. Based on the
router-wise relation graph A, we propagate the features of
preceding routers to the current one. First, we apply global
average pooling to the output of the last block, xn, as fol-
lows

ŝn =
1

Hn ×Wn

Hn∑
h=1

Wn∑
w=1

xn[h,w,Cn], (5)

where Cn is the channel dimension of xn, and ŝn is of 1×
Cn dimension. To enable the propagation over the relation
graph, we align the dimension of ŝn to 1×d through a fully-
connected (FC) layer as

s̃n = g(FC(ŝn;w
0
n)), (6)

where w0
n ∈ RCn×d, and g(·) denotes a nonlinear activa-

tion function. Next, we collect the features sn−r, · · · , sn−1

of r preceding routers and stack them with s̃n. Let Sn =
(sn−r, · · · , sn−1, s̃n) be the matrix of stacked features.
Then, we aggregate features through a graph convolution
network (GCN) [26],

sn = g(GCN(Sn;A, w1
n))[r, :] = g(A◦Sn◦w1

n)[r, :], (7)

where w1
n ∈ Rd×d denotes the trainable weights of the

GCN layer and (◦) denotes matrix multiplication. More-
over, It’s worth noting that sn in 1 × d dimension will be
propagated to subsequent routers.

The executing decision. A relational router makes an ex-
ecuting decision for its block with the aggregated router fea-
ture, as shown in Figure 3. To optimize the binary deci-
sion in an end-to-end fashion, we relax it into a continuous
form, denoted by vn ∈ [0, 1]. First, the router feature, sn,
goes through a fully-connected layer. Next, with a relax-
ation function Gumbel-Softmax [24], we obtain the execut-
ing decision for the current block. Let w2

n ∈ Rd×2 be the

parameters of the fully-connected layer. Thus, the relaxed
decision vn is calculated by

vn = softmax(log(FC(sn;w
2
n) +G)/τ)[1], (8)

where G is the Gumbel sampling and τ is the temperature.
With the relaxed executing decision vn, the output of the

n-th block in dynamic inference at training time is repre-
sented as

xn+1 = vn · Fn(xn) + (1− vn) · xn. (9)

In this way, we establish the relation between routers and
make executing decisions in a long-range manner.

3.3. Modeling Relation between Samples

The routers designed above model the relation between
routers. Based on the relational routers, the executing path
P for the sample X is relaxed by (v1, v2, · · · , vN ) at the
training time. Furthermore, we explore the relation between
different samples and design the sample relation module
(SRM) to regularize the executing paths w.r.t. correlated
samples. First, we measure the distance between samples.
Then, we encourage correlated samples going along close
paths based on the distance.

Correlation between samples. To benefit from corre-
lated samples, we first need to measure the distance between
samples. Let H(·) be a mapping function, which can be a
clustering approach, a self-learning strategy, or a statistic
method, as discussed in Supplementary. Then, the distance
between sample Xi and Xj can be calculated by

Di,j = ∥H(Xi)−H(Xj)∥2 , (10)

where ∥·∥2 is the L2 norm. In this way, D represents the
distance matrix of samples in the same train batch. Next,

4624



0.0 0.86 0.17 0.38

0.86 0.0 0.67 0.79

0.17 0.67 0.0 0.44

0.38 0.79 0.44 0.0

Distance Matrix Index Matrix 

argsort

1st 2nd 3rd 4th

Special Triplet Sampling

pos neg pos neg

Figure 4. Overview of SRM. We first obtain the distance matrix D
by a mapping function. Next, we sort the distance matrix row-wise
and get an index matrix M in which each item is the index of a
sample. Finally, we regularize the path between samples based on
M. For example, when we regularize the executing path of X1,
X4 is a negative sample in triplet {X1, X3, X4} and a positive
sample in triplet {X1, X4, X2}.

we sort the distance matrix D row-wise and get the indices
in ascending order,

M = argsort(D). (11)

Specifically, each item in M is an index of a sample. The
i-th row stands for the ranking of the distance from other
samples to Xi in ascending order, as shown in Figure 4.

Regularizing executing paths. Based on the ordered in-
dices, we regularize the executing paths in triplets to en-
force a consistent ranking between executing paths and dis-
tance of samples. Specifically, for sample Xi, we regularize
its executing path Pi with a series of positive and negative
triplets.

To make the optimization efficient, we perform a special-
designed triplet sampling method that takes every two ad-
jacent items in Mi,:, as a positive and a negative sam-
ple for Xi. As illustrated in Figure 4, when regulariz-
ing the executing path of X1, we first optimize it in triplet
{X1, X3, X4} and then in triplet {X1, X4, X2}. It is worth
noting that X4 is a negative sample in the former triplet,
while positive in the latter.

Let Mij be the index of the j-th closest sample for Xi.
Thus, PMij

is the path of the Mij-th sample. The regular-
ization of the executing paths triplets is defined as

Lrank =

L∑
i=1

L−1∑
j=2

[
∥∥Pi − PMij

∥∥
2
−
∥∥Pi − PMi,j+1

∥∥
2
+ϕ]+,

(12)
where Pi is the path of the i-th sample in the batch, L is the
batch size, and [x]+ = max(0, x) denotes the hinge. It is
worth noting that ϕ is the triplet margin, which prevents the
optimization from degenerating into only working on the
first and last terms.

In conclusion, the goal of Lrank is to regularize the rank-
ing of executing paths consistent with the ranking of dis-
tance between samples.

3.4. Optimization

At training time, we optimize our network in two stages.
First, we warm up the parameters of the blocks with a strat-
egy called Uniform Sampling Warm-up (USW). Second, we
train our RDI-Net by optimizing all parameters including
those of blocks and relational routers.

Warm-up strategy. A fundamental principle behind dy-
namic inference is that any executing path in a dynamic in-
ference network is a subgraph of the whole network topol-
ogy. Thus, the key to optimizing a dynamic inference net-
work is parameter sharing. Let F = {F1, ..., FN} and
R = {R1, ..., RN}, where Rn stands for the relational
router for Fn. The optimization of a dynamic inference net-
work is

w∗
F , w

∗
R = argmin

wF ,wR

Lcls(F ,R), (13)

where wF and wR stand for the parameters of F and R re-
spectively, and Lcls is the cross-entropy loss. In this way,
F and R are optimized simultaneously. However, the diffi-
culty of finding an optimal executing path is different from
sample to sample. To avoid falling into local optimizations,
every potential path should be optimized equally before be-
ing assigned to a given sample.

Inspired by SPOS [12], we propose a warm-up strategy
called Uniform Sampling Warm-up (USW) to train each ex-
ecuting path of RDI-Net uniformly. We build a standard
uniform sampler and sample a sequence of choices for each
block and warm up the network as

w∗
F = argmin

wF

Lcls(F , P ), (14)

where P ∼ U stands for a sampled executing path and U is
N -dimensional uniform distribution.

Objective functions. After warming-up, we optimize all
the parameters of RDI-Net.

To customize the computational budget for a dynamic
inference network adaptively, we constrain how often each
block is used. For each block, we introduce an extra execu-
tion rate loss term that regularizes each block to be executed
at a predefined rate t as follows

Lcost =

N∑
n=1

(vn − t)2, (15)

where vn is the relaxed executing decision of the n-th block
as discussed in Equation (9).

Putting all the losses together, the overall objective is

Ltotal = Lcls + Lcost + α · Lrank, (16)

where Lcls is the cross entropy loss, Lrank is the loss in
Equation (12), and Lcost is the loss in Equation (15).

4625



0.05 0.15 0.25 0.35 0.45 0.55

Computation Cost (GFLOPs)

92.0

92.5

93.0

93.5

94.0

94.5

95.0

A
cc

ur
ac

y
(%

)

ResNet110

ResNet74

ResNet56

ResNet32

t=0.8

t=0.6

t=0.4
t=0.4

t=0.5

t=0.6
t=0.8

RDI-Net110

Vanilla110

ResNet

(a) Accuracy against cost on CIFAR-10

0.05 0.15 0.25 0.35 0.45 0.55

Computation Cost (GFLOPs)

68

69

70

71

72

73

74

A
cc

ur
ac

y
(%

)

ResNet110
ResNet74

ResNet56

ResNet32

t=0.8

t=0.6

t=0.4

t=0.8
t=0.6

t=0.4

t=0.2

RDI-Net110

Vanilla110

ResNet

(b) Accuracy against cost on CIFAR-100

5 7 9 11 13 15

Computation Cost (GFLOPs)

72

73

74

75

76

77

A
cc

ur
ac

y
(%

)

ResNet34

ResNet50

ResNet101

t=0.8

t=0.9

t=0.7

t=0.9
t=0.8

t=0.7

t=0.6

RDI-Net50

Vanilla50

ResNet

(c) Accuracy against cost on ImageNet

Figure 5. Accuracy against computation cost under different executing rates. (a) On CIFAR-10, our RDI-Net110 reduces 73% of the cost
with an accuracy gain of 0.13% accuracy compared to ResNet-110. (b) On CIFAR-100, our RDI-Net110 reduces 65% of the cost with an
accuracy gain of 0.42% compared to ResNet-110. (c) On ImageNet, our RDI-Net50 reduces 35% of the computational cost compared to
ResNet-50. It is worth noting that the vanilla method in each figure is the dynamic inference method with short range routers.

4. Experiments

In this section, we first introduce our experimental de-
tails and compare with other state-of-the-art methods on
three classification benchmarks in terms of GFLOPs and
accuracy. Furthermore, we conduct ablation studies to val-
idate the proposals in our method. Lastly, we present qual-
itative evaluation of our method. Our code is available at
https://github.com/huanyuhello/RDI-Net.

4.1. Experimental Settings

Datasets and models. We evaluate RDI-Net on three
widely used classification benchmarks: CIFAR-10 [27],
CIFAR-100 [27], and ImageNet (ISLVRC2012) [6].
CIFAR-10/100 consist of 50,000 training images and
10,000 testing images with 10/100 classes at a resolu-
tion of 32×32. ImageNet consists of 1,281,167 training
images and 50,000 validation images with 1000 classes
at a resolution of 224×224. Our method is based on
ResNets [14], commonly used backbones for dynamic in-
ference. We adopt ResNet-32/110 for CIFAR-10/100 and
ResNet-50/101 for ImageNet.

Implementation details. At training time, we warm up
the model with USW for 30 and 10 epochs on CIFAR-
10/100 and ImageNet, respectively. After warming up, we
train for 320 epochs with a batch size of 256 on CIFAR-
10/100. As for ImageNet, we train for 90 epochs with the
same batch size as CIFAR-10/100. In terms of our modules,
the router feature dimension d and the effect γ of relational
routers are set to 256 and 0.5, respectively. In SRM, the
margin ϕ for Lrank is 0.5 and the weight α is set to 0.2.
We use histogram statistics as the mapping function H(·).
Moreover, we ignore the cases that the distance of positive
and negative samples are about the same to the anchors in
Equation (12). Finally, through adjusting t, we obtain a se-
ries of models under different computational budgets.

4.2. Performance Comparison

We illustrate the advantages of RDI-Net by comparing it
with other widely used methods on different datasets. First,
we compare RDI-Net with original ResNets and baseline
methods. Then, we compare RDI-Net with state-of-the-art
dynamic inference methods.

Comparisons with baselines. We make comparisons be-
tween RDI-Net and the baseline methods in terms of accu-
racy, parameters, and GFLOPs. To better illustrate the ef-
fectiveness of our method, we provide the accuracy against
cost by adjusting the rate t on CIFAR10, CIFAR-100, and
ImageNet as shown in Figure 5. On CIFAR-10, our method
only needs 27% computational cost of the ResNet-110, and
achieves better results as shown in Figure 5(a). Similarly,
on CIFAR-100, our method achieves significant improve-
ment, which reduces 65% computational cost with a higher
accuracy on ResNet-110, as shown in Figure 5(b).

In terms of ImageNet, RDI-Net achieves impressive re-
sults as shown in Figure 5(c). Particularly, RDI-Net ac-
complishes even 0.3% higher accuracy than SENet. The
RDI-Net achieves about 1.17% improvement on ResNet-50
with 1.54 GFLOPs reduction. Besides, with a higher ac-
curacy, RDI-Net50 reduces 35% of the computational cost
than ResNet-50. Moreover, comparing to the vanilla dy-
namic inference method, our method consistently surpass
the Vanilla50 under different computation budgets. Con-
crete results are provided in supplemental material.

Comparisons with state-of-the-arts. Next, we com-
pare RDI-Net with other state-of-the-art dynamic inference
methods on three benchmarks. On CIFAR-10 and CIFAR-
100, we compare RDI-Net with the following methods:
SkipNet [51], BlockDrop [48], Conv-AIG [40], ACT [10],
SACT [8], and CoDiNet [44]. Conv-AIG and SkipNet are
prevalent methods that apply Gumbel-SoftMax and LSTM
to dynamic inference. As shown in Figure 6(a) and Fig-

4626



0.0 0.1 0.2 0.3 0.4 0.5

Computation Cost (GFLOPs)

90

91

92

93

94

95

A
cc

ur
ac

y
(%

)

ResNet

ACT

SACT

SkipNet

DropBlock

Conv-AIG

RDI-Net

(a) Comparisons on CIFAR-10

0.0 0.1 0.2 0.3 0.4 0.5

Computation Cost (GFLOPs)

67.0

68.5

70.0

71.5

73.0

74.5

A
cc

ur
ac

y
(%

)

ResNet

SkipNet

DropBlock

CoDiNet

RDI-Net

(b) Comparisons on CIFAR-100

4 6 8 10 12 14

Computation Cost (GFLOPs)

74

75

76

77

78

A
cc

ur
ac

y
(%

)

ResNet

Conv-AIG

SkipNet

DropBlock

MSDN

RA-Net

RDI-Net

(c) Comparisons on ImageNet

Figure 6. Comparison with state-of-the-art methods on CIFAR-10, CIFAR-100, and ImageNet. The results in terms of GFLOPs are the
average computational costs. All methods are based on ResNets. Detailed results are provided in the supplemental material.

Table 2. Effectiveness of the proposed modules on CIFAR-10/100
with ResNet-110. USW: Uniform Sampling Warm-up; R-R: Rela-
tional Router; SRM: Sample Relation Modeling Module. The first
row refers to using routers without router feature fusion.

Methods CIFAR-10 CIFAR-100

USW R-R SRM GFLOPs Acc. (%) GFLOPs Acc. (%)

— — — 0.30 93.21 0.29 70.32
✓ — — 0.28 93.52 0.27 70.81
✓ ✓ — 0.31 94.57 0.30 73.71
✓ ✓ ✓ 0.25 95.06 0.26 74.11

ure 6(b), RDI-Net consistently surpasses other methods
at different computational cost. Specifically, it achieves
95.06% accuracy with 0.25 GFLOPs on CIFAR-10 and
74.21% with 0.35 GFLOPs on CIFAR-100, respectively.

On ImageNet, we compare RDI-Net with several SOTA
methods and yield similar results to those on CIFAR as
shown in Figure 6(c). We observe that RDI-Net outper-
forms other methods under similar settings. Compared
to prevalent methods, our method surpasses SkipNet [51],
and BlockDrop [48] by a large margin. Our models win
about 0.47% and 0.41% accuracies than Conv-AIG [40]
with a comparable cost on ResNet-50 and ResNet-101. The
highest accuracy our method obtained is 77.01% with 6.62
GFLOPs and 77.68% with 11.4 GFLOPs, based on ResNet-
50 and ResNet-101, respectively. To summarize, our mod-
els achieve more accurate classification results than these
SOTA methods with similar computational cost.

4.3. Ablation Study

In this part, we first evaluate the effectiveness of each
module, i.e., relational routers, Sample Relation Module,
and Uniform Sampling Warm-Up. Next, we study different
factors i.e., decay rates γ and the number of nodes r in the
graph of each relational router. Finally, we conduct studies
on the weight α for Sample Relation Module.
Effectiveness of the proposals. As shown in Table 2,
we present the improvement on CIFAR-10 and CIFAR-100

Table 3. Comparison of different feature propagation methods in
relational routers on CIFAR-10 with ResNet-110. Auto refers to
learnable weights. γ is the decay rate defined in Table 1.

Methods γ = 1.0 γ = 0.5 γ = 0.25 γ = 0.0 Auto

GFLOPs 0.30 0.31 0.27 0.30 0.28
Acc. (%) 93.81 94.87 94.12 93.21 94.19

brought by our proposed USW, relational routers, and SRM
to evaluate the effectiveness of each module. The standard
baseline is a vanilla dynamic inference network, which is
trained without router feature propagation. On CIFAR-10,
the vanilla achieves an accuracy of 93.21% and a compu-
tational cost of 0.30 GFLOPs. By adding the warm-up
method, USW, the accuracy is increased by 0.36%, while
computational cost decreases to 0.28 GFLOPs. Then, we re-
place the basic routers with our proposed relational routers.
Accuracy is again improved by 1.05%. Lastly, we add the
SRM defined in Equation (12) between samples, the accu-
racy increases to 95.06% with 0.25 GFLOPs.

Studies on the relational routers. In this part, we study
different decay rates γ in relational routers. i.e., the weight
to propagate the features from earlier blocks to the cur-
rent block. Specifically, experiments are conducted without
SRM and USW. As shown in Table 3, we show decay rates
from γ = 0 to γ = 1 and learnable weights method. When
γ = 1.0, the method degenerates into a sum of all deci-
sion features, result in 93.81% accuracy with 0.30 GFLOPs.
In terms of learnable weights, we use the cosine similar-
ity between features as edges in the graph, which achieves
94.19% accuracy with 0.28 GFLOPs. As a result, when the
decay rate is set to 0.5, our method achieves the best result.

Next, we analyze the number of nodes taken into account
for decision feature propagation. A relational router aggre-
gates the features from the previous r blocks and makes
the executing decision of the current block in a long-range
manner. The experiments are conducted without SRM and
USW. The cost of all experiments are about 0.30 GFLOPs.
With the increasing of r, the accuracy increase at first and

4627



93.21%

93.74%

94.25%

94.87%

94.41%
94.26%

ResNet-110

(a) A study on r

0.15 0.20 0.25 0.30 0.35

Computation Cost (GFLOPs)

93

94

95

96

A
cc

ur
ac

y
(%

)

α=0.0α=0.1

α=0.2

α=0.4

α=0.8

study on α

(b) A study on α

Figure 7. Studies on r and α on CIFAR-10 with ResNet-110. r is
the number of graph nodes. α is the loss weight for Lrank.

then decrease when r is larger than six as shown in Fig-
ure 7(a). Since distant routers are at different semantic lev-
els, introducing these router features would increase the dif-
ficulty of modeling, result in the performance dropping.

Studies on the Sample Relation Module. Finally, we
perform studies on the weight α for Lrank. As shown in
Figure 7(b), with the increasing of α, there is an evidently
decreasing tendency in computational cost. It shows that
the SRM, introducing the relation between samples to their
paths, benefits the cost reduction. Moreover, when α = 0.2,
the RDI-Net achieves the highest performance on accuracy,
which is 95.06% with 0.26 GFLOPs.

4.4. Qualitative Analysis

In this part, we conduct experiments to analyze our pro-
posals qualitatively. First, we visualize the correlated sam-
ples that go along the same path. Next, we do statistics on
the executing rates of each block in our RDI-Net and the
vanilla dynamic inference methods.

Visualization of samples in the inference path. We vi-
sualize some images with the same executing paths of the
ImageNet validate set and images in the same row execute
the same path, as shown in Figure 8. In the first row, im-
ages execute the path A which contains 15 blocks out of
16 from ResNet-50. Images with similar executing paths
are usually of the same colors and similar backgrounds in
RDI-Net since foreground objects are too small to capture
by statistical approaches. Moreover, path B consists of less
executing blocks (10 out of 16), probably due to the less
complex background of the images. Finally, since we regu-
larize executing paths w.r.t. correlated attributes of samples
instead of semantic classes, images in the same executing
path do not necessarily have the same class.

Executing rates for each block. We do statistics on the
blocks executing rates and compare it with the vanilla dy-
namic inference network, as shown in Figure 9. Based on
ResNet-50, skipping mainly takes place in the intermediate
blocks, namely from the third block to the thirteenth block.
Moreover, in RDI-Net, the executing rate of blocks after
downsampling (designed in ResNet-50), i.e., the fourth and
the eighth block, are executed more frequently than the

Figure 8. Visualization of samples executing the same path on the
ImageNet validation set. Images along path A share similar blue
hues, images along path B share a white background, and images
along path C have green backgrounds. Path A, path B, and path C
have 15, 10, and 14 blocks, respectively. Best viewed in color.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Block index

0.6

0.7

0.8

0.9

1.0

Ex
ec

ut
in

g 
ra

te
s

RDI-Net
vanilla dynamic

Figure 9. Comparison of executing behaviors based on ResNet-50
on the ImageNet validation set. Blue bars stand for the execut-
ing rates for each block of RDI-Net. Orange bars stand for the
executing rates of vanilla dynamic inference.

vanilla dynamic inference. The executing rates of the other
intermediate blocks are less than the vanilla dynamic infer-
ence network, improving the efficiency considerably.

5. Conclusion
In this paper, we have proposed a Relational Dynamic

Inference Network which explicitly models the contextual
relation among routers by relational routers in a long-range
manner. Concretely, the current relational router makes use
of graph convolution to sequentially aggregate the historical
router features to obtain a discriminative feature representa-
tion for the executing decision. To model the correlation be-
tween samples and their executing paths, we present a Sam-
ple Relation Module that regularizes correlated samples to
go along correlated executing paths. As a result, extensive
experiments have shown that our method achieves state-of-
the-art performance and computational cost reduction.

Acknowledgement
This work is supported in part by National Key Re-

search and Development Program of China under Grant
2020AAA0107400, National Natural Science Foundation
of China under Grant U20A20222, Zhejiang Provin-
cial Natural Science Foundation of China under Grant
LR19F020004, and key scientific technological innovation
research project by Ministry of Education.

4628



References
[1] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin

Zheng, Hugo Larochelle, and Aaron Courville. Dynamic ca-
pacity networks. In Int. Conf. Mach. Learn., 2016. 1, 2

[2] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
Int. Conf. Learn. Represent., 2019. 3

[3] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-
mohan Chandraker. Deep residual learning for image recog-
nition. In Adv. Neural Inform. Process. Syst., 2017. 2

[4] Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang,
and Jian Sun. Dynamic region-aware convolution.
arXiv:2003.12243, 2020. 2

[5] Zhenghua Chen, Le Zhang, Zhiguang Cao, and Jing Guo.
Distilling the knowledge from handcrafted features for hu-
man activity recognition. In IEEE Trans. Indust. Inform.,
2018. 2

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conf. Comput. Vis. Pattern Recog., 2009.
6

[7] Pedro F Felzenszwalb, Ross B Girshick, and David
McAllester. Cascade object detection with deformable part
models. In IEEE Conf. Comput. Vis. Pattern Recog., 2010. 2

[8] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li
Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for
residual networks. In IEEE Conf. Comput. Vis. Pattern
Recog., 2017. 2, 6

[9] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins,
and Cheng-zhong Xu. Dynamic channel pruning: Feature
boosting and suppression. In Int. Conf. Learn. Represent.,
2018. 2

[10] Alex Graves. Adaptive computation time for recurrent neural
networks. arXiv:1603.08983, 2016. 2, 6

[11] Qiushan Guo, Zhipeng Yu, Yichao Wu, Ding Liang, Haoyu
Qin, and Junjie Yan. Dynamic recursive neural network. In
IEEE Conf. Comput. Vis. Pattern Recog., 2019. 2

[12] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
Eur. Conf. Comput. Vis., 2020. 5

[13] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In Int. Conf. Learn.
Represent., 2016. 2

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., 2016. 6

[15] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Int. Conf.
Comput. Vis., 2017. 3

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. In Adv. Neural Inform.
Process. Syst., 2015. 2

[17] Hanzhang Hu, Alexander Grubb, J Andrew Bagnell, and
Martial Hebert. Efficient feature group sequencing for any-
time linear prediction. In Conf. Uncert. Artif. Intell., 2014.
2

[18] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q Weinberger. Multi-scale dense
networks for resource efficient image classification. In Int.
Conf. Learn. Represent., 2018. 2

[19] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet using
learned group convolutions. In IEEE Conf. Comput. Vis. Pat-
tern Recog., 2018. 3

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In IEEE Conf. Comput. Vis. Pattern Recog., 2017.
2

[21] Noureldien Hussein, Mihir Jain, and Babak Ehteshami Be-
jnordi. Timegate: Conditional gating of segments in long-
range activities. arXiv:2004.01808, 2020. 1, 2

[22] Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto
Cipolla, and Antonio Criminisi. Training cnns with low-rank
filters for efficient image classification. In Int. Conf. Learn.
Represent., 2016. 2

[23] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low rank
expansions. In Brit. Mach. Vis. Conf., 2014. 2

[24] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. In Int. Conf. Learn.
Represent., 2017. 4

[25] Artur Jordao, Maiko Lie, and William Robson Schwartz.
Discriminative layer pruning for convolutional neural net-
works. IEEE J. of Selected Topics Signal Process., 2020.
2

[26] Thomas N. Kipf and Max Welling. Semi-supervised clas-
sification with graph convolutional networks. In Int. Conf.
Learn. Represent., 2017. 2, 4

[27] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. In Citeseer, 2009. 6

[28] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
Int. Conf. Learn. Represent., 2017. 3

[29] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao
Huang. Improved techniques for training adaptive deep net-
works. In Int. Conf. Comput. Vis., 2019. 2

[30] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
In IEEE Conf. Comput. Vis. Pattern Recog., 2017. 3

[31] Lane McIntosh, Niru Maheswaranathan, David Sussillo, and
Jonathon Shlens. Convolutional neural networks with low-
rank regularization. In Int. Conf. Learn. Represent., 2016.
2

[32] Lane McIntosh, Niru Maheswaranathan, David Sussillo, and
Jonathon Shlens. Recurrent segmentation for variable com-
putational budgets. In IEEE Conf. Comput. Vis. Pattern
Recog., 2018. 2

[33] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna
Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, and

4629



Rogerio Feris. Ar-net: Adaptive frame resolution for effi-
cient action recognition. In Eur. Conf. Comput. Vis., 2020. 1,
2

[34] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. In Int. Conf.
Learn. Represent., 2018. 2

[35] Lev Reyzin. Boosting on a budget: Sampling for feature-
efficient prediction. In Int. Conf. Mach. Learn., 2011. 2

[36] Zhuo Su, Linpu Fang, Wenxiong Kang, Dewen Hu, Matti
Pietikäinen, and Li Liu. Dynamic group convolution for ac-
celerating convolutional neural networks. 2020. 2

[37] Fei Sun, Minghai Qin, Tianyun Zhang, Liu Liu, Yen-
Kuang Chen, and Yuan Xie. Computation on sparse
neural networks: an inspiration for future hardware.
arXiv:2004.11946, 2020. 2

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In IEEE Conf. Comput. Vis. Pattern Recog., 2019. 3

[39] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In Int.
Conf. Mach. Learn., 2019. 3

[40] Andreas Veit and Serge Belongie. Convolutional networks
with adaptive inference graphs. In Eur. Conf. Comput. Vis.,
2018. 1, 2, 6, 7

[41] Andreas Veit, Michael Wilber, and Serge Belongie. Resid-
ual networks behave like ensembles of relatively shallow net-
works. In Adv. Neural Inform. Process. Syst., 2016. 1, 2

[42] Thomas Verelst and Tinne Tuytelaars. Dynamic convolu-
tions: Exploiting spatial sparsity for faster inference. In
IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2

[43] Paul Viola and Michael Jones. Robust real-time face detec-
tion. In Int. J. Comput. Vis., 2004. 2

[44] Huanyu Wang, Zequn Qin, and Xi Li. Codinet: Path distri-
bution modeling with consistency and diversity for dynamic
routing. arXiv:2005.14439, 2020. 1, 2, 6

[45] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Adv. Neural Inform. Process. Syst., 2016. 3

[46] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
IEEE Conf. Comput. Vis. Pattern Recog., 2019. 3

[47] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for
mobile devices. In IEEE Conf. Comput. Vis. Pattern Recog.,
2016. 2

[48] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks.
In IEEE Conf. Comput. Vis. Pattern Recog., 2018. 1, 2, 6, 7

[49] Wenhan Xia, Hongxu Yin, Xiaoliang Dai, and Niraj K Jha.
Fully dynamic inference with deep neural networks. IEEE
Trans. on Emerg. Topics in Comput., 2020. 2

[50] Zhenda Xie, Zheng Zhang, Xizhou Zhu, Gao Huang, and
Stephen Lin. Spatially adaptive inference with stochastic

feature sampling and interpolation. arXiv:2003.08866, 2020.
2

[51] Wang Xin, Yu Fisher, Dou Zi-Yi, Darrell Trevor, and E. Gon-
zalez Joseph. Skipnet: Learning dynamic routing in convo-
lutional networks. In Eur. Conf. Comput. Vis., 2018. 1, 2, 6,
7

[52] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and
Gao Huang. Resolution adaptive networks for efficient in-
ference. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.
2

[53] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Int. Conf. Com-
put. Vis., 2019. 2

[54] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S Davis. Nisp: Pruning networks using neuron impor-
tance score propagation. In IEEE Conf. Comput. Vis. Pattern
Recog., 2018. 2

[55] Pengyi Zhang, Yunxin Zhong, and Xiaoqiong Li. Slimy-
olov3: Narrower, faster and better for real-time uav applica-
tions. In IEEE Conf. Comput. Vis. Pattern Recog., 2019. 1,
2

4630


