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Abstract

Vehicle tracking is an essential task in the multi-object
tracking (MOT) field. A distinct characteristic in vehicle
tracking is that the trajectories of vehicles are fairly smooth
in both the world coordinate and the image coordinate.
Hence, models that capture motion consistencies are of high
necessity. However, tracking with the standalone motion-
based trackers is quite challenging because targets could
get lost easily due to limited information, detection error
and occlusion. Leveraging appearance information to as-
sist object re-identification could resolve this challenge to
some extent. However, doing so requires extra computa-
tion while appearance information is sensitive to occlusion
as well. In this paper, we try to explore the significance of
motion patterns for vehicle tracking without appearance in-
formation. We propose a novel approach that tackles the
association issue for long-term tracking with the exclusive
fully-exploited motion information. We address the tracklet
embedding issue with the proposed reconstruct-to-embed
strategy based on deep graph convolutional neural net-
works (GCN). Comprehensive experiments on the KITTI-
car tracking dataset and UA-Detrac dataset show that the
proposed method, though without appearance information,
could achieve competitive performance with the state-of-
the-art (SOTA) trackers. The source code will be available
at https://github.com/GaoangW/LGMTracker.

1. Introduction
Multi-object tracking (MOT) is an important topic in the

computer vision and machine learning field. This tech-
nique is highly demanded in many tasks, such as traf-
fic flow estimation, human behavior prediction and au-

Figure 1. The top part shows tracking with appearance informa-
tion, while the bottom shows tracking using detection boxes with-
out employing appearance. Obviously, it is more challenging for
tracking only based on motion information.

tonomous driving assistance [52, 51, 55, 25, 20]. From
unsupervised rule-based [6, 7, 5, 22, 52] and optimization-
based [66, 11, 62, 56, 32, 38, 37, 1, 24, 12] to deep learning-
based trackers [13, 68, 41, 57, 40, 4, 67, 42, 63], significant
progress of the MOT techniques has been made in the re-
cent ten years. However, some critical challenges still re-
main. For example, occlusion is still one of the major is-
sues. Without occlusion handling, the targets can easily get
lost and identities may get switched. Other challenges, such
as crowded scenarios, detection errors and camera motions,
also have significant influences on a tracker’s performance.

Appearance information is widely used for MOT and
greatly improves performance. Appearance information is
employed either in an association manner [52, 67, 14] or
with regression-based approaches for joint learning of de-

9876



tection and tracking [68, 41, 57, 4]. The assumption, as
well as the attribution of its success, is that the same targets
from adjacent frames should share similar appearance fea-
tures. However, the appearance feature is still sensitive to
occlusions and objects may have quite different appearance
representations when they are occluded. Additionally, joint
learning approaches require an extra computational cost.

Motion consistency is another cue that can be taken ad-
vantage of for MOT, especially for vehicle tracking scenar-
ios. This is based on the assumption that the motions of ob-
jects usually follow fairly smooth patterns in both the world
coordinate and the image coordinate. In particular, for ob-
jects that cannot change the orientation and speed rapidly,
such as vehicles, motion consistency could play a pivot role
for tracking. In addition, the motion feature, usually with
the four bounding box parameters for each object, is sim-
ple and light, saving more computations than complex ap-
pearance features. As a result, mere motion trackers are
still worth exploring. However, there are two main diffi-
culties to establish deep motion-based models. First, mo-
tion itself can only provide limited information. As shown
in Figure 1, after discarding all appearance information, it
is highly challenging to associate the bounding boxes cor-
rectly even for humans when false positives and false neg-
atives occur in the detection. Second, to alleviate the long-
term occlusion issue, tracklet association is needed in deep
motion-based models. Accurate association requires ex-
pressive tracklet embeddings that could be used to measure
the similarity among different tracklets. However, learning
such embeddings is very challenging as we need to cap-
ture temporal consistency as well. For example, tracklets of
the same object might have different temporal lengths or do
not share similar locations along time, leading to inferior
embeddings in practice. Due to the aforementioned chal-
lenges, mere motion trackers usually cannot achieve com-
parable performance with models that adopt appearance in-
formation.

In this paper, we tackle the vehicle tracking problem only
from the motion perspective. Without appearance informa-
tion, we aim to explore how well a motion-based model can
perform for the vehicle tracking task. A novel motion-based
tracking approach, i.e., local-global motion (LGM) tracker,
is proposed to exploit the motion consistency without us-
ing any appearance information after the detection. More
specifically, without appearance information means: 1) NO
further bounding box regression or refinement from the de-
tector feature maps; 2) NO appearance information used
for further association and re-identification. The flowchart
of the proposed LGM tracker is shown in Figure 2. We
model the MOT problem as a two-stage embedding task
where both local and global motion consistencies are uti-
lized. At the first stage, we aim at learning the box em-
bedding based on deep graph convolutional neural networks

(GCN) to associate boxes into tracklets. Since such local as-
sociations cannot capture the global track patterns, the oc-
clusion issue is yet unaddressed. To break through such
limitation, at the second stage, the tracklet embedding with
global motion consistency is learned to further associate
tracklets into tracks. To better model the tracklet embed-
ding, a novel embedding strategy, reconstruct-to-embed, is
proposed with the temporal gated convolution mechanism
under an attention-based GCN.

Our contributions are summarized as follows: 1) we
tackle the vehicle tracking task from the motion perspec-
tive without using appearance information; 2) we propose
a novel box and tracklet embedding method that can uti-
lize both the local and global motion consistencies; 3) we
evaluate the proposed LGM tracker on KITTI [18] and UA-
Detrac [58] benchmark datasets and achieve competitive
performance with the state-of-the-art (SOTA) trackers.

2. Related Work
2.1. Motion Models

Motion trackers [6, 44, 23, 64, 2, 17] without using
appearance information are also studied in recent a few
years. For such methods, some use fairly simple rules, like
intersection-over-union (IOU) between adjacent frames as
association [6]; some adopt particle filter framework in the
tracking [44]; some apply recurrent neural networks (RNN)
to learn the motion patterns [17, 2]. However, with limited
information, good performance cannot be easily achieved
by motion-based methods.

2.2. Graph Models

Conventional graph models [50, 39, 52, 28, 30, 11, 49,
59, 54, 56, 32, 37, 1, 24] are widely used in MOT for data
association. Usually, detections or tracklets are adopted as
graph nodes. Then the similarities among nodes are mea-
sured on the connected edges. The association is solved
by optimizing the total cost or energy function. However,
the similarity measure is usually based on hand-crafted fea-
ture fusion, requiring empirically setting a lot of hyper-
parameters. Since graph neural networks (GNN) show great
power recently, many approaches [8, 46, 61] adopt GNN
for the association, rather than using the conventional graph
models based on optimization. However, for most existing
methods based on GNN, only the local association based
on adjacent frames is considered. As a result, the long-term
occlusion is still one major issue for GNN based trackers.

2.3. Joint Detection and Tracking

More recently, joint detection and tracking based meth-
ods have been drawn great attention [68, 41, 57, 40, 4].
Usually, the tracker takes sequential adjacent frames as in-
put. Features are aggregated in different frames and bound-
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Figure 2. The flowchart of the local-global motion (LGM) tracker. The LGM tracker contains two modules, the box embedding module
and the tracklet embedding module, which exploit the local and global motion patterns, respectively. Specifically, the box embedding
module embeds input boxes and connects them into tracklets, and the tracklet embedding module aims to associate tracklets into tracks.
Both modules are learned based on deep graph convolutional networks (GCN).

ing box regression is conducted with temporal information.
More recently, several methods with visual transformers
[48, 35] are also explored in the MOT field and achieve
comparable results. For example, [48] proposes a base-
line tracker via a transformer, which takes advantage of
the query-key mechanism and introduces a set of learned
object queries into the pipeline to enable detecting new-
coming objects. [35] extends the DETR object detector [10]
and achieves a seamless data association between frames in
a new tracking-by-attention paradigm by encoder-decoder
self-attention mechanisms. However, due to the heavy com-
putational cost, the networks can only take a very limited
number of frames as input. As a result, the global motion
patterns are still not well utilized.

3. Method
As shown in Figure 2, we propose box and tracklet em-

bedding based on GCN to learn both local and global mo-
tions in the LGM tracker. Boxes are locally connected to
form the tracklets, followed by the tracklet association to
further form the tracks. Details are demonstrated in the fol-
lowing sub-sections.

3.1. Box Motion Embedding

The box embedding is proposed to associate boxes into
tracklets given the box graph with the connection between
adjacent frames. Considering a temporal window, we build
the box graph based on the adjacency among boxes. Specif-
ically, denote X0 ∈ RN×4 as the input boxes with normal-
ized box parameters x, y, w, h, where N is the total number
of boxes inside the temporal window. Denote A ∈ RN×N

as the adjacency matrix, where Aij = 1 if box i and box j
are in the neighboring frames; otherwise set Aij = 0.

To learn both the structural and temporal relations among
detections, inspired from [53], we stack L attention-guided
GCN blocks. For the l-th GCN layer, the update rule is
defined as follows,

X l = ReLU(Dl−1/2

Â
l
Dl−1/2

X l−1W l) +X l−1, (1)

where X l−1 is the node embedding from the (l − 1)-th

layer, W l is the convolution kernel, Â
l

is the refined ad-
jacency matrix and Dl is the diagonal node degree matrix
with Dl

ii =
∑

j=0 Â
l

ij .
Since most of the connections between adjacent frames

among the nodes are from distinct objects, the aggregated
information from different objects can have a negative ef-
fect on the embedding. As a result, we apply the attention
mechanism to refine the adjacency matrix to deal with such
an issue as follows,

Â
l
= (A+ I)⊙X l

att, (2)

where X l
att is the self-attention feature, ⊙ represents the

elementwise multiplication, and X l
att is defined as,

X l
att = σ(ReLU(f(X l−1)W l

att,1)W
l
att,2), (3)

where W att,1 and W att,2 are convolution kernels, σ is the
Sigmoid activation function and f represents the operation
of pairwise self dot product.

We use a combination of triplet loss Ltriplet [45] and
binary cross-entropy loss Lxent for training box embedding
module. They are defined as follows,

Ltriplet =
1

N

N∑
i

[||Xouta

i −Xoutp

i ||22

− ||Xouta

i −Xoutn

i ||22 + α]+,

Lxent =
1

N

N∑
ij

{tij logXL
att,ij

+ (1− tij) log (1−XL
att,ij)},

(4)

where [·]+ clamps the input value to be non-negative;
Xouta

i , Xoutp

i and Xoutn

i represent the box embedding
output from the anchor sample, positive sample and neg-
ative sample, respectively; α is the pre-defined margin;
XL

att,ij measures the similarity between node i and j in the
last GCN layer, while tij is the binary label indicating the
identity between node i and j. Therefore, the total loss for
the box embedding training is defined as

Lbox = Ltriplet + λ1Lxent. (5)
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Figure 3. The figure shows the motivation of reconstruct-to-embed strategy in the tracklet embedding. The left part is the illustration of the
difficulty of the direct tracklet embedding, while the right part shows the proposed indirect tracklet embedding strategy, i.e., reconstruct-to-
embed. Attention-aggregation mechanism is employed based on the GCN framework in the tracklet reconstruction, followed by the final
embedding.

3.2. Tracklet Motion Embedding

The goal of tracklet motion embedding is to explore
the global motion patterns among tracklets for the associ-
ation. However, tracklet embedding is not quite straightfor-
ward. Since tracklets from the same object exist in differ-
ent frames and usually have different temporal lengths, it is
very challenging to find a latent space to ensure that they
share similar feature embeddings. As shown in the left part
of Figure 3, the direct embedding is difficult to measure the
similarity among tracklets. To alleviate the challenge in the
tracklet embedding, we propose a novel embedding strat-
egy, named as reconstruct-to-embed, following an attention
and reconstruction mechanism based on GCN, as shown in
the right part of Figure 3. The motivation behind this is sim-
ple. Take tracklet A for example. We calculate the attention
from tracklet B and C based on the smoothness of temporal
relations. Then based on the attention scores from B and C,
we aggregate and reconstruct the latent trajectory Â. We use
the same reconstruction strategy for B and C to generate B̂
and Ĉ. Compared with the original tracklets A and B, Â
and B̂ have much more similar motion patterns after the re-
construction, which makes the embedding much easier than
the situation in the direct embedding. Finally, embeddings
are learned with one additional embed-head block with re-
constructed tracklets.

The tracklet graph is defined as follows. Considering a
temporal window, we denote X0 ∈ RN×4×T as the input
tracklets with normalized box parameters x, y, w, h, where
N is the number of tracklets and T is the temporal win-
dow size. Since tracklets usually have different temporal
lengths, we pad zeros along the temporal dimension if the
length is smaller than the temporal window T . We also de-
fine tracklet temporal occupancy matrix M0 ∈ RN×1×T as

Figure 4. The overview architecture of the tracklet embedding
module. The left part shows tracklet embedding with sequentially
stacked reconstruction blocks and one embed-head block. Three
losses, i.e., triplet loss Ltriplet, cross-entropy loss Lxent and re-
construction loss Lrec, are combined in the training. The right part
shows each basic reconstruction block based on GCN and tem-
poral gated convolution (TGC) modules for temporal information
extraction.

the mask input, where M0
it = 0 if no box exists for tracklet

i in frame t due to missing detection or occlusion; otherwise
M0

it = 1. Denote A ∈ RN×N as the adjacency matrix,
where Aij = 1 if tracklet i and tracklet j do not have over-
lapping frames in the temporal window; otherwise Aij = 0
following the assumption that temporal overlapping track-
lets cannot share the same ID.

The architecture of tracklet embedding is shown in Fig-
ure 4. We stack K reconstruction blocks to measure the
long-term relations in both structural and temporal dimen-
sions for reconstruction, and then followed by one embed-
head block for the final embedding. As shown in Figure 4,
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each reconstruction block updates the feature maps and soft
masks based on the attention and temporal gated convolu-
tion (TGC) module. The goal of attention is to measure
the similarities among tracklets. Good tracklet embeddings
should have high similarities if they are from the same ob-
ject. However, simple operations cannot well represent the
similarities. If we take cosine similarity measure for exam-
ple, the zero-padded motion features of two tracklets from
the same object would be always zero due to the fact that
two tracklets from the same object do not have overlapping
frames. Inspired by the TGC module in the inpainting task
[15, 65, 21], where missing values can be reconstructed
with input masks, we can use TGC with the occupancy
masks for tracklet extrapolation. Based on the extrapolated
tracklets, the similarities are easier to measure and the tem-
poral consistency among tracklets from the same object can
be exploited. Specifically, the attention/similarity map of
the k-th reconstruction block is calculated as follows,

X̃
k
,M̃

k
= g(Xk−1,Mk−1),

Xk
att = σ(ReLU(f(X̃

k
)W k

att,1)W
k
att,2),

(6)

where Xk−1 and Mk−1 are feature maps and masks from
the previous block, g is the TGC module and f is the pair-
wise self dot product operation. Here, we calculate atten-
tion maps after the extrapolation of tracklets based on TGC
module. The TGC module has multiple stacked TGC lay-
ers. To be specific, the feature map and mask of each TGC
layer are updated as follows,

M j+1 = σ(M j ∗W j
M ),

Y j+1 = ReLU(Y j ∗W j
Y )⊙M j+1 + Y j ,

(7)

where ∗ represents the convolution operation, ⊙ represents
the dot product, M j is the soft mask, Y j is the feature
mask, W j

M and W j
Y are the convolution kernel weights

for the mask and feature maps, respectively.
Then we aggregate the attention maps based on the graph

structure. The aggregation output Sk is represented as

Sk = Dk−1/2

Â
k
Dk−1/2

, (8)

where Â
k

is with the same definition as Eq. (2), which re-
calculates the attention maps based on the adjacency matrix
of the graph structure.

We aggregate the attention map Sk with Xk−1 and
Mk−1, followed by a second TGC module to obtain the
output of the k-th reconstruction block as follows,

Y k,Mk = g(SkXk−1,SkMk−1),

Xk = Xk−1 + Y k.
(9)

Simply put, the second TGC module plays a role as a further
transformation of node embeddings.

To obtain the final tracklet embedding, a feed-forward
transformation with two dense layers is included in the
embed-head block. The feed-forward transformation is de-
fined as follows,

Xout = Norml2(ReLU(f(XK)W 1)W 2), (10)

where Norml2 is the l2 normalization, W 1 and W 2 are the
weights of the two dense layers.

We also adopt the triplet loss Ltriplet and binary cross-
entropy loss Lxent based on the output Xout for tracklet
embedding training with similar equations to Eq. (4). In ad-
dition, a reconstruction loss Lrec is employed in the tracklet
embedding. To be specific, the reconstruction loss is de-
fined as follows,

Lrec = ||M∗(XK −X∗)||2, (11)

where X∗ is the ground truth track and M∗ is the ground
truth occupancy mask. Finally, the total loss for tracklet
embedding training is defined as follows,

Ltracklet = Ltriplet + λ2Lxent + λ3Lrec. (12)

3.3. Inference

After training, the association is conducted based on the
box and tracklet embedding in the inference stage. The
temporal sliding window procedure is adopted with 50%
overlapping frames. Within each temporal window, boxes
are associated based on the embedding distances. Then the
tracklets are associated with the bottom-up greedy method.
50% overlap is used to ensure the new boxes and tracklets
can be matched to existing tracked objects.

4. Experiments
4.1. Datasets

Two vehicle tracking benchmark datasets, i.e., KITTI
[18] and UA-Detrac [58], are used for validation.

KITTI. The KITTI car tracking benchmark consists of
21 training sequences and 29 testing sequences. Videos are
captured at 10 FPS and contain large inter-frame motions.
We only evaluate the tracking performance on the car cate-
gory.

UA-Detrac. The UA-DETRAC is a large-scale tracking
dataset for vehicles. It comprises 100 videos that record
around 10 hours of vehicle traffic. The recording is made
in 24 different locations, and it includes a wide variety of
common vehicle types and traffic conditions. Overall, the
dataset contains about 140k video frames, 8,250 vehicles,
and 1,210k bounding boxes.

4.2. Implementation Details

For the architecture of the proposed LGM tracker, we
stack L = 8 GCN blocks and K = 4 reconstruction blocks
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Method HOTA (%) ↑ AssA (%) ↑ MOTA (%) ↑ MT (%) ↑ ML (%) ↓ IDS ↓ FRAG ↓
†⋆JRMOT [47] 69.6 66.9 85.1 70.9 4.6 271 273
†⋆AB3DMOT [60] 69.8 69.1 83.5 67.1 11.4 126 254
†⋆MOTSFusion [33] 68.7 66.2 84.2 72.8 2.9 415 569
†⋆mono3DT [26] 73.2 74.2 84.3 73.1 2.9 379 573
⋆MASS [27] 68.3 64.5 84.6 74.0 2.9 353 516
⋆TuSimple [11] 71.6 71.1 86.3 71.1 6.9 292 220
⋆SMAT [19] 71.9 72.1 83.6 62.8 6.0 198 294
⋆CenterTrack [68] 73.0 71.2 88.8 82.2 2.5 254 227
DCO-X [38] 46.5 38.7 66.2 38.3 14.5 955 708
SCEA [23] 56.1 52.2 74.9 53.7 12.3 324 317
MCMOT-CPD [31] 56.6 50.6 78.0 52.5 12.5 475 309
LGM (ours) 73.1 72.3 87.6 85.1 2.5 448 164

Table 1. Result on KITTI-car tracking testing set. From top to bottom, we divide SOTA methods into three categories (3D trackers, 2D
trackers, mere motion 2D trackers) according to different input information. † represents 3D tracking methods and ⋆ represents trackers
using appearance information. The best result for each part is shown in red, blue and bold, respectively.

Method PR-MOTA (%) ↑ PR-MOTP (%) ↑ PR-MT (%) ↑ PR-ML (%) ↓ PR-IDS ↓ PR-FRAG ↓
IHTLS [16] 11.1 36.8 13.8 19.9 953.6 3556.9
H2T [59] 12.4 35.7 14.8 19.4 852.2 1117.2
CMOT [3] 12.6 36.1 16.1 18.6 285.3 1516.8
GOG [43] 14.2 37.0 13.9 19.9 3334.6 3172.4
IOUT [6] 16.1 37.0 14.8 19.7 2308.1 3250.4
V-IOUT [7] 17.7 36.4 17.4 18.8 363.8 1123.5
FAMNet [13] 19.8 36.7 17.1 18.2 617.4 970.2
LGM (ours) 22.5 35.2 15.5 10.1 1563.5 3186.8

Table 2. Result on UA-Detrac testing set. The best performance is shown in bold type.

in the box and the tracklet embedding modules, respec-
tively. For the TGC module in the tracklet embedding, we
have 6 basic TGC layers. We use 17 frames and 65 frames
as the temporal window for the box and tracklet embedding
modules, respectively. The final embedding dimension for
the box and tracklet is set to D = 128. The margin α for
calculating the triplet loss is set to 0.2. For the loss combi-
nation, we simply set all λs in Eq. (5) and Eq. (12) to 1.

We use detection results from CenterNet [69, 68] and
CompACT [9] as our input boxes for KITTI and UA-Detrac
datasets, respectively. Both the box and tracklet embedding
modules are trained with Adam optimizer [29] with an ini-
tial learning rate of 1e-3. We use a cosine annealing learn-
ing rate scheduler for the learning rate decay. The maximum
step is set to 200000.

Data augmentation strategy is adopted for training the
LGM tracker. For the box embedding module, the in-
put boxes are pre-processed with random horizontal flips,
randomly jittered sizes and positions. We also randomly
add boxes as false positives and remove some ground truth
boxes as false negatives. A similar augmentation strategy
is used for training the tracklet embedding module. Be-
sides that, we also randomly split the ground truth tracks

into pieces of tracklets for the augmentation.

4.3. Evaluation Metrics

We use the default metrics defined by the benchmark
datasets for the evaluation. The metrics include Higher
Order Tracking Accuracy (HOTA) [34], Association Accu-
racy (AssA), Multiple Object Tracking Accuracy (MOTA)
[36], ID F1 score (IDF1), Multiple Object Tracking Preci-
sion (MOTP) [36], the number of ID Switches (IDS), the
percentage of Mostly Tracked targets (MT), the percentage
of Mostly Lost targets (ML) and the total number of times
a trajectory is Fragmented (FRAG). HOTA and AssA are
newly defined in [34] and adopted as the main evaluation
metrics for MOT in the KITTI benchmark dataset. For the
UA-Detrac dataset, the metrics with PR-curve integrated are
used, as defined in [58].

4.4. Main Results on Benchmark Datasets

KITTI-Car Tracking Benchmark. The tracking result
on the KITTI-car testing dataset is shown in Table 1. From
top to bottom, we divide SOTA methods into three cate-
gories i.e., †3D trackers, ⋆2D trackers, and mere motion 2D
trackers, according to different input information.
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Loss Combination HOTA AssA MOTA
Ltriplet 75.7 75.0 88.0
Ltriplet + Lxent 76.9 77.2 89.0

Table 3. Results of different loss combinations for box embedding
module on the KITTI-car tracking validation set.

We achieve the best performance among the mere mo-
tion trackers, and the proposed LGM tracker is also very
competitive to other SOTA methods. The result demon-
strates the effectiveness of the proposed LGM tracker based
on mere motion information.

UA-Detrac Benchmark. The tracking result on the UA-
Detrac testing dataset with CompACT detections is shown
in Table 2. We can see that the proposed LGM tracker out-
performs most SOTA methods, including methods that use
both appearance and motion information.

4.5. Qualitative Results

Occlusion Handling. We show some qualitative exam-
ples of the proposed LGM tracker against CenterTrack [68]
about occlusion handling on the KITTI-car testing dataset
in Figure 5. Each color represents a distinct tracked object
with the tracking ID on the top of the bounding box. The
first two rows are results of CenterTrack and LGM tracker
from sequence 0011, respectively. For the LGM tracker,
three cars with a red circle drawn on the figure are occluded
by a car in frame 268 and then associated to the correct
labels in frame 274 after they reappear, while the Center-
Track fails in the association. The last two rows show an-
other example from sequence 0018, where two cars in the
red circle are correctly associated in frame 43 for the LGM
tracker, while CenterTrack fails again. These two examples
demonstrate the robustness of the proposed tracker’s occlu-
sion handling strategy.

Reconstruction Analysis on the Tracklet. To further
illustrate the reconstruct-to-embed strategy in the tracklet
embedding module, we also provide one visualization ex-
ample, as shown in Figure 6. For Figure 6 (a), we plot two
tracklets A and B from the same object in red and blue col-
ors, respectively. The ground truth trajectory is displayed in
black. Figure 6 (b) shows the reconstructed tracks, Â and
B̂, after the last reconstruction block. Based on the visual-
ization, it is obvious that Â and B̂ have much higher sim-
ilarities than A and B, which makes the embedding much
easier.

4.6. Ablation Study

Study of Loss Combination for Box Embedding. The
study of loss combination for box embedding on the KITTI-
car validation set with the same data split defined from [68]
is shown in Table 3, where the first row only uses triplet
loss in the training while the second row uses both triplet

Loss Combination HOTA AssA MOTA
Ltriplet - - -
Ltriplet + Lxent - - -
Ltriplet + Lrec 76.3 76.5 88.2
Ltriplet + Lxent + Lrec 76.9 77.2 89.0

Table 4. Results of different loss combinations for tracklet embed-
ding module on the KITTI-car tracking validation set. Results for
the first two combinations are not available since the training does
not converge.

Module HOTA AssA MOTA
Box 75.2 74.3 88.0
Box+Tracklet 76.9 77.2 89.0

Table 5. Results of different modules on the KITTI-car tracking
validation set.

loss and binary cross-entropy loss. The same tracklet em-
bedding module is used for both cases. We can see that with
a combination of the two losses, the performance is better.

Study of Loss Combination for Tracklet Embedding.
To better understand the importance of each loss term in
the tracklet embedding module, we try four different loss
combinations in the training and then evaluate the KITTI-
car validation set. For the first two trials, with standalone
triplet loss Ltriplet or with a combination of triplet loss and
binary cross-entropy loss Ltriplet + Lxent, the model fails
to converge. This demonstrates the necessity of the recon-
struction loss in the training and it further proves the effec-
tiveness of reconstruct-to-embed strategy illustrated in Fig-
ure 3. As shown in the last two rows of Table 4, the perfor-
mance improves when introducing the binary cross-entropy
loss Lxent, which shows the importance of the supervision
on the attention mechanism.

Analysis on Functionalities of Box and Tracklet Em-
bedding. We also test the functionalities of the box and
tracklet embedding modules on the KITTI-car validation
set. The result is shown in Table 5. We can see that with
box embedding alone we can achieve tolerable results, yet
the tracklet association is not exploited. From the second
row of the table, there is further improvement in the tracking
performance with the tracklet embedding module added.
This example demonstrates the importance of both box and
tracklet embedding.

4.7. Generalization to Pedestrian Tracking

Although pedestrian tracking is not the focus of this pa-
per, we still report the results for pedestrian tracking on the
MOT17 testing set, as shown in Table 6, where the top three
methods are widely used SOTA methods with both appear-
ance and other clues while the bottom two only use motion
clues for tracking. Pedestrian tracking is more challenging
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Figure 5. Examples of occlusion handling. Each row shows three frames from the same sequence. Each tracked vehicle is represented in a
unique color. The number on the bounding box is the tracking ID.

Figure 6. Visualization example of tracklet reconstruction. (a)
shows two input tracklets, A and B. Both A and B are from
the same object with the ground truth trajectory shown in black.
(b) shows the reconstructed Â and B̂ after the last reconstruction
block.

than vehicle tracking for motion-based trackers since the
motion consistency assumption is not always the truth. Due
to such challenges, we can still achieve comparable results
using the proposed motion tracker, demonstrating the gen-
eralization ability to pedestrian tracking.

5. Conclusion
In this paper, we propose a novel tracker with motion

consistency without looking at the appearance for the ve-
hicle tracking task. Two modules, box and tracklet embed-
ding, are designed to model both local and global motion in-
formation based on deep convolutional networks. We eval-
uate the proposed method on two vehicle tracking datasets,

Method MOTA IDF1 MOTP
Tracktor++ [4] 56.3 55.1 78.8
TrctrD17 [63] 53.7 53.8 77.2
CenterTrack [68] 61.5 59.6 78.9
IOU Tracker 45.5 39.4 76.9
LGM (ours) 56.0 55.6 78.0

Table 6. Pedestrian tracking result on MOT17 dataset, where top
three methods use appearance information while the bottom two
methods only employ motion features.

i.e., KITTI-car tracking benchmark and UA-Detrac bench-
mark and achieve competitive results with mere motion in-
formation. We also visualize the tracking results and the re-
constructed trackets in the tracklet embedding module. This
further proves the effectiveness of the proposed reconstruct-
to-embed strategy. Several ablation studies are conducted to
show the importance of each module and the losses in the
model training. In future work, we plan to to incorporate
appearance information in both the box and tracklet embed-
ding modules for further improvement.
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