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Abstract

Most existing convolution neural network (CNN) based
super-resolution (SR) methods generate their paired train-
ing dataset by artificially synthesizing low-resolution (LR)
images from the high-resolution (HR) ones. However, this
dataset preparation strategy harms the application of these
CNNs in real-world scenarios due to the inherent domain
gap between the training and testing data. A popular at-
tempts towards the challenge is unpaired generative ad-
versarial networks, which generate “real” LR counterparts
from real HR images using image-to-image translation and
then perform super-resolution from “real” LR→SR. De-
spite great progress, it is still difficult to synthesize perfect
“real” LR images for super-resolution. In this paper, we
firstly consider the real-world SR problem from the tradi-
tional domain adaptation perspective. We propose a novel
unpaired SR training framework based on feature distri-
bution alignment, with which we can obtain degradation-
indistinguishable feature maps and then map them to HR
images. In order to generate better SR images for target
LR domain, we introduce several regularization losses to
force the aligned feature to locate around the target domain.
Our experiments indicate that our SR network obtains the
state-of-the-art performance over both blind and unpaired
SR methods on diverse datasets.

1. Introduction
Single image super-resolution (SISR), aiming to increase

the resolution of an image from a single low-resolution
(LR) counterpart, has attracted a lot of attentions in com-
puter vision community. In recent years, convolution neu-
ral networks (CNNs) have been applied to SISR task[6]
and achieved the state-of-the-art performance[5] over tradi-
tional arts. In order to construct training image pairs, some
SR studies leverage determined operations such as bicubic
interpolation, to down-sample the original high-resolution
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(HR) images. Obviously, such predefined techniques limit
the model generalization capability as several blur and noise
of unknown types exist in real LR images. As a result, the
notorious domain gap, between the training LR images and
the real-world testing images, harms the inference perfor-
mance of these well-trained CNNs in real-world scenarios.

Blind SR is a straightforward attempt to process real LR
images, which aims to restore HR images from LR counter-
parts with unknown degradation parameters. For example,
[1, 10, 20] considered arbitrary blur kernels during the train-
ing process. Although these blind models have achieved
satisfactory performance for a large range of predefined
degradations, the performance still will drop drastically in
real-world scenerios, as the distribution of real LR images
is different from those degraded by manually designed op-
erations anyway. Recently, inspired by the success of gen-
erative adversarial network (GAN) [9] in image style trans-
lation [48], many studies use CycleGAN[48] framework to
train SR networks in an unpaired manner. They usually sup-
pose that only two unpaired datasets are available: a real
LR dataset with no predefined degradations and a real HR
one. The main idea is directly generating real LR counter-
parts from real HR images using image-to-image transla-
tion. Then a SR network is trained to map the degraded LR
outputs to the corresponding HR images in a paired man-
ner. Although these methods have shown their advantages
in real-world SR by directly simulating the real LR image
distribution, it is still difficult to train an ideal degraded LR
image generator to perfectly mimic real images and real-
world SR remains a challenging problem so far.

In contrast to existing SISR efforts generating plausible
“real” LR by image-to-image transferring, in this paper we
reconsider the unpaired real-world SR from a feature-level
domain adaptation perspective. Specifically, the source do-
main includes the real HR dataset and its synthetic LR
counterparts while the real LR dataset is regarded as the
target domain inputs without labels. As opposed to high-
level vision tasks which try to learn a domain-invariant
image representation, our goal is to obtain degradation-
indistinguishable feature maps and then map these feature
maps to HR images.
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Inspired by several adversarial-based domain adaptation
approaches in learning domain-invariant features[8, 26, 31],
we propose a novel framework for unpaired SR training
based on feature alignment, shown as in Figure 1 (a). Such
feature alignment technique could hopefully make the fea-
tures from source and target LR images indistinguishable,
so that we can obtain the target HR images during the infer-
ence stage by using the decoder network trained with only
source HR supervision. However, different from high-level
domain adaptation where the aligned image representations
are of low resolution, the shared feature space in SR task
is extremely large due to relatively fewer down-sampling in
CNNs. Therefore as described in Figure 1 (b), we also in-
troduce extra constraints to further help align features and
preserve more details compared to the traditional domain
adaptation task. The whole domain adaptation based frame-
work for unpaired SR training is illustrated in Figure 2.

To our best knowledge, this is the first work formulating
unpaired SR training as a feature-level domain adaptation
problem and our main contributions are summarized as be-
low:

• We propose a novel unpaired SR training framework
based on feature distribution alignment.

• We introduce several losses to not only align feature
space better but also preserve image details for the
downstream SR task.

• Extensive experiments on three challenging datasets
show that our proposed method has advantages over
the existing unpaired SR training solutions.

2. Related Work
Domain Adaptation. Domain adaptation is a branch

of transfer learning where source domain labels are avail-
able but target domain labels are not. A popular practice
for domain adaptation is to match the feature distributions
between domains in order to obtain domain-invariant image
representations. Long et al. used DAN in [16] to minimize
max mean discrepancies (MMD) over the domain-specific
layers. Ganin et al. [8] used a domain classifier with a gradi-
ent reversal layer to encourage the feature extractor to learn
domain-invariant features. From then on, methods learn-
ing domain-invariant representations in adversarial manner
flourished. For example, [26] presented a MADA approach,
which captured multi-mode structures to better align differ-
ent data distributions. Nowadays, domain adaptation ap-
proaches have been widely used in high-level tasks, e.g,
[4, 24, 34, 36].

Non-blind SISR. Works in non-blind SR field assume
the degradation from HR to LR is known, and in most
cases it is bicubic interpolation. The pioneer method was

Figure 1. Schematic diagram of two key components in our
framework. (a) guides the encoder E to learn degradation-
indistinguishable feature maps using a feature domain discrimi-
nator Df . (b) makes the encoder preserve more information from
target LR domain by forcing decoder Gt to restore target degra-
dation with source and target contents, i.e. xs→t and xt→t re-
spectively. Both parts are further restricted by HR reconstruc-
tion losses, shown in Figure 2, in order to exact super-resolution-
helpful features.

SRCNN[6] and most following approaches [5, 12, 13, 29,
30, 44, 45] focus on proposing powerful network blocks
to take better use of internal and external information. For
example, [45] proposed a residual dense block to improve
the expressive ability of the model. There are also works
considering visual quality directly[15, 37, 43]. For exam-
ple, [15] proposed SRGAN which used feature loss[11] and
GAN loss to generate visually pleasing results.

Blind SISR. This field often assumes the blur ker-
nels used in down-sampling are unavailable. Thus, many
methods[1, 10, 20, 23, 47] choose to estimate the unknown
kernel first and then perform a standard SISR with esti-
mated kernel prior. For example, [1] learned the blur ker-
nel distribution using a KernelGAN. IKC[10] proposed a
correction network, which was trained with estimation net-
work iteratively. More recently, [20] trained several esti-
mation and SR network pairs in an end-to-end manner. Al-
though the estimated kernel improved performance of blind
SR, most existing methods could not handle degradation ex-
cept blurring well. There are also works like ZSSR[27] and
its variants[25, 28], which trained SR with self-similarity.
However, these image-specific models required extra train-
ing stage for each LR image, which were highly cost in ap-
plication.

Unpaired SISR Methods in this category address
SR training under unsupervised setting where no HR-
LR pairs are provided. Inspired by CycleGAN[48] and
DualGAN[39], Yuan et al. [40] combined two CycleGANs
and built a CinCGAN to handle unsupervised SR training.
[46] designed a bi-cycle degradation network and used bi-
cycle consistency to train both high-to-low GAN and low-
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Figure 2. The whole data-flow of our proposed framework. E means three copies of a same encoder and Gt, GSR represent two different
decoders. xt and xs are input LR images from target and source domain respectively, and ft, fs are corresponding feature maps. As the
arrows in different colors imply, xt→t is an image restored from feature ft which has the same contents and degradation with xt. xs→t is
generated from feature fs with contents of xs but degradation of xt. Then xs→t is fed into encoder E to extract feature f̃s. Finally, the
super-resolved images ys→t→s and ys→s is generated from feature maps f̃s and fs respectively. Please refer to Figure 1 for the design
principles of each component and Figure 5 for visual inspection

to-high SR networks. [3] and [17] proposed using GANs to
simulate degradation process first and then trained SR net-
works in supervised manner with the generated real degra-
dation pairs. In contrast, [21] used two networks during
inference: one produced pseudo-clean LR images from LR
images with real degradation and the other was trained as
SR network pair-wisely with “pseudo-supervision”. All the
mention methods translate a fake LR/HR image to a pseudo
real one in order to obtain image-level supervision for SR
network training, which are quite different from our pro-
posed domain adaptation based framework which applies
feature-level domain alignment and regularization.

3. Proposed Method
According to the assumption widely used in unsuper-

vised SR training, we have unpaired real LR and real HR
datasets, but no degradation prior. Let S denote the source
domain including a real HR dataset with samples named as
ys. Similarly, let T denote the target domain consisting of
a real LR dataset with samples xt and no available ground
truth. In order to conduct domain adaptation training, we
still need source LR images xs. Fortunately, this require-
ment is easily satisfied because generating source LR im-
ages xs from source HR images ys by synthesis is cheap
and convenient. Given the conditions above, the proposed
domain adaptation based unpaired SR training framework,
shown in Figure 2, is introduced in this section.

3.1. Feature Distribution Alignment

Shown as in Figure 1 (a), feature alignment between
source and target domain is the first key part of the proposed
framework. In this part, we define an encoder-decoder ar-

chitecture that inputs LR images x and outputs the recon-
structed HR images, i.e. SR results. The encoderE includes
several convolution layers and we denote its parameters as
θE , i.e. f = E(x; θE). Then the feature f is mapped by a
decoder GSR to the reconstructed HR images, and we de-
note the parameters of GSR as θGSR

. Finally, we define a
discriminator Df with the parameters θDf .

Feature alignment loss. During the training stage, we
want to obtain a degradation-indistinguishable feature f .
To achieve this, we need the two distributions: S(f) =
{E(x; θE)|x ∼ S(x)} and T (f) = {E(x; θE)|x ∼ T (x)}
to be similar. A straightforward way is to adopt a GAN
structure to reduce the distribution shift of these two feature
distributions. In detail, we use two copies of an encoder
network E to generate the source feature maps fs as well
as the target feature maps ft. Then the discriminator Df

is trained to distinguish the domain for each feature map,
while encoder E is trained to fool Df . The optimization of
E and Df is achieved via the adversarial way. Since in SR
task, feature maps fs and ft are not representation vectors
but 3D tensors, we use LSGAN[22] here:

min
θE
Lalign(E) = Ext∼T (x)

[
(Df (E(xt))− 0.5)2

]
+ Exs∼S(x)

[
(Df (E(xs))− 0.5)2

] (1)

min
θDf

Lalign(Df ) = Ext∼T (x)

[
(Df (E(xt))− 0)2

]
+ Exs∼S(x)

[
(Df (E(xs))− 1)2

] (2)

SR reconstruction loss. At the same time, we also aim
to reconstruct the HR images in the source domain. There-
fore we feed the aligned source feature maps fs into the
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decoder network GSR and obtain the reconstructed result
ys→s by ys→s = GSR(fs; θGSR

). Thus, the encoder E and
decoderGSR can be optimized in a supervised way by min-
imizing the MAE and widely used perception loss shown
as Eq.(3). Here, Lfea measures the feature difference based
on VGG network[11] andLadv is adversarial loss calculated
with LSGAN[22].

Lrec(E,GSR) = ‖ys − ys→s‖1 + αLfea(ys, ys→s) + βLadv(ys, ys→s)
(3)

In this way, the encoder closes the gap between the
source and target feature domains and the decoder can map
the features in the shared feature space to vivid super-
resolved images. As a result, during the inference stage,
we can obtain the reconstructed HR images in the target do-
main by feeding the aligned target feature maps ft into the
decoder GSR.

3.2. Feature Domain Regularization

In the previous subsection, we picture a skeleton about
using domain adaptation to conduct unpaired SR training.
However, it is not enough to just align the feature maps in
low-level vision tasks, such as SR. We need to analyze the
specialty of SR task further.

Intuitively, in high-level domain adaptation, encoder can
just discard some textures not related to classification in
order to obtain domain-invariant image representation. In
contrast, SR network could not discard textural information
but needs to recover high-frequency details. Moreover, the
3D tensor feature space in SR is too large to guarantee good
aligning performance. Therefore, we need extra regulariza-
tions for the aligned feature space. Considering our final
objective is to restore HR images in target domain, we want
the encoder E to preserve more information from target LR
images. Inspired by the success of CycleGAN[48] in trans-
ferring domain on image level, we adopt a similar strategy
in feature domain to make the shared feature space closer
to target feature domain. To achieve this, we need another
decoder Gt with parameters denoted as θGt .

Target LR restoration loss. Shown as the black flow
in Figure 1 (b), starting from the shared feature space, we
feed the target feature maps ft into the decoder Gt to re-
store target LR input itself, i.e. xt→t = Gt(ft; θGt

). This
loss works in two aspects: 1) It forces the encoder E to
keep target domain information as much as possible when
extracting features. Therefore, it regularizes the shared fea-
ture space closer to target domain. 2) It requires the decoder
Gt to preserve image contents while generating target do-
main images. This term is guaranteed by a pixel-wise loss
Lres.

Lres(E,Gt) = ‖xt − xt→t‖1 (4)

Target degradation style loss. At the mean time, we

also force the decoder Gt to generate source LR input with
target domain degradation, xs→t = Gt(fs; θGt

). In the
other word, we want xs→t to have the contents of xs but
the degradation of xt. We achieve this by re-using the en-
coder E, as shown in Figure 1 (b) the red data-flow. Firstly,
as most of CycleGAN based methods do, we adopt another
discriminator Dt with parameters θDt and an adversarial
loss to guarantee xt and xs→t have the similar distribution:

min
θE ,θGt

Lsty(E,Gt) = Efs∼S(f)
[
(Dt(Gt(fs))− 1)2

]
(5)

min
θDt

Lsty(Dt) = Efs∼S(f)
[
(Dt(Gt(fs))− 0)2

]
+ Ext∼T (x)

[
(Dt(xt)− 1)2

] (6)

Feature identity loss. Then we need an identity loss to
keep the content of xs→t unchanged. Different from most
CycleGAN based methods do, we here apply identity loss
on feature level. Specifically, we feed xs→t into the encoder
E and obtain its feature maps f̃s = E(xs→t; θE). Noting
that xs has source contents and source degradation, while
xs→t has source contents and target degradation. Both of
them are mapped by the same encoder E into a shared fea-
ture space which is degradation-indistinguishable. There-
fore ideally, the feature maps fs and f̃s should be same.
The identity loss should be in form of pixel-wise:

Lidt(E,Gt) =
∥∥∥fs − f̃s∥∥∥

1
(7)

Cycle loss. Finally, as shown in Figure 2, we re-use the
decoder GSR to further guarantee the shared feature space
contains useful information for reconstructing HR images.
It is similar to the cycle loss in CycleGAN framework while
it also could be viewed as a feature-level data augmentation
in our framework. In detail, we feed f̃s into the decoder
GSR to obtain another super-resolved result ys→t→s. The
loss functions applied on ys→t→s is exactly same with those
applied on ys→s, i.e. both VGG networks and discriminator
are shared.

Lcyc(E,Gt, GSR) = ‖ys − ys→t→s‖1 + αLfea(ys, ys→t→s) + βLadv(ys, ys→t→s)

(8)
Full objective. With the aforementioned regularization

losses, we make the encoder E more concentrated on ex-
tracting and expressing the similarities of patches from tar-
get domain with useful information for HR reconstruction.
As a result, the encoder E and decoder Gt, GSR are trained
with the following objective function, Eq.(9), in an end-to-
end manner. The discriminator Df and Dt as well as the
discriminators in Eq.(3) and Eq.(8) are trained with their
corresponding loss in an alternate way.

Ltrain = λalignLalign(E) + λrecLrec(E,GSR)
+ λresLres(E,Gt) + λstyLsty(E,Gt)
+ λidtLidt(E,Gt) + λcycLcyc(E,Gt, GSR)

(9)
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AIM 2019 NTIRE 2020
Method LPIPS↓ PSNR↑ SSIM↑ Method LPIPS↓ PSNR↑ SSIM↑
†Bicubic 0.673 22.36 0.614 †Bicubic 0.632 25.52 0.671
†MadDeamon(Winner) 0.403 21.00 0.504 †Impressionism(Winner) 0.227 24.83 0.672
ZSSR[27] 0.639 22.21 0.603 ZSSR[27] 0.620 24.93 0.642
KernelGAN[1]+ZSSR[27] 0.613 22.40 0.611 KernelGAN[1]+ZSSR[27] 0.598 25.34 0.661
DnCNN[41]+K.[1]+Z.[27] 0.607 22.40 0.614 DnCNN[41]+K.[1]+Z.[27] 0.438 25.84 0.722
DnCNN[41]+IKC[10] 0.614 22.26 0.596 DnCNN[41]+IKC[10] 0.384 26.50 0.748
*Maeda et al. [21] 0.454 22.88 0.661 SRResCGAN[35] 0.335 25.05 0.676
DASR[38] 0.346 21.79 0.577
Ours 0.340 22.60 0.622 Ours 0.252 25.40 0.707

Table 1. Quantitative comparison with state-of-the-art blind/unsupervised methods on unpaired dataset. † means the results are taken from
the official website1. * means the results are taken from Maeda et al. [21]. Please note LPIPS is the most important metric here while PSNR
and SSIM are provided for reference. Although improving visual quality, the combinations of blind restoration methods are clearly inferior
to unsupervised methods in real-world SR setting. Then among all the unpaired SR methods, our proposed one wins the top performance
on both datasets.

where λrec, λalign, λres, λsty, λidt, λcyc are loss weights,
representing the contributions of each objective.

4. Experiments
4.1. Training Details

Different from previous unsupervised methods (such as
CinCGAN[40], DASR[38]) that require two training stages,
our framework is optimized through a single training step
in an end-to-end mode. For both generators and discrimina-
tors, we use Adam optimizer[14] with β1 = 0.9, β2 = 0.99,
and an initial learning of 1 × 10−4. The learning rates is
halved at 250k, 350k, 450k, and 550k iterations. In each
iteration, we train the whole framework with a mini-batch
size of 8 and the patch size of the LR image is 128 × 128.
Then, data augmentation of random flip and rotation is per-
formed during training. For simplicity, we divide the hyper-
parameters in Eq.(9) into two groups according to their
functions. One group (λrec, λres, λcyc) controls image re-
construction and the other (λalign, λsty, λidt) controls do-
main alignment. We simply set the weights in the same
group to be the same and then adjust the ratio between two
groups. The coefficients in Eq.(3) and Eq.(8) is fixed as
α = 0.01, β = 0.01 according to previous works[7]. More
details can be found in the released codes.

4.2. Experiments on Unpaired Dataset

Dataset We mainly experiment on two unpaired SR
datasets. Both are official datasets provided in AIM
2019[19] (Track 2) and NTIRE 2020[18] (Track 1) Real-
World Super-Resolution Challenge respectively. Since the
generation and partition of the two datasets are similar, here
only gives a brief introduction for NTIRE2020 dataset as an

1https://competitions.codalab.org/competitions/
22220#learn_the_details

example. More details please refer to their paper, [19] and
[18], respectively. As said in [18], Lugmayr et al. design
a degradation operator generating structured artifacts which
were commonly produced by image processing deployed
on very low-end devices. Since this type of degradation
is undisclosed and very different from what has previously
been used, the degraded images could be regarded as real
LR at least experimentally. Typically in this dataset, train-
ing images are divided into two subsets. One includes 2,650
Flickr2K[37] images with the aforementioned degradation
but no down-sampling. The other has 800 clean HR images
from DIV2K dataset[32]. For validation and test, DIV2K
images within corresponding splits are first down-sampled
and then degraded.

Settings To generate source LR images, we add down-
sampling, gaussian noise and gaussian blur to clean HR im-
ages. We train our networks using the provided unpaired
training datas and the synthesized source LR images. we
evaluate SR performances on the validation set which con-
tains 100 images. Moreover, the loss weights are set as:
λrec = 1, λres = 1, λcyc = 1, λalign = 0.01, λsty =
0.01, λidt = 0.01.

Comparison with state-of-the-art blind methods.
Since there is not a popular benchmark for unsupervised
SR, we make a simple one by collecting public results
and running state-of-the-art blind/unsupervised SR testing
codes provided by the authors on AIM 2019 and NTIRE
2020 competition datasets. It also includes some combi-
nations of state-of-the-art restoration and blind SR meth-
ods. The results are reported in Table 1. Since in real-
world SR setting perception is the main objective and con-
tradictory to distortion[2], LPIPS[42] is the most important
metric in Table 1 while PSNR and SSIM are provided for
reference. Firstly, among methods consisting of cascade
restorations, ‘DnCNN[41] + KernelGAN[1] + ZSSR[27]’
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Figure 3. Visual inspection for state-of-the-art methods. The first row is image “0821” from AIM 2019 validation set and the others are
image “0830” and “0890” respectively from NTIRE 2020 (Track 1) validation set. As can be seen, among the results without artifacts, ours
is the sharpest, and those baselines having sharp results as ours generate obvious artifacts.

obtains the best LPIPS performance on AIM 2019 and the
second place on NTIRE 2020 dataset while ‘DnCNN[41]
+ IKC[10]’ is the best on NTIRE 2020. Although improv-
ing visual quality, these combinations are clearly inferior to
unsupervised methods in real-world SR setting. Among all
the unsupervised methods on AIM 2019 dataset, ours wins
the best LPIPS performance and the most pleasant visual
quality, shown in Figure 3. On NITRE 2020 dataset, our
methods outperform all the published baselines. Compared
to the winner method, ours achieves similar performance in
visual quality, but better PSNR and SSIM. Figure 3 show
some examples for visual inspection.

Visual inspection on NTIRE 2020 Track2 dataset.

Figure 4 also gives some visual comparisons on NTIRE
2020 Track 2 dataset whose settings are exactly real-world
scenarios. The training and testing images for this track are
both captured by smartphone, containing artifacts generated
from image enhancement operations deployed on smart-
phone. The goal is to reconstruct clean HR images with the
reference of unpaired high quality images. The visual qual-
ity is the only measurement. As seen from the figure, our
method could generate high-frequency details with the least
artifacts. This result shows that our model can suppress the
artifacts better than existing unpaired SR methods.
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Figure 4. Visual inspection for NTIRE20 (Track 2) dataset. Patches of image “00022” and “00040” are shown here. As we can see, our SR
network could generate HR details at the mean time reduce artifacts.

Username PSNR↑ SSIM↑
ZSSR[27] 22.17 0.472
KernelGAN[1]+ZSSR[27] 22.27 0.475
DnCNN[41]+K.[1]+Z.[27] 22.52 0.489
DnCNN[41]+IKC[10] 21.56 0.433
*Maeda et al. [21] 21.32 0.554

Ours 23.39 0.537
Table 2. Quantitative comparison with state-of-the-art blind meth-
ods on paired dataset. * means the results are taken from Maeda
et al. [21]. As can be seen from this table, our proposed method
outperforms all the blind restoration combinations as well as the
state-of-the-art unpaired SR method in term of PSNR.

4.3. Additional Experiments on Paired Dataset

Dataset. We conduct some additional experiments on
the synthetic paired dataset, DIV2K realistic-wild dataset.
This set is the Track 4 dataset of the NTIRE 2018 Super-
Resolution Challenge[33]. Specifically, it simulates ‘real-
wild’ LR image via 4 times downs-sampling, motion blur-
ring, pixel shifting and additive noise. The degradation op-
erations are image-specific which means the degradation
is same within a single image, but different from one to
one. Timofte et al. totally generate 3,200 LR and 800 HR
training samples by degrading each DIV2K training image
four times. Following [21], we train our model with “un-
paired/unaligned” sampling. Again, we evaluate SR perfor-
mances on the realistic-wild validation set since the ground
truths of the testing images are unavailable. Because this
competition evaluates all methods from the perspective of
PSNR/SSIM, we do not use visual quality loss of Eq.(3) and
Eq.(8). Here, we use hyperparameters λrec = 10, λres =
10, λcyc = 10, λalign = 1, λsty = 1, λidt = 1.

Comparison with state-of-the-art blind methods.
Since there is not a widely used benchmark for blind SR on
multiple degradations problem, we combine different blind
SR methods with blind restoration as baselines like [21].
We report Maeda et al.’s results in Table 2 as well. As
seen in the table, our SR network improves the PSNR per-
formance significantly and achieves second best SSIM with
small gap between the first one.

4.4. Ablation Study

All the ablation studies conducted in this section are on
dataset of NTIRE 2020[18] (Track 1).

Intermediate products. Firstly, we visualize some in-
termediate product examples to provide an intuitive verifi-
cation that our pipeline works as expectation. As shown
in Figure 5, the source domain LR image xs has different
degradation from the target domain LR image xt. Then
our decoder Gt decodes features in the shared space to
xs→t and xt→t which consist of different contents but same
degradation as target domain. This result shows our pro-
posed losses indeed force the encoder E to preserve more
information from target LR images.

Objective functions. Then we conduct the ablation ex-
periments to investigate the contributions of each proposed
component. Therefore, we design some variants of our pro-
posed network. (1) Base model. This model only includes
an encoder E and decoder GSR. In the training stage, we
train this model in the paired manner using source domain
data and the loss is just Lrec. Then we perform inference
on test LR images which have same degradation as target
domain. (2) Feature align model. we add discriminator
Df and feature alignment loss Lalign to the Base model.
This variant represents the vanilla domain adaptation frame-
work which is exactly Figure 1 (a). (3) Full model without
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Method LPIPS↓ PSNR↑ SSIM↑
(1) Base model 0.436 25.65 0.666
(2) only Lalign 0.448 25.20 0.653
(3) Full model w/o Lalign 0.373 25.53 0.663
(4) Full model 0.296 25.14 0.690

Table 3. Ablation study for objective functions on NTIRE 2020
dataset. The improvement between the variant (4) and (3) demon-
strates the effectiveness of our feature distribution alignment.
Comparing variant (2) and (3) shows the importance of our fea-
ture domain regularization.

Figure 5. Intermediate images of proposed method. xs is the bicu-
bic down-sampled result of image “0803” from the DIV2K vali-
dation ground-truth set, and xt is image “0890” from the NTIRE
2020 competition validation set.

Lalign. This model can be seen as a CycleGAN like frame-
work with extra two identity constrains: target LR restora-
tion loss Lres and feature identity loss Lidt. (4) Full model.
All networks and losses proposed in Section 3 are used in
this model. The performance of each variant is shown in
Table 3. Firstly, the Base model does not performance well
because of the domain gap between training and testing LR
data. Secondly, the variant (2) demonstrates it is difficult
to do feature alignment in a shared feature space as large
as 3D tensors. Thirdly, comparing the variant (2) and the
variant (4) shows our feature domain regularization could
shrink the shared space to the target domain. Finally, the
improvement between the variant (3) and (4) highlights the
effectiveness of our feature distribution alignment.

Source LR synthesis. Would the synthesis of source
LR images affect the performance? Here are experiments
giving the answer. In this part, we synthesize LR images
in two way: (1) One is simple bicubic down-sampling; (2)
The other is complex degradation as described in Section
4.2. We train aforementioned ‘Base model’ (denoted as
base model) and ‘Full model’ (denoted as ours) in Figure
6 on these two kinds of source LR images. Specifically,
we use hyperparameters λrec = 10, λres = 10, λcyc =

Figure 6. LPIPS performance of the proposed method and base
model. (a) source LR images are generated by bicubic down-
sampling. (b) extra random blur and noise are added to the source
LR images.

10, λalign = 1, λsty = 1, λidt = 1 for simple bicubic
data since the domain gap in two settings are quit different.
We report their performances in Figure 6. Firstly, we can
find the ‘Base model’ trained on the complex degradation
pairs performs better than the one trained on simple bicubic
down-sampled pairs. This result means the second source
LR domain is closer to the target one. Secondly, compared
the ‘Base model’ and ‘Full model’ on both degradation, we
can see our proposed framework improves the SR perfor-
mance by aligning feature maps between domains, no mat-
ter how source LR images are synthesized. Thirdly, please
pay attention to the improvement on two kinds of source LR
images. The proposed method gains larger improvement in
the case where the gap between source and target domain
are larger. That’s to say, our methods would be more useful
in real-world applications where it is impossible to simulate
LR degradation manually. All these results confirm the ef-
fectiveness of our proposed method in learning degradation-
indistinguishable but super-resolution-helpful features.

5. Conclusion

In this paper, we formulate unpaired SR training as a do-
main adaptation problem. By using our proposed feature
distribution alignment loss and feature domain regulariza-
tion losses, the encoder of our SR network could map LR
images from different domains into a shared degradation-
indistinguishable feature space which is relatively closer
to target feature domain. Then trained with two SR re-
construction losses, the decoder of our SR network could
reconstruct vivid HR images from features in that shared
feature space. Extensive experiments on diverse datasets
demonstrate the effectiveness of our proposed framework.
Although free from artifacts, our method tends to produce
smoother results. We will address this problem in our future
work.
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