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Abstract

Unsupervised domain adaptation for semantic segmen-
tation aims to assign the pixel-level labels for unlabeled
target domain by transferring knowledge from the labeled
source domain. A typical self-supervised learning approach
generates pseudo labels from the source model and then re-
trains the model to fit the target distribution. However, it
suffers from noisy pseudo labels due to the existence of do-
main shift. Related works alleviate this problem by select-
ing high-confidence predictions, but uncertain classes with
low confidence scores have rarely been considered. This
informative uncertainty is essential to enhance feature rep-
resentation and align source and target domains. In this
paper, we propose a novel uncertainty-aware pseudo la-
bel refinery framework considering two crucial factors si-
multaneously. First, we progressively enhance the feature
alignment model via the target-guided uncertainty rectify-
ing framework. Second, we provide an uncertainty-aware
pseudo label assignment strategy without any manually de-
signed threshold to reduce the noisy labels. Extensive ex-
periments demonstrate the effectiveness of our proposed
approach and achieve state-of-the-art performance on two
standard synthetic-2-real tasks.

1. Introduction

Semantic segmentation [18], considered as one of the
fundamental problems in Computer Vision, aims to under-
stand the image scene at the pixel level. Since the increas-
ing numbers of images, recent advances in semantic seg-
mentation have shown rapid progress on current datasets,
such as Pascal VOC-2012 [8] and Cityscapes [5]. However,
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Figure 1. Problems for existing threshold-based pseudo labels gen-
eration. (a) Ignoring true positive predictions; (b) Assigning false
positive predictions as labels (c) Ideal pseudo labels generation.

collecting large-scale real-world datasets with well-labeled
dense annotations is labor-intensive and time-consuming.
To overcome this limitation, one feasible solution is to train
a model using synthetic and realistic datasets with free an-
notations, exampling as GTA5 [25] and SYNTHIA [27],
and predict on the real-world dataset like Cityscapes [5].
Unfortunately, the inevitable question is that the perfor-
mance will drop significantly due to the domain shift be-
tween the synthetic and the real data.

To address domain discrepancy, unsupervised domain
adaptation methods have been proposed for semantic seg-
mentation [12, 31, 25, 27]. Seminal practices usually ex-
ploit adversarial learning or self-supervised learning tech-
niques. For adversarial learning methods, the dominant
trend is to match the distributions of source and target do-
mains at different levels: pixel level [11, 4, 14, 21], fea-
ture level [12, 3], output level [31, 33, 35], category level
[20, 7], and patch level [32]. For self-supervised learning
approaches, the key idea is to generate high-quality pseudo
labels [41, 40, 30]. Although these methods significantly
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improve the adaptation performance, it still lags far behind
supervised learning or semi-supervised learning.

After dissecting the domain adaptive semantic segmen-
tation, we observe two key ingredients are ignored in pre-
vious works. First, due to the class-imbalance, different
categories are prone to have distinct transferability. Some
classes, such as road and building that occupy a large por-
tions of pixel, are inherently easy to transfer across do-
mains. Second, typical manually designed threshold meth-
ods [41, 40] generate pseudo labels according to the con-
fidence scores, which is substantially hindered by the in-
evitable label noise. Incorrect pseudo labels with high con-
fidence score can confuse the network in the target do-
main. The drawback of the confidence score based method
is shown in Fig 1.

In this paper, we propose a target-guided uncertainty rec-
tifying method and an uncertainty-aware pseudo labels as-
signment technique to address the above two issues, respec-
tively. (1) Trained models trend to produce high-uncertainty
predictions for minority classes. To remedy this issue, we
resort to resampling strategies [23] to progressively refine
high-uncertain predictions during the adversarial training
process. We achieve this goal by resampling source data ac-
cording to the uncertainty statistics of the target domain. (2)
To alleviate noisy labels caused by uncertainty predictions,
we propose an uncertainty-aware pseudo labels assignment
strategy to generate reliable target labels. We assume the
certain and uncertain predictions following different distri-
butions and estimate them using a Gaussian Mixture Model
of two modalities. We refer to our method as UncerDA
since we heavily rely on uncertainty information for domain
adaptation.

The contributions of this paper can be summarized as
follows:

• We propose to enhance the distribution alignment by
resampling the training source images, whereas the
resampling classes are designed according to the un-
certainty statistics of the target domain. This tailored
cross-domain setting benefits the learning of the trans-
ferable model.

• We propose to select reliable pseudo labels by fitting
the predictions to certainty and uncertainty modes us-
ing GMM. Pixels belonging to the certainty mode are
assigned as pseudo labels.

• Comprehensive experiments demonstrate the effec-
tiveness of the proposed method, achieving the state-
of-the-art performance on both GTA5→Cityscapes
and SYNTHIA→Ciyscapes benchmarks.

2. Related Work

Domain Adaptation for Semantic Segmentation (DASS)
aims to train a network that can assign pixel-level labels to
unlabeled target data by learning from labeled source data.
Existing methods in the literature can be roughly catego-
rized into two groups: adversarial learning methods and
self-training methods. For adversarial learning, numerous
works have been explored to align source and target distri-
butions in the pixel-level [11, 37, 36, 14], feature-level [12],
output-level [31, 33, 20], and patch-level [32]. These meth-
ods examine all kinds of domain-invariant information to
match the distributions between domains. Tuan et al. [33]
leverages self-entropy maps and Myeongjin et al. [14] uses
texture-invariant [14] information to help alignment. Be-
sides, to achieve fine-grand matching, researchers [20, 7]
propose a category-level adversarial network for each class.
Zhou [34] has refined this category-level alignment to things
and stuff. In [37, 36], the appearance of target images is
transferred to source data, which prompts the images to be
domain-invariant. Other works attempt to reduce discrep-
ancy utilizing data augmentation, exampling as a GAN-
based self-enhanced method has been introduced in [4].
Though these methods have explored various invariant in-
formation between source and target domain, they ignore
a vital mismatching problem caused by minority categories
or infrequent pixels. Thus, we focus on this challenging
problem to enhance adaptation in this paper.

For self-training approaches, the essential idea is to
generate reliable pseudo labels. [41, 40] utilize a class-
balance self-training (CBST) for domain adaptive seman-
tic segmentation, which generates pseudo labels depend-
ing on category-level confidence. [7] proposes a progres-
sive strategy following a constant threshold. It may suffer
from label noise, leading to incorrect alignment. In [16],
researchers consider curriculum learning and offer a self-
motivated pyramid framework for semantic segmentation.
Subhani and Ali [30]’s dynamic entropy dependent pseudo
labels generation methods could be the closest to our work.
However, they only focus on label selection in the second
stage while ignoring robust segmentation network training.
We enhance the capability of feature representation for a
model by rectifying uncertain minority classes.

Imbalanced Learning has been widely studied, including
resampling and reweighting techniques. Resampling meth-
ods [28, 22, 24, 9, 23] directly balance the class distribu-
tion via modifying the training samples. Reweighting ap-
proaches, such as FocalLoss [17] and OHEM [29], assign
a specific loss weight to alleviate the classifier’s bias. Due
to the co-occurrence problem, these resampling strategies
are not suitable for our tasks, so we modify a weighted soft
resampling strategy in this paper.
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Figure 2. Example of the proposed uncertainty pseudo label refinery framework. (Best viewed in color)

3. Preliminary
Before illustrating our method, we conduct pilot experi-

ments to demonstrate the self-training methods benefit from
the initialized feature alignment model and effective pseudo
labels generation method. To this end, we adopt different
adaptation approaches as initialized models, such as Adapt-
SegNet [31], CLAN [20], ADVENT [33], MRNet [38] and
SIM [34]. Then we compare conventional pseudo labels se-
lection and the manually designed pseudo labels learning as
shown in Fig 3. Note that the manually designed pseudo
labels are generated from the guidance of ground truth in-
formation. The incorrect predictions with higher confidence
than the threshold are rectified as ground truth, while those
lower than the threshold are ignored.

It is intuitive to reason the improvement because these
two aspects provide efficient supervision information for
the target data. First, the model with more powerful adapta-
tion performance can align distributions better between do-
mains. If the feature alignment model reduces the domain
gap, the ideal outputs of target features should be similar to
those of source features. It will produce superior segmen-
tation results via source domain supervised learning. Sec-
ond, a high-quality pseudo labels generation strategy can
improve significantly, and the optimal solution is equal to
the fully supervised scenario.

In this paper, we pursue the above two observations to
boost the quality of pseudo labels. We first enhance fea-
ture alignment during the adversarial adaptation process by
focusing on challenging classes with high-uncertainty pre-
dictions. On the other hand, we use uncertainty information
to guide the selection of pseudo labels. Contrary to pre-
vious methods, assigning pseudo labels using uncertainty
can effectively reduce incorrect labels with high-confidence
scores. Thus, adopting uncertainty information to boost fea-
ture alignment and pseudo labels assignment can generate
reliable pseudo labels, as shown in Sec.5.

4. Methodology
In this work, we explore the uncertainty of target predic-

tions to denoise pseudo labels from two aspects: (1) rec-
tifying the uncertainty-aware predictions via target-guided
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Figure 3. Results on GTA5→Cityscapes. Two different pseudo la-
bels generation methods are adopted on several existing adaptation
models.

resampling strategy and (2) proposing uncertainty-aware
pseudo labels assignment to select correct predictions. The
overview pipeline is shown in Fig. 2, and we will elaborate
details in the following.

4.1. Target-guided uncertainty rectifying

In domain adaptive semantic segmentation, the uncertain
predictions of the target data correspond to the classes with
infrequent pixels or small objects. These classes often oc-
cupy an insignificant portion of the image. Treating these
classes equally to major classes may make the network un-
derfitting due to insufficient training. To address this is-
sue, we propose a specific resampling strategy to progres-
sively reduce the target data’s uncertainty. The key idea is
to locate classes with high uncertainty and then compute an
instance sampling probability for the source data based on
these classes. The feature alignment is achieved by adver-
sarial training on the sampled source and target batch.

Formally, given the source dataset Xs = {xs}ns
j=1 with

the corresponding labels Ys = {ys}ns
j=1 and unlabeled tar-

get dataset Xt = {xt}nt
j=1, we use entropy to characterize

the uncertainty of predictions on the target domain. That
is, the predictions with low (high) entropy are considered
as certain (uncertain) samples. To locate uncertainty-aware
classes, we first calculate average category-level entropy
I cXt

on the whole target domain:

I cXt
=

1

Nc

∑
xt∈Xt

∑
i

I (i)xt
∗ 1(ŷ(i,c)xt

= 1), (1)

where 1 is the indicator function and Nc indicates the
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number of pixels for the c-th class in the whole dataset.
ŷ
(i,c)
xt = argmaxc p

(i,c)
xt represents the pseudo label of the

i-th pixel in xt belonging to the c-th class. p(i,c)xt represents
the softmax probability of pixel x(i)

t and pt = Fθf (xt; θf ).
Fθf is the initialized segmentation model with parameters
θf . Ixt

refers to the normalized pixel-wised entropy map
overall C classes:

I (i)xt
= − 1

log(C)

C∑
c=1

p(i,c)xt
log p(i,c)xt

. (2)

Then, we rank I cXt
and obtain a subset Sk with top-k

high-uncertain classes. Classes in Sk are hard to transfer
due to the minor proportion or class imbalance. We remedy
this issue via an instance-level resampling strategy to pro-
vide sufficient training samples for these rare classes on the
next adversarial learning process.

Soft-balance sampling for uncertainty-ware classes.
To refine uncertainty-aware classes, we compute an image-
level sampling probability for the source data according to
target predictions. At first, we consider the whole C classes
to calculate the class-balance sampling probability pc for
the source data Xs pursuing [23]:

pc(Xs) =
Nc(Xs)

λ∑C
c=1 Nc(Xs)λ

1

Nc(Xs)
, (3)

where Nc(Xs) indicates the number of pixels for the c-th
class in Xs and λ is a hyper-parameter to soften the discrep-
ancy between frequent and infrequent categories. It should
be noticed that λ controls the sampling strategy from no-
balance (λ = 1) to class-aware balance (λ = 0). Second,
considering label co-occurrence that one image can contain
multiple categories, a given image xs with a label ys could
be repeatedly sampled by each category it contains. Thus
the image-level sampling probability can be estimated as a
weighted summation for contained categories:

pi(xs) =
∑
ĉ

Nĉ(xs)
λ
1(yĉs = 1)∑

ĉ Nĉ(xs)λ1(yĉs = 1)
pĉ(Xs), (4)

where Nĉ(xs) denotes the number of pixels for the ĉ-th cat-
egory contained in the image xs and ĉ ∈ Sk. We only con-
sider uncertainty-aware classes in Sk to rectify uncertainty
during this process. Due to the obtained probability usu-
ally closes and sometimes goes towards zero, so we design
a smoothing function for pi(xs) as Eq.(5) shows,

p̂i(xs) = 0.1 +
1

1 + exp(−α× (pi(xs)− µ))
. (5)

Here, α and µ control the smooth shape of sampling proba-
bility, and the selected values are studied in subsection 5.8.

Progressively rectifying scheme. We refine the
uncertain-aware classes in Sk by resampling source images

Entropy

P
ro
b
.

Positive Negative

Figure 4. Illustration of uncertainty-aware pseudo label assign-
ment. The entropy is modeled as a probability distribution using
Gaussian Mixture Model of negative and positive predictions. Pix-
els belong to positive part are assigned as pseudo labels.

to enhance feature alignment. After an adversarial adapta-
tion process, classes in Sk should be updated. Then the Sk

is used to calculate a new image-level sampling probabil-
ity according to Eq.(4). A new adversarial adaptation on
the sampled source and target batches is construted based
on the latest sampling probability. We repeat this recti-
fying scheme until the classes in Sk don’t change, or the
adaptation performance doesn’t improve. We enhance fea-
ture alignment from this iterative refinery by involving more
source samples belonging to the hard classes. The pipeline
is shown in Fig.2.

4.2. Uncertainty-aware pseudo label assignment

The rectified model can produce reliable predictions be-
cause the feature extractor Fθf generates enhanced target
features. However, due to the domain gap, the noisy la-
bels still exist because of the incorrect predictions with high
confidence, which leads to poor results and poor general-
ization. To remedy this problem, we resort to uncertainty
information to generate pseudo labels. We observe that the
predictions with low/high uncertainty usually correspond to
correct/incorrect pseudo labels. Therefore, the uncertainty-
aware information can significantly separate pseudo labels
into correct (positive) and incorrect (negative) parts.

Motivated by this, we propose a novel uncertainty-aware
pseudo labels assignment strategy according to the target
uncertainty predictions. Intuitively, we can infer from the
uncertainty if a labeled sample is more likely to be posi-
tive (correct) or negative (incorrect). We achieve this goal
by fitting a mixture distribution model, as shown in Fig.
4. Specifically, we use a Gaussian Mixture Model (GMM)
with two components to fit positive and negative distribu-
tions. Samples belonging to the positive distribution are
selected as pseudo labels. Furthermore, considering class-
imbalance, we fit the distribution for the category-level en-
tropy I cxt . The probabilistic distribution of the c-th class can
be obtained as:

Pc(I
c
xt
) = wnegNneg(I

c
xt
;µneg, σneg)

+ wposNpos(I
c
xt
;µpos, σpos),

(6)

where wneg, µneg, σneg and wpos, µpos, σpos denote the
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Table 1. Comparison to state-of-the-art methods of adaptation from GTA5 to Cityscapes based on ResNet-101 backbone. The top group is
for adversarial adaptation (“AA”), while the bottom represents performance using self-training learning (“ST”).
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AdaptSeg [31] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
SIBAN [19] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6
CyCADA [11] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
CLAN [20] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
DISE [1] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
ADVENT [33] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
PatchAlign [32] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5
MRNet [38] 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5
Ours (AA) 88.7 31.2 83.7 34.1 24.1 37.6 42.9 33.0 85.8 38.9 80.3 63.7 34.2 85.9 41.2 42.5 3.4 33.8 42.5 48.8
LSE [30] 90.2 40.0 83.5 31.9 26.4 32.6 38.7 37.5 81.0 34.2 84.6 61.6 33.4 82.5 32.8 45.9 6.7 29.1 30.6 47.5
PLCA [13] 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7
BDL [15] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
SIM [34] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
TextDA [14] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
FDA [36] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
Zhe et al. [39] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
Ours (ST) 90.5 38.7 86.5 41.1 32.9 40.5 48.2 42.1 86.5 36.8 84.2 64.5 38.1 87.2 34.8 50.4 0.2 41.8 54.6 52.6

weights, means and variances of the negative and positive
Gaussians, respectively. Icxt

is an image-level entropy for
the c-th class. To estimate these parameters of this GMM in
Eq. (6), we use the Expectation-Maximization (EM) algo-
rithm to optimize the distributions and weights (wneg, wpos)
following a uniform distribution. Once the distribution is
estimated, the correct pseudo labels can be easily selected
from the positive distribution.

Compared to [26], our method denoises pseudo labels
by estimating uncertainty to a bimodal distribution with-
out any manually designed thresholds. Moreover, the pro-
posed method can address the class-imbalance problem.
Pseudo labels are selected at class-level, which treats differ-
ent classes equally regardless of their occurrence frequency.

5. Experiments

5.1. Datasets

We evaluate the proposed method on two challenge
adaptation tasks from the synthetic to the real domain. Syn-
thetic datasets that have abundant pixel-level annotations
act as source domains, including GTA5 [25] and SYNTHIA
[27]. At the same time, the real-world dataset Cityscapes [5]
that has zero label is considered as the target domain.

GTA5 is selected from a video computer game based on
the urban scenery of Los Angeles city, along with pixel-
level labels for 33 different categories. It contains 24,966
images with a resolution of 1,914×1,052. During training,
we resize images to 1,280 × 720 and then random crop
them to 1,024 × 512. We only consider 19 categories in
common with Cityscapes [5], similar to previous methods.

SYNTHIA is another synthetic dataset that contains

9,400 annotated images with a resolution of 1,280×760.
We also random crop the images to 1,024×512, and 16 stan-
dard categories with the Cityscapes dataset are considered
for training. The evaluation is performed on both the 16-
and 13- class subsets following the standard protocol.

Cityscapes is a real-world dataset collected from urban
street scenes including 18 different cities around Germany
and neighboring countries. It has 2,975 training images
and 500 validation images with a resolution of 1,024×512.
The two domain adaptation scenarios are constructed as
GTA5→Cityscapes and SYNTHIA→Cityscapes.

5.2. Implementation Details

In the experiments, we utilize the multi-level adaptation
framework similar to [31] and [33] to train the segmentation
network Fθf and adversarial discriminator. The architecture
of Fθf is DeepLab-v2 [2], which adopts the ResNet-101
[10] pre-trained on ImageNet [6] as the backbone model.
We first train the adaptation model using a conventional
sampling strategy for 25,000 iterations, which is sampling
source and target images with an equivalent sampling prob-
ability. Then we attempt to align the distributions of source
and target domains utilizing the proposed target-guided un-
certainty rectifying strategy progressively.

5.3. Comparisons with state-of-the-art methods

We comprehensively compare the proposed method with
state-of-the-art domain adaptation approaches in Table 1
and Table 2. The compared methods can be divided into
1) domain alignment through adversarial adaptation and 2)
self-training approaches. We demonstrate the effectiveness
of our method on both the adversarial adaptation stage and
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Table 2. Comparison to state-of-the-art methods of adaptation from SYNTHIA to Cityscapes based on ResNet-101 backbone. The top
group is for adversarial adaptation (“AA”), while the bottom group represents performance using self-training learning (“ST”). mIoU and
mIoU* are averaged over 16 and 13 categories.
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AdaptSeg [31] 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9
PatchAlign [32] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5
CLAN [20] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8
ADVENT [33] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0
DISE [1] 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5 48.8
Ours (AA) 81.2 35.6 81.5 9.9 0.8 35.9 29.6 19.9 78.9 78.1 62.8 27.1 83.7 27.9 16.8 53.1 45.2 52.0
TextDA [14] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
LSE [30] 82.9 43.1 78.1 9.3 0.6 28.2 9.1 14.4 77.0 83.5 58.1 25.9 71.9 38.0 29.4 31.2 42.6 49.4
BDL [15] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
SIM [34] 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1
FDA [36] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
Ours (ST) 79.4 34.6 83.5 19.3 2.8 35.3 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 48.0 54.6

self-training stage, denoted as UncerDA (AA) and UncerDA
(ST). Specifically, the UncerDA (AA) represents the per-
formance of the proposed target-guided uncertainty rectify-
ing strategy, and UncerDA (ST) illustrates the uncertainty-
aware pseudo label assignment method. Recent works
[1, 11, 15, 32] have revealed that pixel-wise translation from
source to target can enhance performance. We follow this
practice in the final model. The difference is that we treat
translated source images with target style and original con-
tents as target data.

Observing Table 1 and Table 2, we can conclude that: (1)
The proposed method achieves state-of-the-art results with
52.6% and 54.6% mIoU on GTA5/SYNTHIA→Cityscapes,
respectively, which significantly outperforms other meth-
ods. (2) Compared to existing approaches, our method
gains improvement not only on the adversarial adaptation
(AA) stage (i.e., 48.8% vs. 45.5% in Table 1), but also on
the self-training (ST) stage (i.e., 52.6% vs. 50.3% in Ta-
ble 1). It demonstrates the effectiveness of the proposed
target-guided uncertainty rectifying and uncertainty-aware
pseudo labels assignment for matching the distributions of
source and target domains. (3) UncerDA achieves evident
advantage in hard classes, e.g. fence, pole, motor, and bike.
The results revels that our method can handle challenging
small or rare objects thanks to rectifying strategy and reli-
able pseudo labels. We provide visual examples of predic-
tion results in Fig. 5.

5.4. Influence of Different Components

We dissect the contributions of each component to the
overall performance. In Table 3, the first group indicates
the baseline model with adversarial adaptation (AA) and
image translation (IT), increasing the performance from
36.6% to 45.3%. SR represents applying the proposed soft-
balance resampling to the source domain ignoring target un-

Table 3. Ablation study on GTA5→Cityscapes. AA + IT acts as
the baseline model with adversarial adaptation and image trans-
lation techniques; SR indicates the proposed soft-balance resam-
pling strategy on source domain; TGAA is target-guided uncer-
tainty rectifying adversarial adaptation; UPST stands for the pro-
posed uncertainty-aware pseudo labels self-training process.

Method AA IT SR TGAA UPST mIoU

Source Only 36.6
+AA [31] ✓ 42.9
+IT [15] ✓ ✓ 45.3
+SR ✓ ✓ ✓ 46.1
+TGAA ✓ ✓ ✓ ✓ 48.8
+UPST ✓ ✓ ✓ ✓ ✓ 52.6

certainty, which achieves performance to 46.1%. Through
target-guided resampling, the performance of model TGAA
is improved to 48.8%. It verifies that the proposed target-
guided uncertainty rectifying has two advantages: 1) It
surpasses naive resampling techniques thanks to consider-
ing cross-domain information; 2) It is effective to refine
uncertainty-aware prediction for adaptation. Finally, the
self-training of proposed uncertainty-aware pseudo labels
(UPST) provides significant improvement to 52.6%.

5.5. The influence of soft-balance sampling

To testify the effectiveness of the proposed soft-balance
sampling strategy, we compare it to other balance meth-
ods in Table 4. We utilize the conventional multi-level
adaptation framework [31, 20] with no-balance training as
our baseline model, achieving 42.9% mIoU on GTA5 →
Cityscapes task. The class-balance technique boosts the
adaptation performance to 45.7%, with sampling all cate-
gories data equally. It reveals that the balanced training
strategy remedy for domain bias by enhancing the sam-
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Target Image Ground Truth Baseline Ours (AA) Ours (ST)

Figure 5. Visualization of the segmentation results. We perform our results from adversarial adaptation (“AA”) and self-training learning
(“ST”), respectively. The “baseline” model is achieved with adversarial learning and image transfer.

Table 4. The comparison of different sampling methods. Models
are evaluated on GTA5→Cityscapes task.

Methods λ mIoU

No-Balance - 42.9
Class-Balance - 45.7
Focal Loss [17] - 44.5

0.3 44.7
0.5 44.8

Soft-Balance 0.7 45.9
0.9 46.1
1.0 45.7

pling of infrequent categories. Focal loss [17] is used to
eliminate the category imbalance problem by controlling
the gradient contribution from different categories. Com-
pared to the no-balance training, the focal loss can provide
1.6 points improvement (while it is worse than the class-
balance sampling). The proposed soft-balance strategy with
hyper-parameter λ provides an extended range of sampling
probabilities. The λ controls the sampling strategies from
no-balance (λ = 0) to class-balance (λ = 1.0), and we
achieve a peak point at λ = 0.9, with the performance of
46.1% mIoU, outperforming class-balance sampling by 0.4
points.

5.6. The influence of uncertainty rectifying

In this subsection, we further investigate the effective-
ness of the proposed target-guided uncertainty rectifying
technique on different stages. The target-guided sampling
can affect the infrequent categories at each rectifying stage,
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Figure 6. The influence of uncertainty-aware rectifying for se-
lected infrequent categories on different sampling stages.

as shown in Fig 6. From this graph, we can observe that: 1)
The performance of minority classes has a significant im-
provement compared to the baseline model. 2) The target-
guided resampling strategy can provide sufficient training
data and avert the over-fitting problem.

We also present some visualization results of the seg-
mentation prediction probability for infrequent categories
in Fig. 7. For selected categories, the likelihood of the
baseline model (the third row) is low, revealing that these
categories are challenging for alignment and usually lead
to uncertainty predictions. After our rectifying process, the
predictions of these imbalanced categories become confi-
dent (the fourth row) due to sufficient samples to train.

5.7. The influence of uncertainty-aware pseudo la-
bels assignment

We construct comparison experiments based on different
models and strategies to generate pseudo labels to verify the
scalability of the proposed uncertainty-aware pseudo label
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Figure 7. Visualization of category-wise segmentation prediction probability for the selected imbalance classes.

Table 5. The influence of different pseudo labels. The model
named in the “Pseudo Label” column denotes that we deploy the
corresponding model’s pseudo label.

Models Pseudo Label mIoU

AdaptSegNet [31] - 42.4
(a) CBST [41] 47.1
(b) Ours 47.8
MRNet [38] - 45.5
(c) CBST [41] 49.7
(d) Ours 51.2
UncerDA (AA) - 48.8
(e) CBST [41] 51.2
(f) Ours 52.6

assignment. The target model is refined by pseudo labels
following the variance restraint [39]. First, we adopt the
proposed method to AdaptSegNet [31] and MRNet [38] to
generate pseudo labels. As shown in Table 5, the proposed
method improves performance from 42.2% to 47.8% and
from 45.5% to 51.2% with the same trends. Second, we also
compare the other pseudo-label generation method such as
CBST [41]. The results demonstrate that our method is also
superior to CBST on these three different models. Mean-
while, the performance based on our UncerDA (AA) model
is the best with achieving 52.6%, which surpasses Adapt-
SegNet and MRNet with 4.8 and 1.4 points.

5.8. Parameters analysis

In this subsection, we analyze the hyper-parameters in-
troduced in our work. First, to ensure the smooth shape of
sampling probability, we adjust α and µ in Eq. (5) as Fig.
8 (a) shows. We choose α = 80 and µ = 0.02 to increase
probability rapidly near 0 and tend to flat near 1. Second,
for parameter k that indicates top-k uncertainty classes in
the target data, we vary it and plot the performance in Fig.
8 (b) on GTA5/SYNTHIA→Cityscapes. The result shows

(a)

40

42

44

46

48

50

52

54

5 6 7 8 9

GTA5-->Cityscapes

SYNTHIA-->Cityscapes

(b)

Figure 8. (a) shows the parameters selection for α and µ. (b) shows
the parameters selection for k.

that our model is stable to k in the range of 5 to 9.

6. Conclusion

We identify that the challenge of pseudo label genera-
tion in self-supervised domain adaptive semantic segmen-
tation lies in the uncertainty-aware alignment related to the
class-imbalance distribution. The proposed target-guided
uncertainty rectifying method effectively enhances repre-
sentation for minority classes by applying a soft-balance
resampling strategy for classes with high uncertainty in
the target domain. The proposed pseudo label assignment
method reduces label noise by estimating two different dis-
tributions for negative and positive predictions, which can
effectively model the correct and incorrect pseudo labels.
These two strategies provide robust and reliable pseudo la-
bels for training.
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