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Abstract

Learning temporally consistent foreground opacity
from videos, i.e., video matting, has drawn great attention
due to the blossoming of video conferencing. Previous
approaches are built on top of image matting models, which
fail in maintaining the temporal coherence when being
adapted to videos. They either utilize the optical flow to
smooth frame-wise prediction, where the performance is
dependent on the selected optical flow model; or naively
combine feature maps from multiple frames, which does
not model well the correspondence of pixels in adjacent
frames. In this paper, we propose to enhance the temporal
coherence by Consistency-Regularized Graph Neural
Networks (CRGNN) with the aid of a synthesized video
matting dataset. CRGNN utilizes Graph Neural Networks
(GNN) to relate adjacent frames such that pixels or
regions that are incorrectly predicted in one frame can be
corrected by leveraging information from its neighboring
frames. To generalize our model from synthesized videos to
real-world videos, we propose a consistency regularization
technique to enforce the consistency on the alpha and
foreground when blending them with different backgrounds.
To evaluate the efficacy of CRGNN, we further collect a
real-world dataset with annotated alpha mattes. Compared
with state-of-the-art methods that require hand-crafted
trimaps or backgrounds for modeling training, CRGNN
generates favorably results with the help of unlabeled real
training dataset. The source code and datasets are avail-
able at https://github.com/TiantianWang/VideoMatting-
CRGNN.git.

1. Introduction

Video matting aims to estimate the foreground opacity
(alpha matte) of each video frame. It has drawn much at-
tention recently due to the blossoming of video conferenc-
ing. Typically, the predicted alpha matte can be utilized to
create new composites for video editing. Unlike the binary
segmentation task, matting produces soft masks that better
represent object boundaries or transparent material. Simply
segmenting the foreground regions does not synthesize re-

Figure 1: Matting results of different models. The first
row shows the image and ground truth. The second row
represents the predictions of a video matting method [34]
(Left) and our method (Right). The third row shows the
blended image generated by the foreground and predicted
alpha. Clearly, our method can predict more subtle details
on the hairs.

alistic image or video composition results due to the neglect
of the transition zone. To obtain accurate video matting, we
need to guarantee that: (i) alpha mattes extracted on indi-
vidual frames should accurately represent the object to be
extracted, i.e., the spatial accuracy, and (ii) extracted mattes
should not result in noticeable temporal jitter, i.e., the tem-
poral coherence. Compared to spatial accuracy, temporal
coherence is often more important in video matting as the
human visualization system is more sensitive to temporal
inconsistency when watching a video [42].

However, due to the lack of a large-scale video matting
dataset, previous methods usually build video matting sys-
tems on top of image matting models. For instance, one
naive way is to directly apply an image matting approach
frame by frame. However, this will cause inconsistent alpha
prediction across frames. To improve the temporal coher-
ence of alpha mattes, the previous methods usually utilize
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the optical flow [25, 39, 27, 35] to smooth frame-wise pre-
diction, or leverage a stack of nearby video frames to exploit
motion cues [34]. These methods still lead to several issues.
First, warping information from the reference frame to the
query frame relies on the quality of optical flow being used.
Normally, a faster solution of optical flow produces inac-
curate propagation, while a more accurate one is usually
time-consuming. Furthermore, merely combining multiple
frames in the feature level ignores the interactions between
frames, and does not model the motion flow of pixels in
time.

In this paper, we focus on the two challenges for video
matting. First, how to produce temporally coherent alpha
predictions with the existing image matting dataset [48]?
Second, how to mitigate the domain gap when transfer-
ring the model trained on the composited dataset to the real
videos? We propose the Consistency-Regularized Graph
Neural Networks (CRGNN) to address these two chal-
lenges. We first design a graph neural network, in space and
time, with the aid of a composited video matting dataset to
enhance the temporal coherence. Second, a consistency reg-
ularization technique is proposed to generalize our model
pretrained on the composited dataset to the real one.

In particular, we construct a fully-connected graph neu-
ral network to enhance temporal coherence by exploiting
the interactive relation between different frames. In this
graph, the nodes denote video frames and edges link a pair
of neighboring frames which are represented by the pair-
wise relation. With the graph structure, we encourage in-
formation to be propagated across frames, in order to com-
plement the information for the missing pixels in the cur-
rent frame and smooth the predictions over time. As shown
in Figure 1, the proposed method can generate more de-
tailed structures compared to the video-based method [34]
that does not exploit the interaction between frames, which
demonstrates the advantages of the graph neural network for
recovering missing pixels assisted by neighboring frames.
As another important contribution to assist the above train-
ing process, we also propose a new composited video mat-
ting dataset in which alphas are manually annotated against
the green screen videos.

To address the second challenge, we need to adapt our
model – supervised trained on the composited dataset,
to real videos. As such, we introduce a consistency-
regularized adversarial learning scheme. On the one hand,
we enforce a consistency loss: we blend the prediction of
the alpha and the foreground with a random new back-
ground, forwarding this new image to have a new version
of alpha/foreground pairs, and encouraging them to be con-
sistent. On the other hand, we introduce a discriminator to
better differentiate the composited frames and real ones in
an adversarial manner. To verify the efficacy of the pro-
posed method, we evaluate our method on a new real-world

dataset in which the alpha mattes are carefully extracted
from the background.

Compared to the existing methods which either utilize
trimaps or backgrounds as the input for modeling train-
ing, our background-free method achieves better perfor-
mance against the state-of-the-arts on the composited and
real datasets with the help of unlabeled real training dataset.

Our contributions can be summarized in three aspects:
• We propose a graph neural network to fully exploit the

interactive relationship between multiple video frames
to enhance the temporal coherence with the assist of a
composited video matting dataset.

• We present a consistency regularization technique to
adapt the model trained on the composited video
frames to the real ones, which can enhance the con-
sistency on the alpha and foreground.

• We propose two large-scale composited datasets and
one manually annotated real dataset for the future de-
velopment of this area. Extensive experiments are con-
ducted on the proposed datasets, showing that the pro-
posed method performs favorably against the state-of-
the-arts.

2. Related Work
In this section, we review methods closely related to this

work including image matting, video matting, and graph
neural networks.
Image matting. Early image matting methods can
be roughly categorized into color sampling-based tech-
niques [12, 18, 19, 21, 4, 36] and alpha propagation-based
approaches [1, 10, 20, 26, 37]. Recently, methods based on
the convolutional neural networks have achieved state-of-
the-art results in the image matting task [14, 11, 11, 48, 16,
46, 15, 8, 38, 49, 7, 28, 22]. For example, Xu et al. [48]
propose to learn the alpha matte from the input image and
trimap based on the alpha and composited image losses. In-
dexed pooling and upsampling operation are introduced by
Lu et al. [28] to recover boundary details.
Video matting. Different from image matting, video mat-
ting [2, 6, 39, 27, 25, 30, 34] aims to estimate temporally-
coherent alpha mattes. Existing methods usually utilize
propagation modules to maintain the coherence among dif-
ferent frames. For instance, Lee et al. [2] first generate
trimaps on some key frames in an interactive manner, and
then propagate the trimaps to all other frames. Schahrian et
al. [35] take each video frame and trimap as the input, and
use the matting Laplacian to refine the sampled background
and foreground regions. Soumyadip et. al. [34] propose a
trimap-free method that utilizes an additional background
image and segmentation map as the input and utilizes the
image matting dataset for network pretraining.
Graph neural networks. Graph Neural Networks (GNN)
are proposed to handle graph-structured data with deep
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Figure 2: Overview of the proposed method. Given video frames and (pseudo) trimaps, the proposed model first predicts the
foreground color and alpha mattes via the GNN by leveraging the frame-wise interaction. Then the predicted foregrounds
and alphas are blended with new backgrounds to generate new images, which are forwarded into the same GNN to generate
new foregrounds and alphas. The consistency regularization and discriminator are proposed to generalize the model trained
on the labeled composited videos to the unlabeled real videos.

learning, which has been applied to fields such as detec-
tion [32], segmentation [43, 29] and classification [41].
The previous GNN based video object segmentation
method [43] utilizes the GNN to mine the inter-frame re-
lationship over graphs to predict the segmentation map for
each frame. Though the motivation using the GNN to
exploit the inter-frame relationship is similar, our method
shows significant differences compared to [43]. First, we
exploit the inter-frame relationship by utilizing the locally-
connected information in contrast with the non-local struc-
ture in [43], which can generate more clear boundaries than
the non-local structure. Second, we enhance the graph neu-
ral network by introducing the consistency-regularization
and adversarial learning, which can help the network trained
on the composited dataset be adapted better to the real
dataset.

3. Proposed Algorithm
Video matting is the task that given a video V = {Ii}Vi=1

of V frames, the goal is to decompose each frame Ii ∈ V
as:

Ii = Ai ∗ Fi + (1−Ai) ∗Bi, (1)

where Ai, Fi and Bi are the alpha matte, foreground color
and background color, respectively. The symbol ∗ means
the Hadamard product. Video matting is a challenging task
because it entails obtaining high-quality details of each in-
dividual frame while maintaining favorable temporal con-
sistency across frames.

We tackle this task by collecting a large-scale compos-
ited dataset (introduced in the next section) and proposing a
novel model which utilizes graph neural networks to asso-
ciate pixels in space and time. As a result, the learned model
is supposed to produce video matting results with temporal
coherence enhanced. To generalize our GNN based model
from composited videos to real videos where the back-
grounds are arbitrary and no real ground truths are available

for model training, we propose a novel consistency regular-
ization approach which enforces the consistency of the ex-
tracted foregrounds and alpha mattes under different back-
grounds. The learned model is thus capable of addressing
the variety and complexity of backgrounds in real videos.
Moreover, we adopt adversarial training to further mitigate
the domain gap between composited and real videos. The
framework can be found in Figure 2.

3.1. Composited Video Matting

Given a video V = {Ii}Vi=1 with ground truth labels
Yi = (Ai, Fi, Bi) for each frame Ii, we generate a trimap
Ti from Ai which provides coarse information of the fore-
ground, background and unknown regions, following exist-
ing image matting methods [48, 28]. An encoder network
E takes as input Ii and Ti, producing a latent representation
xi ∈ RH×W×C as

xi = E([Ii ⊕ Ti]), (2)

where ⊕ denotes the concatenation operator. H , W and C
represent the height, width and channel of the feature map,
respectively. We propose to use the GNN to model the tem-
poral consistency among frames. The core idea is to exploit
the inter-frame relationship by performing feature aggrega-
tions so that vertex features can be updated by aggregating
features of the associated nodes weighted by the connectiv-
ity (edge).

We define a graph with K vertices at the t-step, Gt =
(Vt, Et), where the vertices Vt = {xti}Ki=1 represent the
latent feature for the i-th frame in the graph and the edges
Et = {{eti,j}Ki=1}Kj=1 denote the relationship between two
vertices,

et
i,j = ft(x

t
i,x

t
j), (3)

where ft(·) denotes the aggregation function at the t-th step.
Feature aggregation. Here we adopt the deformable align-
ment [40, 44], which utilizes the deformable convolution
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Figure 3: Deformable alignment-based feature aggregation.

to implement the feature aggregation. Different from the
standard 2D offsets to the regular grid sampling locations,
deformable convolution enables free form deformation of
the sampling grid, which is implemented on an irregular
grid augmented with data-conditioned offsets. Given two
feature embeddings xi and xj , the offsets on the regular
convolution kernels (such as 3× 3) are calculated by

Θt = fθ(x
t
i,x

t
j), (4)

where Θt = {4pn | n = 1, . . . , |R|} repre-
sents the offsets of the convolution kernels. R =
{(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} denotes the regular
grid of a convolutional kernel.

With the predicted Θt and the feature embedding xtj , the
aligned feature map mt

j for each position p0 can be formu-
lated by the following operation:

mt
j(p0) =

∑
pn∈R

w(pn)xtj(p0 + pn +4pn). (5)

Since the offset 4pn is typically fractional, the operation
above is implemented using bilinear interpolation, similar
to [13]. This yields an offset map that has the same spatial
resolution as the input feature map. The learned offset can
capture motion cues and also explore neighboring features
to maintain the temporal coherence among the whole video.

Then the aggregated feature for the i-th frame is calcu-
lated by:

gtj = fa(mt
j ⊕ xti), (6)

where ⊕ denotes the concatenation operation and fa means
the convolutional operation. Figure 3 illustrates the feature
aggregation process.
Node-state updating. Each vertex aggregates information
from its neighboring vertices to update its original repre-
sentation. In the t-th passing step, we model the node-state
updating process using the ConvGRU [3, 43] as

gti = fg(fc(g
t
0 ⊕ · · ·gti−1 ⊕ gti+1 · · · ⊕ gtK),xti), (7)

where fc is a convolution operator for dimensional reduc-
tion. fg(·, ·) stands for the Gated Recurrent Unit (GRU).

The feature aggregation and node-state updating procedures
will be executed alternatively up to T times. Other models
such as ConvLSTM can also be used for the node-state up-
dating. Here we use ConvGRU because its has fewer pa-
rameters and can be trained more efficiently.
Network prediction. After T message passing iterations,
all K node representations are updated. Then the updated
representations are used to predict the alpha matte and fore-
ground using the decoders Da and Df as

Âi = Da(gTi ), F̂i = Df (gTi ). (8)

The input frame is reconstructed by

Îi = Âi ∗ Fi + (1− Âi) ∗Bi. (9)

We train our model by minimizing the sum of the prediction
errors of the alpha matte, foreground and input frame as

Lgt = Lα + LFG + LFrm, (10)

where Lα = 1
K

∑K
i=1 ‖Âi −Ai‖2F, LFG = 1

K

∑K
i=1 ‖F̂i −

Fi‖2F, and LFrm = 1
K

∑K
i=1 ‖Îi − Ii‖2F.

3.2. Real Video Matting

The proposed GNN based model trained on the compos-
ited video dataset can help improve the temporal coherence
compared to the model pretrained on the image matting
dataset [48]. However, it may still fail when applied to real
videos due to the domain gap. To avoid this, we propose a
novel regularization approach that enforces consistency on
the alpha and foreground, when blending them with differ-
ent backgrounds. Besides, we adopt an adversarial training
scheme to further mitigate the domain gap between com-
posited videos and real ones.

Specifically, let V = {Ii}Vi=1 be a video drawn from the
composited set and R = {Ui}Ui=1 be a video drawn from
the real set. V is labeled butR is not.
Consistency regularization. The proposed consistency
regularization does not require labels so that it can be iden-
tically applied on our model when utilizing both V and R
as the input except the way of producing the trimap, which
is another input for our GNN based model. For each frame
Ii ∈ V , we directly generate the trimap Ti using the ground
truth alpha matte, following the previous image matting
methods [48, 28]. For R, since the ground truth alpha mat-
tes are not available for training, the pseudo trimap is gener-
ated by the segmentation map based on the DeepLabv3 [9].

Taking V as an example, our GNN model utilizes Ii and
Ti as the input and generates the alpha matte Âi and fore-
ground F̂i. Then, F̂i is composited with a random new
background B by the alpha Âi to generate a new frame,
Îi = Âi ∗ F̂i + (1 − Âi) ∗ B. The composited frame Îi is
fed into the GNN model again and generates a new alpha
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(a) Examples from the composited dataset (b) Examples from the real dataset

Figure 4: Video matting dataset. (a) The first two rows show the composited video frames with the same foreground objects.
The foregrounds are first generated from the videos with simple background and then composited with two different back-
grounds. (b) The first row shows the original real video frames and the second row indicates the objects are blended with a
new background using the annotated foreground and alpha. The third row in (a) and (b) represents the annotated alpha.

matte Āi and foreground prediction F̄i. F̂i and F̄i should
be consistent with each other, as they represent the same
object against different backgrounds. The same goes for
Âi and Āi. Besides, a new frame can be composited by
Īi = Āi ∗ F̄i + (1 − Āi) ∗ B, and Īi should also be con-
sistent with Îi. Thus, we define the consistency regularizer
as

Lccon = Lcon−α + Lcon−FG + Lcon−Frm, (11)

where Lcon−α = 1
K

∑K
i=1 ‖Âi − Āi‖2F, Lcon−FG =

1
K

∑K
i=1 ‖F̂i−F̄i‖2F, and Lcon−Frm = 1

K

∑K
i=1 ‖Îi− Īi‖2F.

Similarly, we can get the consistency regularizer Lrcon when
the network utilizes the real frame as the input.

With the consistency regularization losses Lccon and
Lrcon, we can reach our learning objective as

Ladapt = Lccon + Lrcon + Lgt + L′gt, (12)

where Lgt is calculated by Eq. (10) using (Âi, F̂i) and the
ground truth label (Ai, Fi). L′gt is calculated by Eq. (10) as
well, but using (Āi, F̄i) and (Ai, Fi).
Adversarial learning. Adversarial learning has been
widely used for addressing the domain adaptation problem.
Here, we introduce adversarial learning to further mitigate
the domain gap. Motivated by [5], we augment the data by
translating the foreground objects with an arbitrary small
shift δ ∼ µ([−σ, σ] × [−σ, σ]), where the σ defines the
range of the local shift. We can synthesize a composited
image as

Ûi = Âui [p+ δ] ∗ F̂ui [p+ δ] + (1− Âui [p+ δ]) ∗B. (13)

where Âui and F̂ui are predicted from real frame Ui. Âui [p]
indexes the image pixel at the specified localization and p
indicates the coordinates. By compositing the alpha and
foreground predictions of real frames with random back-
grounds, we can obtain composited images that are hard for

a discriminator to distinguish whether it is real or compos-
ited. This in return enhances domain alignment results. We
optimize the adversarial loss Ladv by

min
θD

E
Ûi∼PR,B∼PB

[D(Ûi)
2] + E

Ur∼PR
[(D(Ur)− 1)2], (14)

where PR and PB are the distributions of real frames and
background images, respectively. Ur represents a random
frame sampled from the real videos. D is the discriminator
and θD represents the parameters of D.

Though [34] also utilizes a discriminator, the proposed
method differs from that for the input. [34] uses the origi-
nal frame while the proposed method randomly samples one
frame from any real video as the real input. The diverse in-
puts can help the discriminator better differentiate between
the composited and real frames.

4. Datasets
As far as we know, there is only one labeled dataset for

video matting [33]. It contains 3 training videos and 10
test videos, which is not enough for training a deep learn-
ing model and is hard for researchers to evaluate on it be-
cause of the inaccessibility to the ground truths. Sengupta
et al. [34] capture a human video matting dataset with only
the videos provided but no annotations. Because of the
shortage of annotation, they propose to utilize the model
pretrained on the image-matting dataset [48] to predict the
pseudo-label for training a video matting model. However,
this will generate temporal jitters and cannot maintain tem-
poral coherence. Labeled data is becoming a bottleneck for
the development of this topic.

In this paper, we propose two synthesized datasets to al-
leviate this problem. Furthermore, to evaluate the general-
ization of the proposed method trained on the labeled com-
posited dataset to the real dataset, we also provide a real-
world dataset. These datasets contain high-resolution (HD)
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MSE SAD Gradient Connectivity MESSDdt

DIM [48] 10.69 79.87 74.54 72.75 7.676
IM [28] 9.216 81.56 64.97 63.72 5.595

IM* [28] 5.734 54.31 43.82 44.68 3.297
LF [49] 20.61 113.0 168.7 108.2 13.90

CAM [23] 20.97 145.5 147.5 116.2 9.867
BM [34] 13.57 90.15 130.8 84.85 7.388

Ours 3.770 45.77 30.80 33.81 2.475

(a) Composited dataset.

MSE SAD Gradient Connectivity MESSDdt

DIM [48] 13.32 98.92 129.1 88.56 17.48
IM [28] 10.91 95.07 120.0 73.05 14.45
IM* [28] 13.84 97.09 136.9 84.57 17.89
LF [49] 29.61 141.4 168.5 131.7 32.58

CAM [23] 11.62 101.0 123.9 78.21 14.93
Ours 9.224 73.50 112.1 58.49 12.23

(b) Real dataset.

Table 1: Quantitative results on the two human matting datasets. To better show the performance difference, the numbers for
the above measures have been scaled up or scaled down. The scaling factors of the five measures from left to right are 1000,
0.01, 0.01, 0.01, 1000. IM* means we re-train IM using the proposed dataset. The best results are in bold.

MSE SAD Gradient Connectivity MESSDdt

DIM [48] 25.03 402.1 167.4 407.4 16.47
IM [28] 37.30 582.8 115.3 597.1 16.67
LF [49] 49.25 478.7 339.0 466.3 25.07

CAM [23] 25.95 461.3 92.97 468.6 11.70
Ours 20.65 378.8 87.54 365.0 10.41

Table 2: Results on the auxiliary category dataset.

videos and the annotations are carefully manually created
using Adobe After Effects and Photoshop. Figure 4 shows
some examples from the proposed datasets.
Composited video dataset. Because of the increasing in-
terest in human matting on videos, we propose a compos-
ited dataset with the human category (composited human
matting dataset). We also provide a dataset with categories
except for the human (auxiliary category dataset) to verify
the generalization of our model on both the human cate-
gory and other categories. Videos in these two datasets are
annotated against the green screen or simple background.
Because of the simplicity of the backgrounds, it is easy to
generate high-quality alpha mattes and the corresponding
foregrounds for each video. For the human matting dataset,
there are 20 training videos (6312 frames) and 10 test videos
(3807 frames). For the auxiliary category dataset (e.g., cat,
plant), 20 training videos (3983 frames) and 10 test videos
(1722 frames) are provided. To enlarge the diversity of the
dataset, each foreground video is composited with varied
backgrounds using the groundtruth alpha mattes.
Real video dataset. To measure the performance of natural
videos, we also collect a real-world human matting dataset
with 19 videos. The alpha and foreground are manually
annotated at every 10 frames with a frame rate of 30 fps
for each video, which in total results in 711 frames being
labeled.

5. Experiments
We use the data augmentation scheme to increase the di-

versity of the input data. First, we randomly crop the im-
age and trimap pairs centered on pixels in the unknown re-
gions with varied resolutions (e.g. 480 × 480, 640 × 640,
960×960) and resize them to 480×480 due to the memory
constraint. We also utilize random rotation, scaling, shear-
ing as well as the vertical and horizontal flipping for the

affine transformation. Our model is first pretrained on the
image matting dataset [48] and then finetuned using the la-
beled composited data and unlabeled real data. For the im-
age matting dataset, we use the random affine transforma-
tion to generate a short video clip with 3 frames to imitate
the motion flow of the objects. Because it is hard to gen-
erate the pseudo trimap with the category like transparency,
we only utilize the proposed graph neural network on the
auxiliary category dataset and adopt the full model on the
human matting dataset for training and inference. In the
test stage, the trimaps for all datasets are generated from the
ground-truth alpha mattes by thresholding and the unknown
region is dilated with the kernel size 25.

We adopt the similar encoder and decoder structures in-
troduced in [28]. We remove the last two pooling layers
so the output size of the encoder is 1/8 of the input image.
The decoder Da and Df for predicting the alpha and fore-
ground have same structures except for the prediction layer.
The output channels for the prediction layer to predict the
alpha and foreground are set to 1 and 3. For the discrimi-
nator, we adopt the structure proposed in PatchGAN [24].
All the weights in objective Ladapt and Ladv used to bal-
ance different losses are set to 1. The number of vertices K
and the number of iteration step T are set to 3. The running
speed is about 1 fps on one single Nvidia 2080 Ti GPU.

5.1. Comparative Results
Evaluation metrics. To show the effectiveness of the pro-
posed method, we evaluate the results on five popular met-
rics, including the SAD, MSE, Gradient [33], Connectiv-
ity [33] and temporal coherence (MESSDdt) [17]. These
metrics can be used to evaluate the accuracy of the al-
pha matte for every single frame and the temporal coher-
ence within a video. The first four metrics are widely used
for image-level matting evaluation. However, long-range
videos own more features compared to the image. One key
feature is the temporal coherence which means the objects
move among different frames should be consistent for better
human perceptibility.
Results on the composited dataset. We first evaluate the
proposed algorithm and state-of-the-art methods on the pro-
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Figure 5: Visual comparison on the composited dataset.
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Figure 6: Visual comparison on the real dataset.

posed composited human matting dataset and auxiliary cat-
egory dataset. We include the existing image based matting
methods [48, 49, 28, 23] and video based method [34]. It
can be observed from Table 1a and Table 2 that the proposed

method achieves better performance compared to all other
methods evaluated on all five metrics. Compared to the
image-based methods, the performance gain is derived from
the utilization of the CRGNN, which leverages multi-frame
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information among the whole video and help recover the
missing predictions by the feature aggregation. Compared
to the video-based method BM [34], the proposed method
achieves better performance because the CRGNN assisted
by the deformable feature aggregation can fully mine the
interactions between frames.
Results on the real dataset. To further verify the efficacy
of the proposed method, we evaluate the results on the pro-
posed real-world dataset. The quantitative results are shown
in Table 1b. We see that our CRGNN performs best among
all methods, which demonstrates the efficacy of our core
idea of formulating the video matting as the combination of
GNN and consistency regularization technique.
Qualitative results. Figure 5 and 6 show the visual results
on the composited and real video datasets. From these re-
sults, we can clearly see that the proposed method predicts
more subtle details of the frames, such as the grass in the
second column of Figure 5 and suppresses the background
better as shown in the second column of Figure 6. These
further substantiate the superiority of the proposed method
for the video matting task.

MSE SAD Gradient Connectivity MESSDdt

Variants

Baseline 10.21 90.23 130.7 67.23 15.31
+GNN 9.480 78.38 123.2 62.81 13.45

+Consistency 9.260 73.21 115.4 60.75 12.69
+Discriminator 9.223 73.49 112.1 58.49 12.23

Number of nodes #5 9.230 74.62 115.7 58.53 12.30
#7 9.228 73.77 115.2 58.50 12.27

Non-local agg. - 9.954 89.45 128.9 65.68 13.56

Table 3: Ablation study on the variants of the proposed net-
work. ‘Baseline’ means the image-level model without us-
ing the GNN. ‘+’ means the progressive connection of dif-
ferent modules.

5.2. Ablation Study

We perform an ablation study to investigate the effect of
each essential component of the proposed method.
Effectiveness of the proposed graph neural network. To
analyze the contribution of our CRGNN, we introduce a
baseline model by removing the inter-frame relationship,
that is, the image-level baseline using the encoder-decoder
structure similar to [28]. Each video frame is forwarded into
our baseline model frame by frame. As shown in the sec-
ond row of Table 3, GNN indeed brings significant perfor-
mance improvements compared to the image-level model in
the first row, which benefits from the introduction of multi-
ple frames in enhancing the temporal coherence.
Effectiveness of the consistency regularization strategy.
To investigate the effectiveness of the consistency scheme,
we provide the results with and without prediction consis-
tency in Table 3. Compared to the results without utiliz-
ing the alpha, foreground and frame consistency (the sec-
ond row), utilizing the prediction consistency can generate
better result, (e.g. MSE: 9.260 v.s. 9.480). The perfor-
mance gain is derived from the better feature representation

Image Ground truth

Non-local aggregation Our deformable aggregation

Figure 7: Visual comparison of deformable aggregation and
the non-local aggregation on the real dataset.
enhanced by the consistency regularization.
Effectiveness of the adversarial learning scheme. The
fourth row in Table 3 shows that the introduction of the dis-
criminator can further improve the performance based on
the consistency regularization, which benefits from the ad-
vantages of the discriminator to distinguish if the image be-
longs to the composited image or the real one.
Comparison of different number of nodes. We report the
performance using the different number of nodes during the
test stage. As shown in Table 3, increasing the number of
nodes generates comparable results.
Comparison with the non-local structure. The non-local
structure [45] has been widely used for feature aggregation
on various tasks, such as video object segmentation [31] and
object detection [47]. Features are aggregated by enumerat-
ing all possible positions in the embedding space. As shown
in Table 3, the proposed method can generate better results
comparing to utilize the non-local structure for aggregation.

6. Conclusion
In this paper, we focus on enhancing the temporal co-

herence for matting in videos. Different from the previous
methods built on the image matting models, we propose to
maintain the temporal consistency by fully exploiting the
inter-frame relationship among the whole video. We use
a graph neural network to relate adjacent frames with the
aid of annotated synthesized video matting datasets. To
generalize the proposed model from synthesized videos to
real-world videos, we propose a regularization scheme to
enforce the consistency on the alpha, foreground and pre-
dicted frames. In addition, we annotate a real-world dataset
with alpha mattes to evaluate the efficacy of the proposed
method. Extensive experiments on the synthesized and real
datasets show the proposed CRGNN model performs favor-
ably against the state-of-the-art methods.

7. Acknowledgements
This work is supported in part by the NSF CAREER

Grant #1149783.

4909



References
[1] Yagiz Aksoy, Tunc Ozan Aydin, and Marc Pollefeys. De-

signing effective inter-pixel information flow for natural im-
age matting. In CVPR, 2017. 2

[2] Xue Bai, Jue Wang, and David Simons. Towards temporally-
coherent video matting. In International Conference on
Computer Vision/Computer Graphics Collaboration Tech-
niques and Applications, 2011. 2

[3] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville.
Delving deeper into convolutional networks for learning
video representations. arXiv preprint arXiv:1511.06432,
2015. 4

[4] Arie Berman, Arpag Dadourian, and Paul Vlahos. Method
for removing from an image the background surrounding a
selected object, 2000. US Patent 6,134,346. 2

[5] Adam Bielski and Paolo Favaro. Emergence of object seg-
mentation in perturbed generative models. In NeurIPS, 2019.
5

[6] Nicole Brosch, Asmaa Hosni, Christoph Rhemann, and
Margrit Gelautz. Spatio-temporally coherent interactive
video object segmentation via efficient filtering. In Joint
DAGM (German Association for Pattern Recognition) and
OAGM Symposium, 2012. 2

[7] Shaofan Cai, Xiaoshuai Zhang, Haoqiang Fan, Haibin
Huang, Jiangyu Liu, Jiaming Liu, Jiaying Liu, Jue Wang,
and Jian Sun. Disentangled image matting. In ICCV, 2019.
2

[8] Guanying Chen, Kai Han, and Kwan-Yee K. Wong. Tom-net:
Learning transparent object matting from a single image. In
CVPR, pages 9233–9241, 2018. 2

[9] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 4

[10] Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn mat-
ting. TPAMI, 2013. 2

[11] Donghyeon Cho, Yu-Wing Tai, and Inso Kweon. Natural
image matting using deep convolutional neural networks. In
ECCV, 2016. 2

[12] Yung-Yu Chuang, Brian Curless, David H Salesin, and
Richard Szeliski. A bayesian approach to digital matting.
In CVPR, 2001. 2

[13] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In ICCV, 2017. 4

[14] Henghui Ding, Xudong Jiang, Ai Qun Liu, Nadia Magne-
nat Thalmann, and Gang Wang. Boundary-aware feature
propagation for scene segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 6819–6829, 2019. 2

[15] Henghui Ding, Xudong Jiang, Bing Shuai, Ai Qun Liu, and
Gang Wang. Context contrasted feature and gated multi-
scale aggregation for scene segmentation. In CVPR, 2018.
2

[16] Henghui Ding, Xudong Jiang, Bing Shuai, Ai Qun Liu, and
Gang Wang. Semantic correlation promoted shape-variant
context for segmentation. In CVPR, 2019. 2

[17] Mikhail Erofeev, Yury Gitman, Dmitriy Vatolin, Alexey Fe-
dorov, and Jue Wang. Perceptually motivated benchmark for

video matting. In BMVC, 2015. 6
[18] Xiaoxue Feng, Xiaohui Liang, and Zili Zhang. A cluster

sampling method for image matting via sparse coding. In
ECCV, 2016. 2

[19] Eduardo SL Gastal and Manuel M Oliveira. Shared sampling
for real-time alpha matting. In Computer Graphics Forum,
2010. 2

[20] Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger
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