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Abstract
We describe a simple pre-training approach for point

clouds. It works in three steps: 1. Mask all points occluded
in a camera view; 2. Learn an encoder-decoder model
to reconstruct the occluded points; 3. Use the encoder
weights as initialisation for downstream point cloud tasks.
We find that even when we pre-train on a single dataset
(ModelNet40), this method improves accuracy across dif-
ferent datasets and encoders, on a wide range of down-
stream tasks. Specifically, we show that our method out-
performs previous pre-training methods in object classi-
fication, and both part-based and semantic segmentation
tasks. We study the pre-trained features and find that they
lead to wide downstream minima, have high transforma-
tion invariance, and have activations that are highly cor-
related with part labels. Code and data are available at:
https://github.com/hansen7/OcCo

1. Introduction
There has been a flurry of exciting new point cloud

models for object detection [27, 52, 64] and segmenta-
tion [22, 26, 57, 65]. These methods rely on large scale
point cloud datasets that are labelled. Unfortunately, la-
belling point clouds is challenging for a number of reasons:
(1) Point clouds can be sparse, occluded, and at low resolu-
tions, making the identity of points ambiguous; (2) Datasets
that are not sparse can easily reach hundreds of millions
of points (e.g., small dense point clouds for object clas-
sification [63] and large vast point clouds for reconstruc-
tion [66]); (3) Labelling individual points or drawing 3D
bounding boxes are both more time-consuming and error-
prone than labelling 2D images [50]. These challenges have
impeded the deployment of point cloud models into new
real world settings where labelled data is scarce.

However, current 3D sensing modalities (i.e., 3D scan-
ners, stereo cameras, lidars) have enabled the creation of
large unlabelled repositories of point cloud data [13, 41].
This has inspired a recent line of work on unsupervised pre-
training methods to learn point cloud model initialisation.
Initial work used latent generative models such as genera-
tive adversarial networks (GANs) [1, 14, 54] and autoen-
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Figure 1: The relative improvement over random ini-
tialisation of multiple pre-training methods: Jigsaw [42],
cTree [44], and OcCo (ours) for various downstream tasks.

coders [15, 29, 59]. These have been recently outperformed
by self-supervised objectives [42, 56, 2, 44, 20, 61].

Inspired by this recent line of work, we propose Oc-
clusion Completion (OcCo), an unsupervised pre-training
method that consists of: (a) a mechanism to generate
masked point clouds via view-point occlusions, and (b) a
completion task to reconstruct the occluded point cloud.
The idea of occlusion+completion is grounded in three ob-
servations: (1) A pre-trained model that is accurate at com-
pleting occluded point clouds needs to understand spatial
and semantic properties of these point clouds. (2) 3D scene
completion [45, 9, 19] has been shown to be a useful aux-
iliary task for learning representations for visual localisa-
tion [43]. (3) Mask-based completion tasks have become
the de facto standard for learning pre-trained representa-
tions in natural language processing [11, 32, 36] and are
widely used in pre-training for images [35] and graphs [24].

We demonstrate that pre-training on a single object-level
dataset (ModelNet40) can improve the performance of a
range of downstream tasks, even on completely different
datasets. Specifically we find that OcCo has the follow-
ing properties compared to other initialisation techniques:
1) Improved sample efficiency in few-shot learning experi-
ments; 2) Improved generalisation in object classification,
object part segmentation, and semantic segmentation; 3)
Wider local minima found after fine-tuning; 4) More seman-
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Figure 2: Overview of OcCo. 1. Take any point cloud dataset and generate occluded objects for each input by (a) randomly
sampling a camera view-point, and (b) removing points hidden from that view-point (for all experiments we use the same
occluded dataset generated from ModelNet40); 2. Train an encoder-decoder model to complete the occluded point clouds (the
encoder can be any model that learns representations of point clouds, the decoder can be any completion model); 3. Use the
learned encoder weights as initialisation for any downstream task (e.g., few-shot learning, object classification, part/semantic
segmentation). We show that OcCo outperforms a variety of pre-training methods across multiple models and tasks.

tically meaningful representations as described via network
dissection [4, 5]; 5) Better clustering quality under jittering,
translation, and rotation transformations.

2. Related Work
Unsupervised pre-training is gaining popularity due to its

success in many problem settings, such as natural language
understanding [11, 32], object detection [8, 16], graph
learning [23, 24], and visual localisation [43]. Currently,
the two most common unsupervised pre-training methods
for point clouds are based on (i) generative modelling, and
(ii) self-supervised learning. Work in generative modelling
includes models based on generative adversarial networks
(GANs) [54, 1, 14], autoencoders [15, 29, 59], normalizing
flows [58], and approximate convex decomposition [12].

However, generative models for unsupervised pre-
training on point clouds have recently been outperformed by
self-supervised approaches [42, 44, 56]. These approaches
work by learning to predict key geometric properties of
point clouds that are invariant across datasets. Specifically,
[42] propose a pre-training procedure based on rearrang-
ing permuted point clouds. It works by splitting a point
cloud into k3 voxels, randomly permuting the voxels, and
then training a model to predict the original voxel location
of each point. The idea is that the pre-trained model im-
plicitly learns about the geometric structure of point clouds
by learning this rearrangement. However, there are two
key issues with this objective: 1. The voxel representation
is not permutation invariant. Thus, the model could learn
very different representations if point clouds are rotated or

translated; 2. Point clouds generated from real objects and
scenes will have very different structure from randomly per-
muted clouds, so it is unclear why pre-trained weights that
are accurate at rearrangement will be good initialisation for
object classification or segmentation models. Another work
[44] uses cover trees [6] to hierarchically partition points for
few-shot learning. They then train a model to classify each
point to their assigned partitions. However, because cover
trees are designed for fast nearest neighbour search, they
may arbitrarily partition semantically-contiguous regions of
point clouds (e.g., airplane wings, car tires) into different re-
gions of the hierarchy, and so ignore key point cloud geome-
try. A third work, PointContrast [56], uses contrastive learn-
ing to pre-train weights for point clouds of scenes. Their
method uses known point-wise correspondences between
different views of a complete 3D scene. These point-wise
correspondences require post-processing the data by regis-
tering different depth maps into a single 3D scene. Thus,
their method can only be applied to static scenes that have
been registered, limiting the applicability of the approach:
we leave a comparison between OcCo and PointContrast to
future work. In what follows we will show that unsuper-
vised pre-training based on a simple self-supervised objec-
tive: completing occluded point clouds, produces weights
that outperform [42] and [44] on downstream tasks.

Completing 3D shapes to learn model initialisations is
not new, [43] used scene completion [45, 9, 19] as a pre-
training task to initialise 3D voxel descriptors for visual lo-
calisation. To do so, they generated partial voxelised scenes
based on depth images and trained a variational autoencoder
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for completion. Differently, our focus is to describe a tech-
nique to learn an initialisation for point cloud models. Our
aim is for this pre-trained initialisation to improve a vari-
ety of downstream tasks including few-shot learning, object
classification, and segmentation, on a variety of datasets.

3. Occlusion Completion
The overall idea of our approach is shown in Figure 2.

Our observation is that by occluding point clouds based
on different view-points then learning a model to complete
them, the weights of the completion model can be used as
initialisation for downstream tasks (e.g., classification, seg-
mentation). This approach not only improves accuracy in
few-shot learning settings but also the final generalisation
accuracy in fully-supervised tasks.

Throughout we define point clouds P as sets of points
in 3D Euclidean space, P = {p1, p2, ..., pn}, where each
point pi is a vector of both coordinates (xi, yi, zi) and other
features (e.g. colour and normal). We begin by describing
the components that make up our occlusion mapping o(·).
Then we detail how to learn a completion model c(·), giving
pseudo-code and the architectural details in the appendix.

3.1. Generating Occlusions

We define a randomised occlusion mapping o : P → P
(where P is the space of all point clouds) from a full point
cloud P to an occluded point cloud P̃ . This mapping con-
structs P̃ by removing points from P that cannot be seen
from a particular view-point. This is accomplished in three
steps: (1) A projection of the complete point cloud (in a
world reference frame) into the coordinates of a camera ref-
erence frame (which specifies the view-point); (2) Identifi-
cation of the points that are occluded in the camera view-
point; (3) A projection of the points back from the camera
reference frame to the world reference frame.

Viewing the point cloud from a camera. A camera de-
fines a projection from a 3D world reference frame into a
distinctive 3D camera reference frame. It does so by speci-
fying a camera model and a camera view-point from which
the projection occurs. While any camera model can be used,
for illustration consider the simplest camera model: the pin-
hole camera. View-point projection for the pinhole camera
is given by a simple linear equation:xcam

ycam
zcam

=
f γ w/2
0 f h/2
0 0 1


︸ ︷︷ ︸

intrinsic
[ K ]

 r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3


︸ ︷︷ ︸

rotation | translation
[ R | t ]


x
y
z
1

 (1)

In the above, (x, y, z) are the original point cloud coordi-
nates (in a world reference), the camera viewpoint is de-

scribed by the concatenation of a rotation matrix (r entries)
with a translation vector (t entries) describing the camera
view-point, and the final matrix is the camera intrinsics (f
specifies the camera focal length, γ is the skewness between
the x and y axes in the camera, and w, h are the width and
height of the camera image). Given these, the final coordi-
nates (xcam, ycam, zcam) are the positions of the point in the
camera reference frame. We will refer to the intrinsic matrix
as K and the rotation/translation matrix as [R|t].

Determining occluded points. We can think of the point
(xcam, ycam, zcam) in multiple ways: (a) a 3D point in the
camera reference frame; (b) a 2D pixel with coordinates
(fxcam/zcam, fycam/zcam) with a depth of zcam. In this way,
some 2D points resulting from the projection may be oc-
cluded by others if they have the same pixel coordinates,
but appear at a farther depth. To determine which points are
occluded, we first use Delaunay triangulation to reconstruct
a polygon mesh, then we remove the points which belong to
the hidden surfaces that are determined via z-buffering [47].

Mapping back from camera frame to world frame.
Once occluded points are removed, we re-project the point
cloud to the original world reference frame, via the inverse
transformation of eq. (1). Thus, the randomised occlusion
mapping o(·) is constructed as follows. Fix an initial point
cloud P . Given a camera intrinsics matrix K, sample rota-
tion/translation matrices [[R1|t1], . . . , [RV |tV ]], where V
is the number of views. For each view v ∈ [V ], project P
into the camera frame of that view-point using eq. (1), find
occluded points and remove them, then map all other points
back to the world reference using its inverse. This yields the
final occluded point cloud P̃v for each view-point v ∈ [V ].

3.2. The Completion Task

Given an occluded point cloud P̃ produced by o(·), the
goal of the completion task is to learn a completion map-
ping c : P → P from P̃ to a completed point cloud
P̂ . A completion mapping is accurate w.r.t. loss `(·, ·) if
EP̃∼o(P)`(c(P̃),P) → 0. The structure of the comple-
tion model c(·) is an “encoder-decoder” network [10, 48,
51, 60]. The encoder maps an occluded point cloud to a
vector, and the decoder completes the point cloud. After
pre-training, the encoder weights can be used as initialisa-
tion for downstream tasks. In the appendix we give pseu-
docode for OcCo. We describe details of the completion
model architecture in the following section.

4. Experiments

In this section, we present the setup of pre-training (Sec-
tion 4.1) and downstream fine-tuning (Section 4.2). Then,
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the results of few-shot learning, object classification, part
and semantic segmentation are shown in Section 4.3.

4.1. OcCo Pre-Training Setup

Dataset. For all experiments, we use ModelNet40 [55] as
the pre-training dataset. ModelNet40 includes 12,311 syn-
thesised CAD objects from 40 categories, and the dataset
is divided into 9,843/2,468 objects for training and testing,
respectively. We construct a pre-training dataset using the
training set. Occluded point clouds are generated with cam-
era intrinsic parameters {f=1000, γ=0, ω=1600, h=1200}.
For each point cloud, we randomly select 10 viewpoints,
where the yaw, pitch and roll angles are uniformly chosen
between 0 and 2π, and the translation is set as zero.

Architecture. As described above, our pre-training com-
pletion model c(·) is an encoder-decoder model. To show-
case that our pre-training method is agnostic to architec-
tures, we choose three different encoders, including Point-
Net [37], PCN [60] and DGCNN [53]. These encoders map
an occluded point cloud into a 1024-dimensional vector. We
adapt the folding-based decoder from [60] to complete an
occluded point cloud in two steps. The decoder first out-
puts a coarse shape consisting of 1024 points, P̂coarse, then
warps a 4×4 2D grid around each point in P̂coarse to recon-
struct a fine shape, P̂fine, which consists of 16384 points.
We use the Chamfer Distance (CD) as a closeness measure
between prediction P̂ and ground-truth P:

CD(P̂,P) =
1

|P̂|

∑
x̂∈P̂

min
x∈P
||x̂− x||2 +

1

|P|
∑
x∈P

min
x̂∈P̂
||x− x̂||2.

(2)

The loss of the completion model is a weighted sum of the
Chamfer distances on the coarse and fine shapes:

` := CD(P̂coarse,Pcoarse) + αCD(P̂fine,Pfine). (3)

Hyperparameters. We use the Adam [25] optimiser with
no weight decay (L2 regularisation). The learning rate is
set to 1e-4 initially and is decayed by 0.7 every 10 epochs.
We pre-train the models for 50 epochs. The batch size is
32, and the momentum of batch normalisation is 0.9. The
coefficient α in eq. (3) is set as 0.01 for the first 10000 train-
ing iterations, then increased to 0.1, 0.5 and 1.0 after 10000,
20000 and 50000 training steps, respectively.

4.2. Fine-Tuning Setup

Few-shot learning. Few-shot learning (FSL) aims to train
accurate models with very limited data. A typical setting
of FSL is “K-way N -shot”. During training, K classes

Table 1: Statistics of classification datasets

Name Type # Class # Training/Testing

ModelNet synthesised 40 9,843 / 2,468
ScanNet real scanned 10 6,110 / 1,769
ScanObjectNN real scanned 15 2,304 / 576

are randomly selected, and each category contains N sam-
ples. The trained models are then evaluated on the ob-
jects from the test split. We compare OcCo with Jig-
saw [42], and cTree [44] since it outperforms previous un-
supervised methods [1, 54, 62, 59] as well as supervised
variants [38, 30, 37, 53]. We follow the same setting as
cTree, where we pre-train the models in a “K-way N -shot”
configuration on ModelNet40, before evaluating on Model-
Net40 and ScanObjectNN.

Object classification. Given an object represented by a
set of points, object classification predicts the class that
the object belongs to. We use three benchmarks: Model-
Net40 [55], ScanNet10 [39] and ScanObjectNN [49], the
dataset statistics are summarised in Table 1. The latter two
are more challenging since they consist of occluded objects
from the real-world indoor scans. We use the same settings
as [37, 53] for fine-tuning. Specifically, for PCN and Point-
Net, we use the Adam optimizer with an initial learning rate
of 1e-3, and the learning rate is decayed by 0.7 every 20
epochs with the minimum value 1e-5. For DGCNN, we
use the SGD optimizer with momentum 0.9 and weight de-
cay 1e-4. The learning rate starts from 0.1 and then decays
using cosine annealing [31] with the minimum value 1e-3.
We use dropout [46] in the fully connected layers before
the softmax output layer. The dropout rate is set to 0.7 for
PointNet and PCN and is set to 0.5 for DGCNN. For all
three models, we train them for 200 epochs with batch size
32. We report the test results based on three runs in Table 3.

Part segmentation. Part segmentation is a challenging
fine-grained 3D recognition task. The mission is to pre-
dict the part category label (e.g., chair leg, cup handle) of
each point for a given object. To evaluate the effectiveness
of OcCo pre-training, we use ShapeNetPart [3] benchmark,
which contains 16,881 objects from 16 categories and has
50 parts in total. Each object is represented by 2048 points.
For PCN and PointNet, we use the Adam optimizer with an
initial learning rate of 1e-3, and the learning rate is decayed
by 0.5 every 20 epochs with the minimum value 1e-5. For
DGCNN, we use an SGD optimizer with momentum 0.9
and weight decay 1e-4. The learning rate starts from 0.1
and then decays using cosine annealing [31] with the mini-
mum value 1e-3. We train the models for 250 epochs with
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Table 2: Few-shot learning results. We report mean and
standard error over 10 runs and bold the best results.

Baseline 5-way 10-way
10-shot 20-shot 10-shot 20-shot

ModelNet40
PointNet, Rand 52.0±3.8 57.8±4.9 46.6±4.3 35.2±4.8
PointNet, Jigsaw 66.5±2.5 69.2±2.4 56.9±2.5 66.5±1.4
PointNet, cTree 63.2±3.4 68.9±3.0 49.2±1.9 50.1±1.6
PointNet, OcCo 89.7±1.9 92.4±1.6 83.9±1.8 89.7±1.5
DGCNN, Rand 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
DGCNN, Jigsaw 34.3±1.3 42.2±3.5 26.0±2.4 29.9±2.6
DGCNN, cTree 60.0±2.8 65.7±2.6 48.5±1.8 53.0±1.3
DGCNN, OcCo 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2

ScanObjectNN
PointNet, Rand 57.6±2.5 61.4±2.4 41.3±1.3 43.8±1.9
PointNet, Jigsaw 58.6±1.9 67.6±2.1 53.6±1.7 48.1±1.9
PointNet, cTree 59.6±2.3 61.4±1.4 53.0±1.9 50.9±2.1
PointNet, OcCo 70.4±3.3 72.2±3.0 54.8±1.3 61.8±1.2
DGCNN, Rand 62.0±5.6 67.8±5.1 37.8±4.3 41.8±2.4
DGCNN, Jigsaw 65.2±3.8 72.2±2.7 45.6±3.1 48.2±2.8
DGCNN, cTree 68.4±3.4 71.6±2.9 42.4±2.7 43.0±3.0
DGCNN, OcCo 72.4±1.4 77.2±1.4 57.0±1.3 61.6±1.2

batch size 16. We use the same post-processing during test-
ing as [37] and report the results over three runs in Table 4.

Semantic segmentation. Semantic segmentation predicts
the semantic object category of each point under an in-
door/outdoor scene. We use S3DIS benchmark [3] for in-
door scene segmentation and SensatUrban benchmark [21]
for outdoor scene segmentation. S3DIS contains 3D scans
collected via Matterport scanners in 6 different places, en-
compassing 271 rooms and 13 semantic classes. While
SensatUrban consists of over three billion annotated points,
covering large areas in a total of 7.6 km2 from three UK
cities (Birmingham, Cambridge, and York). Each point
in SensatUrban is labelled as one of 13 semantic classes.
We use the same pre-processing, post-processing and train-
ing settings as [37, 53]. Each point is described by a 9-
dimensional vector (coordinates, RGBs and normalised lo-
cation). We train all the models for 100 epochs with batch
size 24. We report the results based on three runs in Table 5.

4.3. Fine-Tuning Results

Few-shot learning. We report the experimental results on
few-shot learning in Table 2. We colour the best results with
blue for each encoder and bold the overall best score for
each dataset. We use the same colouring scheme in all sub-
sequent results. We find that OcCo outperforms both few-

shot baselines Jigsaw [42] and cTree [44] in-domain (Mod-
elNet40) and cross-domain (ScanObjectNN). We believe
this is due to the fact that the occlusions OcCo generates
will be due to the geometric structure of the object, whereas
the voxel permutations of [42] and the cover tree partition-
ing of [44] may destroy aspects of this structure.

Object classification. Table 3 compares OcCo with ran-
dom and Jigsaw [42] initialisation on object classification.1

We show that OcCo-initialised models outperform these
baselines on all datasets. OcCo performs well not only on
the in-domain dataset (ModelNet), but also on cross-domain
datasets (ScanNet and ScanObjectNN). The improvements
are consistent across the three encoders. In the following
section we will provide one explanation: the local minima
found after fine-tuning an OcCo-based initialisation appear
to be wider than those found using other initialisations.

Object part segmentation. Table 4 compares OcCo-
initialisation with random and Jigsaw [42] initialisation on
object part segmentation. We observe that OcCo-initialised
models outperform the others in terms of overall accuracy
and mean class IoU. These results are consistent across var-
ious encoders. We further analyse why OcCo helps the en-
coders better recognise the object parts with feature visual-
isation and concept detection in Section 5.

Semantic segmentation. We compare random, Jigsaw
and OcCo initialisation on both indoor and outdoor seman-
tic segmentation tasks. For S3DIS, we evaluate the trained
models using 6-fold cross-validation following [3], and re-
port the scores in Table 5. It is clear that OcCo-initialised
models outperform random and Jigsaw-initialised ones. For
SensatUrban, we report the scores in Table 6. We observe
that OcCo outperforms random initialisation and Jigsaw ini-
tialisation for semantic categories that are included in the
pre-training dataset, such as cars. For classes that are not in-
cluded in ModelNet40, OcCo is competitive with the other
methods. This makes sense as the geometries of these ob-
jects are likely not well understood by the learned initialisa-
tions. Ultimately, we find it encouraging that OcCo which
learns representations at the object-level can still improve
generalisation on segmentation on outdoor scenes.

5. Analysis
In this section, we first show that OcCo pre-training leads

to a fine-tuned model that converges to a local minimum
that is flatter than other initialisations. Then we evaluate
the learned representations from OcCo with feature visuali-
sation, semantic concept detection and unsupervised mutual

1Note we intentionally did not compare with cTree [44] as it is specifi-
cally designed for few-shot learning.
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Table 3: Overal accuracy on 3D object classification benchmarks. We reported the mean and standard error over three runs.

Dataset PointNet PCN DGCNN
Random Jigsaw OcCo Random Jigsaw OcCo Random Jigsaw OcCo

ModelNet 89.2±0.1 89.6±0.1 90.1±0.1 89.3±0.1 89.6±0.2 90.3±0.2 92.5±0.4 92.3±0.3 93.0±0.2
ScanNet 76.9±0.2 77.2±0.2 78.0±0.2 77.0±0.3 77.9±0.3 78.2±0.3 76.1±0.7 77.8±0.5 78.5±0.3
ScanObjectNN 73.5±0.5 76.5±0.4 80.0±0.2 78.3±0.3 78.2±0.1 80.4±0.2 82.4±0.4 82.7±0.8 83.9±0.4

Table 4: Overall accuracy and intersection of union (mIoU) on ShapeNetPart. We reported the mean and ste over three runs.

PointNet PCN DGCNN
Random Jigsaw OcCo Random Jigsaw OcCo Random Jigsaw OcCo

OA (%) 92.8±0.9 93.1±0.5 93.4±0.7 92.3±1.0 92.6±0.9 93.0±0.9 92.2±0.9 92.7±0.9 94.4±0.7
mIoU (%) 82.2±2.4 82.2±2.8 83.4±1.9 81.3±2.6 81.2±2.9 82.3±2.4 84.4±1.2 84.3±1.2 85.0±1.0

Table 5: Overall accuracy (OA) and mean intersection of union (mIoU) on the S3DIS across six folds over three runs.

PointNet PCN DGCNN
Rand Jigsaw OcCo Rand Jigsaw OcCo Rand Jigsaw OcCo

OA (%) 78.2±0.7 80.1±1.2 82.0±1.0 82.9±0.9 83.7±0.7 85.1±0.5 83.7±0.7 84.1±0.7 84.6±0.5
mIoU (%) 47.0±1.4 52.6±1.9 54.9±1.0 51.1±2.4 52.2±1.9 53.4±2.1 54.9±2.1 55.6±1.4 58.0±1.7

Table 6: Overall point accuracy (OA), mean class accuracy (mAcc) and mean class intersection of union (mIoU) on Sensat-
Urban. We reported the mean and standard error over three runs. We use the same preprocess procedures as PointNet.
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DGCNN 87.54 60.27 51.96 83.12 95.43 89.58 31.84 35.49 45.11 38.57 45.66 32.97 64.88 30.48 0.00 82.34
DGCNN-Jigsaw 88.65 60.80 53.01 83.95 95.92 89.85 30.05 43.59 46.40 35.28 49.60 31.46 69.41 34.38 0.00 80.55
DGCNN-OcCo 88.67 61.35 53.31 83.64 95.75 89.96 29.22 41.47 46.89 40.64 49.72 33.57 70.11 32.35 0.00 79.74

information. The analysis demonstrates that OcCo can learn
rich and discriminative point cloud features.

Visualisation of optimisation landscape. We follow the
same procedure of [28] to visualise the loss landscapes of
random, Jigsaw and OcCo initialised PointNet in Figure 4.
All three models are fine-tuned on ScanObjectNN with the
training settings described in Section 4.2. For visualisation,
we use two random vectors, δ and η, to perturb the fine-
tuned parameters θ∗ and obtain corresponding loss values.
The 2D plot f(α, β) is defined as:

f(α, β) = L (θ∗ + αδ + βη) (4)

where each filter in δ and η is normalised w.r.t the corre-
sponding filter in θ∗. α and β have the same ranges of
[−1, 1]. We observe that the model with OcCo pre-training
can converge to a flatter local minimum, which is known to
have better generalisation [7, 18].

Visualisation of learned features. We use feature visu-
alisation to explore what a pre-trained model has learned
about point cloud objects before fine-tuning. In Figure 3,
we visualise the features/embeddings of the objects from
the test split of ModelNet40. We colour the points accord-
ing to their channel activations. The larger the activation
value is, the darker the colour will be. We observe that
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Figure 3: Visualisation on the learned features by OcCo-PointNet.

Table 7: Adjusted mutual information (AMI) under transformations. We report the mean and standard error over 10 random
initialisation. Under the ‘transformation’ column, ‘J’, ‘T’, ‘R’ represent jittering, translation and rotation, respectively.

Transformation ShapeNet10 ScanObjectNN
J T R VFH M2DP Jigsaw OcCo VFH M2DP Jigsaw OcCo

0.12±0.01 0.22±0.03 0.33±0.04 0.51±0.03 0.05±0.02 0.18±0.02 0.29±0.02 0.44±0.03
X 0.12±0.02 0.19±0.02 0.32±0.02 0.45±0.02 0.06±0.02 0.17±0.02 0.27±0.02 0.42±0.04
X X 0.13±0.03 0.21±0.02 0.29±0.07 0.38±0.04 0.04±0.02 0.18±0.03 0.24±0.04 0.39±0.06
X X X 0.07±0.03 0.20±0.04 0.28±0.03 0.35±0.05 0.04±0.01 0.16±0.03 0.18±0.09 0.34±0.06

 
               
 
 
 
 
 
 

             Random                         Jigsaw                             OcCo 

Figure 4: Loss landscape visualisation.

the pre-trained encoder can learn low-level geometric prim-
itives, e.g., planes, cylinders and cones, in the early stage.
While it later recognises more complex shapes like wings,
leaves and upper bodies. We further use t-SNE to visualise
the object embeddings on ShapeNet10. We notice that dis-
tinguishable clusters are formed after pre-training. Thus, it
seems that OcCo can learn features that are useful to distin-
guish different parts of an object or a scene. These features
will be beneficial to downstream tasks, e.g., object classifi-
cation and scene segmentation.

Unsupervised mutual information probe. We hypothe-
sise that a pre-trained model without fine-tuning can learn
label information in an unsupervised fashion, i.e., zero-
shot learning on cross-domain datasets. To validate, we
utilise OcCo-PointNet to extract global features for objects

from ShapeNet10 and ScanObjectNN. Then, we cluster
the extracted embeddings with an unsupervised clustering
method, K-means (where K is set to the number of object
categories). To evaluate the clustering quality, we calcu-
late the adjusted mutual information (AMI) [33] between
the generated and the ground-truth clusters. AMI reaches 1
if two clusters are identical, while it has an expected value
of 0 for a random categorical cluster assignment. Besides,
we also study whether the OcCo-PointNet is robust to input
transformations. In particular, we consider three transfor-
mations, including rotation, translation and jittering. We
apply these transformations to an input point cloud before
using PointNet for feature/embedding extraction.

We compare OcCo with Jigsaw and two hand-crafted
point cloud global descriptors: viewpoint feature histogram
(VFH) [40] and M2DP [17] in Table 7. We observe that pre-
training methods, e.g., Jigsaw and OcCo , can learn more
discriminative feature representations than hand-crafted de-
scriptors, while the representations learned from OcCo pre-
trained encoder are more predictive than Jigsaw based
method. These results demonstrate that OcCo is effective
for unsupervised feature learning.

Detection of semantic concepts. We adapt network dis-
section [4, 5] to study whether OcCo pre-trained models can
learn semantic concepts in an unsupervised fashion without
fine-tuning. Specifically, for each object, we first create an
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Figure 5: Number of detected object parts in the ‘Feat1’ (above), ‘Feat2’ (middle) and ‘Feat3’ (below) module of Jigsaw and
OcCo-initialised PointNet feature encoder. Digits in the brackets are the number of parts under that object category.

 
 

41st Unit in Feat1, Part: 12, mIoU = 0.606  

 
             1018th Unit in Feat3, Part: 44, mIoU = 0. 619 

 
 
 
 
 
 

             63rd Unit in Feat2, Part: 17, mIoU = 0. 584  
 

Figure 6: Visualisation of detected concepts. Parts marked
by blue and green are the binary masks based on the feature
activations (Mk) and the ground truth labels (Cn).

activation mask Mk based on the feature map from the k-
th channel in the network. We assign the i-th entry of Mk

as 1 if the activation of the i-th point in that feature map
is among the top 20%, otherwise the i-th entry is assigned
to 0. The concept mask Cn marks the points as 1 if they
belong to the n-th semantic concept (e.g., chair legs) in the

ground truth annotations. Given a set of point clouds DP ,
we calculate the mean intersection of union (mIoU) scores
based on these binary masks:

mIoU(k,n) = EP∼DP

[
|Mk(P) ∩ Cn(P)|
|Mk(P) ∪ Cn(P)|

]
(5)

where | · | is the set cardinality. mIoU(k,n) can be inter-
preted as how well channel k detects the concept n. In
Figure 5, we plot the number of detected concepts (i.e.,
mIoU(k,n) > 0.5). We conclude that OcCo outperforms
Jigsaw in terms of the total number of detected concepts.
We visualise some masks from OcCo-PointNet in Figure 6.
We observe that OcCo pre-training can capture rich concept
information. These results demonstrate that pre-training
with OcCo can unsupervisedly learn semantic concepts.

6. Discussion
In this work, we have demonstrated that Occlusion Com-

pletion (OcCo) can learn representations for point clouds
that are accurate in few-shot learning, in object classifica-
tion, and in part and semantic segmentation tasks, as com-
pared to prior work. We performed multiple analyses to ex-
plain why this occurs, including a visualisation of the loss
landscape, visualisation of learned features, tests of trans-
formation invariance, and quantifying how well the initiali-
sations can learn semantic concepts. In the future, it would
be interesting to design a completion model that is explicitly
aware of the occlusion procedure. This model would may
converge even quicker and require fewer parameters, as this
could act as a stronger inductive bias during learning.
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