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Figure 1. We propose to utilize the deep hybrid 2D-3D self-prior in neural networks to generate the high-quality textured 3D

mesh model from the sparse colored point cloud.

Abstract

We present a deep learning pipeline that leverages net-
work self-prior to recover a full 3D model consisting of both
a triangular mesh and a texture map from the colored 3D
point cloud. Different from previous methods either exploit-
ing 2D self-prior for image editing or 3D self-prior for pure
surface reconstruction, we propose to exploit a novel hybrid
2D-3D self-prior in deep neural networks to significantly
improve the geometry quality and produce a high-resolution
texture map, which is typically missing from the output of
commodity-level 3D scanners. In particular, we first gen-
erate an initial mesh using a 3D convolutional neural net-
work with 3D self-prior, and then encode both 3D informa-
tion and color information in the 2D UV atlas, which is fur-
ther refined by 2D convolutional neural networks with the
self-prior. In this way, both 2D and 3D self-priors are uti-
lized for the mesh and texture recovery. Experiments show
that, without the need of any additional training data, our
method recovers the 3D textured mesh model of high qual-
ity from sparse input, and outperforms the state-of-the-art
methods in terms of both geometry and texture quality.

1. Introduction
Textured mesh is one of the most desirable representa-

tion for 3D objects, which has been widely used in many

applications, such as industrial design and digital entertain-

ment because it enables not only the 3D related task like
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collision detection but also the rendering capability. As a re-

sult, the ability to create a full 3D model consisting of both a

3D triangular mesh and a texture map is a long-lasting prob-

lem and consistently draws attention. While purely image-

based solution exists [24], the 3D scanners with active il-

lumination usually provide much more accurate 3D models

and are robust against challenging cases, e.g. texture-less

regions. Unfortunately, many commodity-level 3D scan-

ners, e.g. Artec Eva [1], iReal 2S [3], Einscan Pro [2] etc,

only produce colored point clouds as the output, where the

object surfaces and texture maps are missing. There are

plenty of works that generate a mesh model from a point

cloud, but they usually rely on strong assumptions [42, 36],

require pre-training on large dataset [8, 39, 18, 11], and do

not produce a texture.

In this work, we propose a method for reconstructing

a full 3D model, i.e., a textured triangular mesh, from a

colored point cloud. This task is highly under-constrained,

and thus prior knowledge is extremely important. It is well

known that deep learning model is good at learning prior

from a large dataset [42, 18, 11], but also at the same time

prone to overfitting to the dataset bias. Instead, Ulyanov

et al. [48] proposed to randomly initialize a convolutional

neural network (CNN) to upsample a given image, which

used the network structure as a prior without the need of

any additional training data. Sharing the similar spirit, we

resort to such self-prior naturally encoded in the neural net-

work for the full 3D model reconstruction task. As one of

the most related prior arts, Hanocka et al. [23] proposed

to create a mesh, without texture, from a point cloud us-

ing a MeshCNN [22] to deform from the convex hull. They

found that the graph-based CNN can also learn the self-prior
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from the input point cloud to reconstruct a 3D mesh with

noise suppressed and missing parts filled. Despite signifi-

cant improvements over previous methods and the capabil-

ity to handle challenging cases, however, its output quality

highly depends on the input noise level and sparsity (See

Sec.4.3), and the effect of 3D network self-prior is not phe-

nomenal as its 2D counterpart [48] empirically.

We propose to exploit the hybrid 2D-3D self-prior for

full mesh reconstruction. Specifically, we first utilize the 3D

MeshCNN [22] to exploit the 3D prior in a similar way as

Hanocka et al. [23] and generate an initial 3D mesh model.

Then we create a UV atlas encoding the 3D location of the

points instead of color information, which is then refined

by a 2D CNN using the self-prior and used to update the

3D mesh. We find this 2D network is surprisingly more

effective, compared to the 3D MeshCNN, in learning self-

prior, and can provide valuable regularization in producing

high-resolution mesh with delicate details. The 3D-prior

and 2D-prior network runs iteratively to refine the 3D mesh

model, and extensive experiments show that our model sig-

nificantly improves the geometry quality.

Besides the triangulated mesh, our method also recovers

a high-resolution texture map. While it is not trivial to build

such a texture map from colors on the sparse point cloud

since the texture maps are usually in much higher resolu-

tion than the 3D geometry, e.g., the number of faces, we

borrow the help from the 2D self-learned CNN with the be-

lief that the self-prior is stronger and easier to learn on 2D

CNN compared to a 3D graph-based convolutional neural

network (GCN). Using the same UV atlas generated from

the 3D mesh, we train a 2D CNN to recover the color from

sparse point, and find appealing texture maps can be gen-

erated automatically. The texture map will be iteratively

optimized together with the 3D mesh model.

Our contributions can be summarized as follows. First,

we propose a deep learning pipeline that reconstructs a full

3D model with both a triangular mesh and a texture map

from a sparse colored point cloud by leveraging self-prior

from the network. Second, a novel hybrid 2D-3D self-prior

is exploited in our pipeline without learning on any extra

data for both geometry and texture recovery. Experiments

demonstrate that our method outperforms both the tradi-

tional and the existing state-of-the-art deep learning based

methods, and both 2D prior and 3D prior benefits the full

mesh reconstruction.

2. Related work
Traditional Surface Reconstruction methods There is a

long history of reconstructing surfaces from point clouds.

Early methods such as Delaunay triangulations [9] and

Voronoi diagrams [6] interpolate points by creating a tri-

angular mesh. When there are noises, however, the result-

ing surface is often jagged. As a result, special data pre-

processing is usually required to generate a smooth surface.

Mainstream approaches to reconstruct surface are based

on implicit function approaches which can be classified into

global and local approaches. Global approaches, such as

radial basis functions (RBFs) [10], consider all the data at

once, and define a scalar function which used for testing

if a point is inside or outside the surface. In contrast, lo-

cal approaches, such as truncated signed distance function

(TSDF) [17] and moving least squares (MLS) [7, 34], con-

sider only subsets of nearby points.

The algorithm of (Screened) Poisson surface reconstruc-

tion [30, 31] combines the advantages of global and local

approaches. It finds an indicator function and uses its gra-

dient field to solve the Poisson equation, and then an iso-

surface can be extracted to reconstruct the surface. The re-

constructed model is watertight closed and has good surface

details, however this approach requires accurate normal ori-

entation, relies on the dense point cloud, and struggles to

handle non-watertight cases.

Deep Learning for Full Model Reconstruction Deep

learning provides new opportunities for geometric recon-

struction, especially in terms of 3D representation. 3D vol-

umes [15, 21] and point clouds [19, 4, 5] have been preva-

lent in many early works, which unfortunately are usually

restricted to the low resolutions due to the memory con-

straint. Recently, the implicit representations [38, 42, 27,

14, 18, 11] have been investigated and greatly improve the

geometry details, but demand comparatively long inference

time due to the sampling and suffer from overfitting on

training sets. Liu. et al. [36] builds a network to estimate the

local connectivity of input points for surface reconstruction,

whose performance heavily relies on the quality of inputs.

Similar to us, a graph-based CNN is proposed to generate

a 3D model directly in a triangulated mesh that is ready to

use. A common approach is to deform gradually from an

initial shape toward the desired output [22, 49, 13, 29, 43].

with the help of learned guidance.

On the other hand, there has been a lot of efforts [46,

28, 53, 41, 47, 26] on texture generation from 2D images.

Nevertheless, very few works focus on learning a texture

consistent with the sparse color observed from point clouds,

which is still a challenging problem.

Deep Network as a prior Recently, the deep image prior
(DIP) [48] has shown its strong ability for self-supervised

2D image reconstruction tasks (eg. image super-resolution,

denoising, or inpainting). Follow up works [20, 44, 45]

shows the capability of deep prior to capture image statis-

tics for multiple low-level 2D vision tasks such as dehaz-

ing, transparency separation, deblur, etc. Inspired by [48],

our approach aims to transfer 2D deep priors to 3D geom-

etry space, which enhances the smoothness and robustness
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Figure 2. Overview of our model. Our full model contains two building blocks, namely, 3D deep self-prior network, and 2D

deep self-prior network, which run iteratively to improve the geometry and texture outputs.

of 3D mesh and texture generation.

For 3D surface reconstruction, deep geometric prior is

presented in [51], which fits MLPs for different local re-

gions of the point clouds. Point2Mesh [23] reconstructs

a surface mesh from an input point cloud by optimizing a

CNN-based self-prior deep network [22]. While encoding

mesh shape into network parameters, those methods lever-

age the representational power of the deep network to re-

move noise. However, the 3D priors of the network from

unstructured 3D data is not strong enough. Consequently,

the performance is highly relative to the quality of the input

point cloud.

3. Full Mesh Generation with Hybrid Prior
Given a colored input point cloud, our goal is to recon-

struct the corresponding surface mesh with fine details of

both the geometry shape and texture. We design a hybrid-

prior network to leverage self-prior in both 3D and 2D

space, and an overview of our system is illustrated in Fig.

2. We first run a MeshCNN based 3D self-prior network to

reconstruct an initial untextured 3D mesh, then improve the

geometry quality and produce a high-resolution texture map

in an iterative fashion. Particularly in each iteration, we first

build a texture atlas using the current geometry mesh, and

then warp the location and color of the input sparse point

cloud into texture UV space, which generates a sparse lo-

cation UV map and a sparse color UV map respectively.

Two separate 2D self-prior networks are trained for XYZ re-

finement and RGB generation respectively using the sparse

maps as supervision. We use the predicted dense location

UV map to update the vertex location in the 3D mesh, which

is then fed into the 3D self-prior network for another refine-

ment. This hybrid-prior network runs iteratively until the

geometry mesh and texture output is stable.

3.1. 3D Prior Network

Our model starts from a MeshCNN based 3D-Prior net-

work to create an initial mesh from the input point cloud.

The main purpose is to build a surface manifold which fa-

cilitates the use of 2D prior (Sec. 3.2.2).

Similar to Point2Mesh [23], given an initial point cloud,

a convex hull is generated as an initial mesh which will be

deformed to the target shape. A graph is built on the edges

of the initial convex hull, on which a MeshCNN can be run

to produce the displacement of vertices that updates the 3D

shape. The feature on each graph node, which corresponds

to an edge in the mesh, is assigned as a random vector

sampled from a Gaussian distribution, and the MeshCNN

is trained to deform the mesh by minimizing the Cham-

fer distance to the input point cloud. Once converged, the

mesh topology is updated by reconstructing a new water-

tight mesh with more vertices using methods in [25], which

is then refined again using MeshCNN.

We apply Chamfer distance loss (Eq. 1) and the edge

length regularization (Eq. 2) for the 3D-Prior network. The

loss function is defined as L = λ0Lchamfer + λ1Ledge,

where λ0 and λ1 balance the loss term and are empirically

set to 1.0 and 0.2 respectively in our experiment. Lchamfer
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and Ledge are calculated with following equations:

Lchamfer =
∑

p̂

min
q

‖p̂− q‖22 +
∑

q

min
p̂

‖p̂− q‖22, (1)

Ledge =
∑

p

∑

k∈N (p)

‖p− k‖22, (2)

where p is a vertex of the generated mesh; p̂ is a point sam-

pled from the generated mesh surface; q is a point in the

input point cloud; N (p) is the one-ring neighboring ver-

tex of p in the generated mesh. Note that the loss function

is slightly different from that in Point2Mesh. We find the

beam-gap loss in Point2Mesh is computational expensive

with limited effect for our system. Meanwhile, adding the

regularization term for edge length speeds up the conver-

gence of our network in practice.

3.2. 2D Prior Network

We then refine the mesh via a 2D prior network, The core

idea is to create a 2D representation of the 3D mesh, which

can be refined effectively with strong self-prior in 2D CNN.

3.2.1 Creating XYZ Map

In this section, we introduce how to create a 2D repre-

sentation of the 3D mesh which can be refined via 2D

CNN. We first create a UV atlas from the initial mesh us-

ing OptCuts [35], while theoretically any atlas generation

method respecting UV space continuity would also work

and more discussions are provided in the supplemental ma-

terial. Then, for each point q in the input point cloud, we

find its nearest p̂ on the initial mesh. We then query the

triangle face ID and barycentric coordinate within the tri-

angle for p̂ to calculate a uv coordinate in the texture atlas,

at which the (x, y, z) of q is assigned. Eventually, a sparse

three-dimensional XYZ map in the UV space is created to

record the 3D locations of all the points in the input point

cloud as shown in Fig. 2. We also try to build a distance

UV map w.r.t. an anchor point but find it less effective than

the XYZ map.

3.2.2 XYZ Map Refinement

We then train a network to produce a dense XYZ map su-

pervised by the sparse one. We adopt a 2D U-Net with skip-

connections following DIP [48]. The network takes as in-

put a random noise feature map z + ε, and the weights of

the network are randomly initialized. z is a 32×Height×
Width random vector sampled from Gaussian distribution

N (0, 0.1), which is fixed during training. ε is a small Gaus-

sian permutation N (0, 0.02) added to z to prevent the net-

work from overfitting, which changes at every forwarding

pass. The network is supervised by the sparse XYZ map

using L2 loss, and produces the dense XYZ map, whose

architecture can be found in the supplementary material.

Note that the 2D U-Net predicts (x, y, z) at each inte-

ger pixel location on UV atlas, while uv coordinates of the

input points are usually floating points. To obtain accurate

supervision from the sparse “ground truth” XYZ map, we

use the differentiable bilinear sampling to obtain the value

from the predicted dense XYZ map on the sub-pixel loca-

tions that have ground truth.

With the dense XYZ map from the 2D-prior network,

we update the 3D mesh directly by updating the vertex lo-

cations to the value in the predicted dense XYZ map. Fig.

3 shows an example. Compared to the initial mesh (Fig.3

(a)), the 2D-prior refined mesh (Fig.3 (b)) is smoother with

a few spikes, and folded regions are fixed.

3.3. Iterative Refinement with 2D and 3D Priors

The refinement via the XYZ map significantly improves

the majority part of the 3D geometry and enforces the

smoothness. However, some obvious artifacts show up,

which typically happens on the locations mapped to bound-

ary of valid regions in UV atlas. A possible reason is that

the 2D-prior network is weak at completing region without

any supervision signal, e.g. the invalid region on UV atlas,

and errors are propagated to the few pixels on the bound-

ary of the valid region, introducing flipped faces and outlier

vertexes. We try to expand the UV atlas valid region for a

few pixels as commonly adopted by many previous methods

but find this not effective since the supervision is too sparse.

To fix the problem, we send the updated mesh back to the

3D-prior network for another refinement, and find the 3D-

prior network is very effective in keeping benefits from the

2D-prior network and removing the artifacts (Fig.3 (c)) via

stronger supervision and regularization. The two networks

can run iteratively to improve surface quality gradually.

3.4. Texture Reconstruction

While most of the previous works only on surface recon-

struction, our model can also produce a high-resolution tex-

ture, which particularly complements commodity 3D scan-

ners since texture map and color images are usually not

provided. Thanks to the 2D-prior network, we encode the

(r, g, b) of the input point cloud into a sparse UV map in-

stead of the location (x, y, z), and run the 2D-prior network

to reconstruct a dense texture map supervised by the sparse

signal from the input point cloud. Note that it is also possi-

ble to directly produce color for each point in the MeshCNN

framework, but the resolution, i.e. color from roughly 10K

points, is far from enough to deliver visual appealing ren-

dering quality, e.g., 480K pixels for even VGA resolution.
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(a)initial  mesh (c)refined mesh(b)2D-prior mesh
Figure 3. Iterative Refinement with 2D-3D prior networks.

3.5. Implementation Details

The GPU memory required for MeshCNN optimizations

is linearly increased as the mesh resolution increases. Fol-

lowing Point2Mesh [23], we cut the mesh into parts to guar-

antee that each part has less than 6000 faces. There are over-

lapping regions between different parts, and the final vertex

position output is the average over all overlaps.

The whole architecture is implemented in Pytorch, and

optimized using Adam Optimizer [33]. For 3D-prior net-

work, the initial mesh contains 2000 vertices. In each re-

finement iteration, the 3D-prior network is optimized for

2000 steps with a learning rate of 1e-3, and the 2D-prior net-

work is optimized for 4000 steps. The mesh is refined for 3

iterations as the performance usually saturates. The overall

generation process takes roughly 2.5 hours, where 3D prior

initialization, 2D prior refinement, 3D prior refinement take

90, 20, 40 minutes respectively. The 2D-prior network takes

much less time compared to 3D-prior network. The runtime

of the 2D-prior network is relatively constant w.r.t the num-

ber faces, while run-time of the 3D-prior network grows

roughly linearly w.r.t the face number. Meanwhile, our ini-

tialization stage is faster than Point2Mesh which takes more

than 3 hours.

4. Experiments
In this section, we evaluate our method for full 3D mesh

model generation. We first show overall performance of

our system, and then evaluate the quality of geometry and

texture separately. We highlight the effectiveness of our 2D

network for both geometry and texture reconstruction.

4.1. Data and Evaluation Metrics

We collected 14 ground-truth meshes for evaluation, in-

cluding animals, persons, and planes from 3D model repos-

itory turbosquid1 and free3D2. All models are 3D meshes

with high-quality textures, and the amount of vertices in the

original mesh varies from 8000 to 50000. For fair com-

parison with Point2Mesh [23], we did our best to collect a

similar testing set as [23], which contains 4 meshes from

Thingi10K [52], 18 meshes from COSEG [50], and 10

meshes from ShapeNet [12] of various object categories.3

1https://www.turbosquid.com
2https://free3d.com
3Note that the exact testing set of Point2Mesh is not publicly released.

F-score↑ CD↓ EMD↓ NC↑
Poisson 95.6 0.0630 0.1285 0.908

P2M 97.2 0.0601 0.1068 0.941

MPC-IER 93.2 0.0712 0.1044 0.933

Points2Surf 90.4 0.0974 0.1191 0.903

Ours 97.7 0.0526 0.0969 0.956

Table 1. Comparison between our method and other surface

reconstruction methods on synthetic data. Bold: Best. CD:

Chamfer Distance. NC: Normal Consistency.

We synthetically generate input point clouds by uniformly

sampling the mesh surface with color. Each point cloud has

25000 colored points, except for the rabbit which has 10000

points because its structure is relatively simple.

To evaluate the accuracy of the reconstructed model,

we use the F-score as [23]. We also show quantitative

comparison on Chamfer Distance, Normal Consistency and

Earth Mover’s Distance(EMD). For calculation, we sample

500K points on the surface of the ground truth and the pre-

dicted mesh respectively, and empirically find these are suf-

ficiently dense to calculate stable metrics. For F-score, we

set the distance threshold at 0.1 with the span of the longest

dimension of each model scaled to 100.

Dataset Method F-score↑ CD↓ EMD↓ NC↑
Thingi10k

P2M 93.4 0.0428 0.1220 0.841

Ours 96.1 0.0375 0.1126 0.884

COSEG
P2M 92.8 0.0422 0.1327 0.925

Ours 96.2 0.0349 0.1083 0.954

ShapeNet
P2M 91.4 0.0533 0.1417 0.895

Ours 95.7 0.0405 0.1164 0.936

Table 2. Comparison with Point2Mesh. Bold: Best. CD:

Chamfer Distance. NC: Normal Consistency.

4.2. Full 3D Mesh Generation

We first show the quality of textured mesh generated by

our model. Fig. 4 shows the input colored point cloud and

the generated mesh visualized with and without the gen-

erated texture. Overall, our method successfully recovers

thin geometry, e.g. the dog’s ear and the bird’s wings, and

texture with sharp boundaries and details. As a comparison,

we show the full model generated by Poisson reconstruction

[31] where the surface normal is calculated using imple-

mentations in MeshLab [16] for well-known accuracy and

robustness, and the texture is generated by linearly blending

the color from the input point cloud [32]. From Fig. 4, our

method clearly outperforms others on the quality of both

geometry and texture.

We visualize the sparse XYZ map and the texture map

and the dense predictions from our method in Fig. 6. We

increase the size of the point (4 pixels for each point) for vi-
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Input Poisson Ours Poisson Point2Mesh Ours
Figure 4. Comparison on synthetic data. We show examples with a full spectrum of difficulties for both geometry and texture,

e.g. dog and airplane have more complex geometry, and bird has challenging texture. Please refer to our supplementary

material for the comparison with more methods.

sualization since the original input is too sparse to see. Even

with such sparse input, the network still manage to produce

dense output and improve the details over iterations.

4.3. Surface Reconstruction

In this section, we evaluate the quantitative accuracy of

the surface reconstruction, and the results are shown in Tab.

1. In addition to Poisson surface reconstruction [31] and

Point2Mesh [23], we also compare to Points2Surf [18] and

MPC-IER [36] for surface reconstruction. Note that they

both require additional 3D data for training while we do not

but purely rely on self-prior. Our method achieves the best

score among all the methods, indicating our geometry is

more accurate compared to other methods. Our method also

shows consistently better performance than Point2Mesh on

Thingi10K, COSEG and ShapeNet as shown in Tab. 2. Note

that for surface reconstruction, Point2Mesh can be consid-

ered as an ablation of our method without the 2D self-prior.

Therefore, our improvements are mostly benefited from the

use of the proposed hybrid 2D-3D prior. We also show the

performance w.r.t iteration in the supplementary material.

The qualitative results are shown in Fig. 4. We can see

that Poisson reconstruction generates incorrect meshes for

thin structures, e.g., wings of the bird and plane. The results

of Point2Mesh are relatively noisy, e.g., the dog’s ear and

the plane’s wings, due to its weak 3D self-prior. In contrast,

our method has the best performance with smooth meshes

and correct thin structure.

5810



Input Poisson Ours Poisson Points2Surf MPC-IER Point2Mesh Ours
Figure 5. Comparison between our method and other surface reconstruction methods with real scans.

Sparse maps Step 1000 Step 2000 Step 4000
Figure 6. Sparse maps and generated dense maps at differ-

ent training steps.

Robustness Against Noise It is well-known that the qual-

ity of the surface reconstruction highly depends on the input

point cloud quality. We test the robustness of our method

by manually adding Gaussian noise with standard deviation

Input Poisson P2M Ours
Figure 7. Comparison between our method and other sur-

face reconstruction methods with noisy input.

as 2% of the original coordinate value on the input point

cloud, and the results are shown in Fig. 7. Both Pois-

son and Point2Mesh are easily get affected by the noise in
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(a) F-score (b) Chamfer

Figure 8. Comparison with Screen Poisson reconstruction

and Point2Mesh with different sparseness. (a) F-score met-

ric. Higher is better. (b) Chamfer metric. Lower is better.

the input, and the surface quality is inferior compared to

ours. Especially, more noise is reflected in the results from

Point2Mesh, which indicates the self-prior is not strong

enough in 3D GCN. Comparatively, our method leverag-

ing hybrid 2D-3D self-prior still produce reasonable surface

quality by removing noise in the XYZ map. More results

w.r.t different noise levels and robustness on texture gener-

ation are provided in the supplementary material.

Robustness Against Sparsity We also test the robustness

of our model on sparse input point clouds. We run Poisson,

Point2Mesh, and our method by taking input point clouds

with different number of points, and show the performance

in Fig. 8. As expected, the performance of all the meth-

ods drops when the input point number is decreasing, but

our performance drops slower than the others, which again

shows that the 2D-3D self-prior is strong to interpolate rel-

atively large missing regions. More qualitative results are

provided in the supplementary material.

4.4. Texture Reconstruction

In this section, we evaluate our texture reconstruction.

It is not easy to find previous work with code for this spe-

cific task under our setting, so we compare to Kazhdan et
al. [32] which is implemented with Poisson surface recon-

struction in Meshlab. In Fig. 9, we show the texture on

the reconstructed mesh and highlight some regions. Our

method significantly outperforms the baseline method es-

pecially on edges, where the baseline texture tends to be

blurry and ours is usually sharp. We also build a MeshCNN

baseline method which directly predicts color for each point

in the MeshCNN [22] framework and provided the compar-

isons in supplementary material.

For the quantitative measure, we render the generated

colored mesh uniformly in 16 different views as [37] and

evaluate the Naturalness Image Quality Evaluator (NIQE)

score [40] of the rendered 4096 × 4096 images. NIQE is a

no-reference metric that solely considers perceptual quality.

The NIQE results of MeshCNN baseline, Poisson and our

method are 20.39, 20.65 and 19.35 respectively (lower is

OursPoisson OursPoisson

OursPoisson
Figure 9. Comparison between our method and the Pois-

son surface reconstruction on texture quality. Our method

produces texture with better quality especially on edges.

better), which indicates ours shows better visual quality.

4.5. Generalization to Real Scans

We also test how our method performs on scans collected

from the commodity 3D scanner. We collect 3D textured

point clouds of five objects using Huawei 3D Live Maker,

each of which contains roughly 30000 points. Note that the

noise and sparsity of the points are not ideally uniform, and

thus these data are more challenging for full mesh recon-

struction. Fig. 5 shows results on these scans. Compare

to other methods, we produce overall better geometry for

smooth surface, sharp boundary, thin structure, and sparse

areas. Our texture is also sharper than Kazhdan et al. [32],

e.g., the airplane on calendar, plant, and mario face.

5. Conclusion

We propose a method to reconstruct textured mesh from

a colored point cloud by leveraging self-prior in deep neural

networks. A novel hybrid 2D-3D self-prior is exploited in

an iterative way. Based on an initial mesh generation using

a 3D convolutional neural network with 3D self-prior, the

2D UV atlas is generated and used to encode both 3D infor-

mation and color information that can be further refined by

2D CNNs with the self-prior. Experiments demonstrate the

advantages of the proposed method over SOTA methods.
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