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Abstract
Unsupervised disentanglement learning is a crucial is-

sue for understanding and exploiting deep generative mod-
els. Recently, SeFa tries to find latent disentangled direc-
tions by performing SVD on the first projection of a pre-
trained GAN. However, it is only applied to the first layer
and works in a post-processing way. Hessian Penalty mini-
mizes the off-diagonal entries of the output’s Hessian ma-
trix to facilitate disentanglement, and can be applied to
multi-layers. However, it constrains each entry of output
independently, making it not sufficient in disentangling the
latent directions (e.g., shape, size, rotation, etc.) of spa-
tially correlated variations. In this paper, we propose a sim-
ple Orthogonal Jacobian Regularization (OroJaR) to en-
courage deep generative model to learn disentangled rep-
resentations. It simply encourages the variation of output
caused by perturbations on different latent dimensions to
be orthogonal, and the Jacobian with respect to the in-
put is calculated to represent this variation. We show that
our OroJaR also encourages the output’s Hessian matrix
to be diagonal in an indirect manner. In contrast to the
Hessian Penalty, our OroJaR constrains the output in a
holistic way, making it very effective in disentangling la-
tent dimensions corresponding to spatially correlated vari-
ations. Quantitative and qualitative experimental results
show that our method is effective in disentangled and con-
trollable image generation, and performs favorably against
the state-of-the-art methods. Our code is available at
https://github.com/csyxwei/OroJaR.

1. Introduction

In a disentangled representation, each dimension corre-
sponds to the change in one factor of variation (FOV), while
being independent to changes in other factors [3]. Learn-
ing disentangled representations from a given dataset is a
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Figure 1: Examples of orthonormal directions learned by
our method in BigGAN conditioned to synthesize ImageNet
Golden Retrievers or Churches. Moving across a row, we
move a latent code along a single linear direction in z-space.

major challenge in artificial intelligence, and can be benefi-
cial to many computer vision tasks, such as domain adapta-
tion [33, 45], controllable image generation [32, 38, 41, 48],
and image manipulation [37].

In the recent few years, unsupervised disentanglement
learning has attracted intensive attention, owing to its im-
portance in understanding generative models [32, 38] and
extensive applications in various vision tasks [37, 45].
Based on two representative generative models, i.e. Vari-
ational Autoencoder (VAE) [26] and Generative Adversar-
ial Networks (GAN) [12], many disentanglement methods
[6, 7, 11, 15, 17, 25, 32, 38, 48] have been proposed. VAE-
based methods, such as β-VAE [15], FactorVAE [25], β-
TCVAE [6], etc., attain disentanglement mainly by enforc-
ing the independence in the latent variables. However,
their disentanglement performance and the visual quality of
generated images remain quite limited. With the progress
in Generative Adversarial Networks (GAN) [12], many
GAN-based disentanglement methods have been proposed
[7,32,38,48]. SeFa [38] learns the disentangled latent direc-
tions by directly decomposing the weight of the first fully-
connected layer of a pre-trained GAN. However, it is only
applied to the first layer of the generator model and works in
a post-processing way, which limits the performance of dis-
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entanglement. Hessian Penalty [32] encourages to learn a
disentangled representation by minimizing the off-diagonal
entries of the output’s Hessian matrix with respect to its in-
put. However, it uses a max function to extend the reg-
ularization from scalar-valued functions to vector-valued
functions, yet treats each entry of the output independently,
making it not sufficient in disentangling the latent directions
(e.g., shape, size, rotation, etc.) corresponding to spatially
correlated variations.

Inspired by Hessian Penalty [32] and SeFa [38], we pro-
pose a simple regularization term to encourage the gen-
erative model to learn disentangled representations. Our
method is based on a straightforward intuition: when per-
turbing a single dimension of the network input, we would
like the change in the output to be independent (and also
uncorrelated) with those caused by the other input dimen-
sions. To this end, the output’s Jacobian matrix is calcu-
lated to represent the change caused by the latent input.
To encourage the changes caused by different latent dimen-
sions to be uncorrelated, we simply constrain the Jacobian
vector of each dimension to be orthogonal. In contrast to
Hessian Penalty, we constrain the change in a holistic way,
thereby making it very competitive in disentangling latent
dimensions corresponding to spatially correlated variations.
We call this regularization term as Orthogonal Jacobian
Regularization (OroJaR). In Sec. 3.4, we show that our
OroJaR also constrains the Hessian matrix to be diagonal
in an indirect way. On the other hand, our OroJaR can be
treated as an end-to-end generalization of SeFa on multi-
ple layers, which is also beneficial to the disentanglement
performance. In practice, due to the fact that computing the
Jacobian matrices during training is time consuming, we ap-
proximate it via a first-order finite difference approximation
to accelerate training.

Experiments show that our OroJaR performs favorably
against the state-of-the-art methods [32, 38, 48] for unsu-
pervised disentanglement learning on three datasets (i.e.,
Edges+Shoes [46], CLEVR [32], and Dsrpites [29]). More-
over, our OroJaR can be used to explore directions of mean-
ingful variation in the latent space of pre-trained generators.
From Fig. 1, our method is effective in finding the disentan-
gled latent directions (e.g., rotation, zoom and color, etc.) in
BigGAN pre-trained on ImageNet.

The contributions of this work can be summarized as:

• We present a simple Orthogonal Jacobian Regulariza-
tion (OroJaR) to encourage the deep generative model
to learn better disentangled representations.

• OroJaR can be applied to multiple layers of the gener-
ator, constrains the output in a holistic way, and indi-
rectly encourages the Hessian matrix to be diagonal.

• Extensive experiments show the effectiveness of our
proposed method in learning and exploring disentan-
gled representations, especially those corresponding to

spatially correlated variations.

2. Related Work
2.1. Disentanglement Learning in VAE

Variational Autoencoder (VAE) [26] has been widely
adopted in state-of-the-art disentanglement methods [6, 9,
15, 18, 21, 25, 27, 28]. β-VAE [15] introduced an adjustable
hyperparameter β > 1 on the KL divergence between the
variational posterior and the prior to VAE for benefiting dis-
entangled representations, but meanwhile, it sacrificed the
reconstruction result. Based on β-VAE, [25] and [6] intro-
duced the total correlation (TC) term in order to improve
disentanglement performance. DIP-VAE [27] used moment
matching to penalize the divergence between aggregated
posterior and the prior to encourage the disentanglement.
Guided-VAE [9] used an additional discriminator to guide
the unsupervised disentanglement learning and learned the
latent geometric transformation and principal components.
Additionally, JointVAE [11] and CascadeVAE [17] tried to
simultaneously learn disentangled continuous and discrete
representations in an unsupervised manner. To sum up,
most existing VAE-based methods disentangle the varia-
tions mainly by factorizing aggregated posterior, but usually
suffer from low-quality image generation ability.

2.2. Disentanglement Learning in GAN

Two kinds of methods, i.e., two-stage and one-stage
ones, have been mainly investigated for finding disentan-
gled representations in GAN [12]. The two-stage methods
identify disentangled and interpretable directions in the la-
tent space of a pre-trained GAN. While the one-stage meth-
ods encourage disentanglement during GAN training by in-
troducing appropriate extra regularization.
Interpretable directions in the latent space. Several un-
supervised methods have been suggested for discovering
interpretable directions in the latent space of a pre-trained
GAN [2,13,37,38,41]. Voynov et al. [41] searched a set of
directions that can be easily distinguished from each other
by jointly learning a candidate matrix and a classifier such
that the semantic directions in the matrix can be properly
recognized by the classifier. Härkönen et al. [13] performed
PCA on the sampled data to find the important and mean-
ingful directions in the style space of StyleGAN. Shen et
al. [38] searched the interpretable directions by perform-
ing SVD on the weight of the first layer of a pre-trained
GAN. Wang et al. [42] unified these approaches by treat-
ing them as special cases of computing the spectrum of the
Hessian for the LPIPS model [47] with respect to the in-
put. Nonetheless, two-stage methods only work in a post-
processing manner for pre-trained GANs, and generally fail
to discover the disentangled components that are nonlinear
in the latent space.
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Disentanglement learning with regularization. Instead of
post-processing, studies have also been given to achieve dis-
entanglement by incorporating extra regularization [7, 10,
30, 32, 34, 40, 48] in GAN training. InfoGAN [7] learned
the disentangled representations by maximizing the mutual
information between the input latent variables and the out-
put of the generator. Zhu et al. [48] presented a variation
predictability loss that encourages disentanglement by max-
imizing the mutual information between latent variations
and corresponding image pairs. Peebles et al. [32] proposed
the Hessian Penalty to make the generator have diagonal
Hessian with respect to the input. However, the max oper-
ator is used to extend Hessian Penalty for handling vector-
valued output. As a result, it constrains each entry of out-
put independently and is not sufficient in disentangling the
latent directions corresponding to spatially correlated vari-
ations. Our OroJaR is motivated by Hessian Penalty [32]
and SeFa [38]. It can be treated as an end-to-end general-
ization of SeFa to multiple layers, and constrain the change
caused by latent dimension in a holistic way. Experiments
also show that OroJaR is more effective in disentangling la-
tent dimensions corresponding to spatially correlated varia-
tions.

2.3. Orthogonal Regularization

Many recent studies have been given to incorporate
the orthogonality for improving deep network training [5,
19, 31, 36, 43, 44]. Wang et al. [43] imposed orthogonal
regularization on the weighting parameters with the form
∥WTW − I∥2, where W is the weight matrix and I is an
identity matrix. Jia et al. [19] encouraged the orthogonal-
ity by bounding the singular values of the weight matrix in
a narrow range around 1. For improving image generation
quality, BigGAN [4] introduced a “truncation trick” by re-
moving the diagonal terms from the regularization. Bansal
et al. [1] introduced another orthogonal regularization by
considering both ∥WTW − I∥2 and ∥WWT − I∥2.

Besides the weight matrix, orthogonal regularization can
also be used to constrain the latent space and Jacobian ma-
trix. PrOSe [39] parameterized the latent space representa-
tion as a product of orthogonal spheres to learn disentangled
representations. Odena et al. [31] introduced a regulariza-
tion term to encourage the singular values of Jacobian ma-
trix J of the generator to lie within a range. It can also
constrain J to be orthonormal to a scale when the range
is sufficiently narrow. StyleGAN2 [24] presented a path
length regularization which implicitly encourages the Jaco-
bian matrix of the generator to be orthonormal up to a global
scale. While the regularizers in [24, 31] are adopted to im-
prove the quality of the learned generator, our OroJaR is
introduced to encourage the generator to learn disentangled
representations. Moreover, [24, 31] encourage the Jacobian
vectors to be orthonormal to a global scale, while our Oro-

JaR only constrains them to be orthogonal.

3. Proposed Method
In this section, we first describe the proposed Orthog-

onal Jacobian Regularization (OroJaR) for learning disen-
tangled representations. Then, a first-order finite difference
approximation is introduced to accelerate training. Finally,
we discuss its connections with the related disentanglement
methods, i.e., SeFa [38] and Hessian Penalty [32].

3.1. Orthogonal Jacobian Regularization

Suppose G: x = G(z) is a deep generative model. Here,
z = [z1, ..., zi, ..., zm]T ∈ Rm denotes the input vector to
G, and zi denotes the i-th latent dimension. x ∈ Rn de-
notes the output of G, and xd = Gd(z) is further introduced
to denote the the d-th layer’s output of G. In terms of dis-
entangled representation, each latent dimension is assumed
to control the change in one factor of variation. That is, the
changes caused by two different latent dimensions zi and zj
should be independent (and also uncorrelated).

In our method, we use the Jacobian vector, i.e., ∂Gd

∂zi
, to

represent the change caused by the perturbation on the la-
tent dimension zi. Then, for encouraging disentangled rep-
resentation, we constrain their Jacobian vectors of different
latent dimensions to be orthogonal,[

∂Gd

∂zi

]T
∂Gd

∂zj
= 0. (1)

It is worth noting that, the orthogonality of two vectors indi-
cates that they are uncorrelated, which also encourages the
changes caused by different latent dimensions to be inde-
pendent.

Taking all latent dimensions into account, we present
the Orthogonal Jacobian Regularization (OroJaR) for help-
ing deep generative model to learn disentangled representa-
tions,

LJ(G)=

D∑
d=1

∥JT
d Jd◦(1−I)∥=

D∑
d=1

m∑
i=1

∑
j ̸=i

∣∣∣∣∣
[
∂Gd

∂zi

]T
∂Gd

∂zj

∣∣∣∣∣
2

,

(2)
where Jd = [jd,1, ..., jd,i,, jd,m] denotes the Jacobian ma-
trix of Gd with respect to z, and ◦ denotes the Hadamard
product. I denotes an identity matrix, and 1 is a matrix of
all ones. In particular, we use jd,i = ∂Gd

∂zi
to represent a

Jacobian vector.
Our OroJaR constrains the change of output caused by

latent dimension in a holistic way. To illustrate this point,
we let jijd = jd,i ◦ jd,j . Then, jTd,ijd,j can be equiva-
lently obtained as the sum of all the elements of jijd . Ob-
viously, OroJaR only constrains the summation of jijd is
small, and each element of jijd can be positive/negative as
well as large/small. Thus, our OroJaR does not impose any
individual constraint on the elements of jijd . We note that
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the changes caused by many latent semantic factors (e.g.,
shape, size, rotation, etc.) usually are spatially correlated,
and are better to be constrained in a holistic manner. In
comparison, Hessian Penalty [32] uses a max function for
aggregating the Hessian matrix of vector-valued output. It
actually requires the off-diagonal entries of the Hessian ma-
trix to be small for each element of the output, thereby mak-
ing it not sufficient in disentangling the factors of complex
and spatially correlated variations.

3.2. Approximation for Accelerated Training

During training, it is time consuming to compute the
Jacobian matrices in Eqn. (2) when m is large. Follow-
ing [16, 32], we use the Hutchinson’s estimator to rewrite
Eqn. (2) as:

LJ(G)=

D∑
d=1

Varv
[
vT (jTd jd)v

]
=

D∑
d=1

Varv
[
(jdv)

T jdv
]
, (3)

where v are Rademacher vectors (each entry has equal
probability of being -1 or 1), and Varv denotes the variance.
jdv is the first directional derivative of G in the direction v
times |v|. jdv can be efficiently computed by a first-order
finite difference approximation [35]:

jdv =
1

ϵ
[G(z+ ϵv)−G(z)], (4)

where ϵ>0 is a hyperparameter that controls the granularity
of the first directional derivative estimate. In our implemen-
tation, we use ϵ = 0.1.

3.3. Applications in Deep Generative Models

Our OroJaR can be applied to many generative models,
and here we consider the representative Generative Adver-
sarial Networks (GAN) [12]. The OroJaR can be applied to
GAN in two ways.
Training from scratch. For GAN, the discriminator D and
generator G are respectively trained using LD and LG,

LD = Ex[f(D(x))] + Ez[f(1−D(G(z)))], (5)

LG = Ez[f(1−D(G(z)))], (6)

where f is a model-specific mapping adopted by GAN. In
order to apply OroJaR to GAN training, we simply modify
the loss for the generator as,

Loro
G = Ez[f(1−D(G(z)))] + λEz[LJ(G(z))], (7)

where λ is a trade-off hyper-parameter. Incorporating
LJ(G) into GAN training is beneficial to learning disen-
tangled representation, and encourages G to achieve con-
trollable and disentangled image generation.
Apply to pre-trained generator. Analogous to Hessian
Penalty [32], our OroJaR can be used to identify inter-
pretable directions in latent space of a pretrained generator.

Specifically, we introduce a learnable orthonormal matrix
A ∈ Rm×N , where N denotes the number of orthonormal
directions we want to learn and m is the latent dimension;
the columns of A store the directions we are learning. After
appling the OroJaR to pre-trained G, A is optimized by:

A∗ = argmin
A

Ez,ωi
LJ(G(z+ ηAωi)), (8)

where ωi ∈ {0, 1}N is a one-hot vector which indexes the
columns of A and η is a scalar which controls how far z
should move in the direction. The difference with Eqn. (7)
is the OroJaR is now taken w.r.t. ωi instead of z. In our
training, we use η = 1. After optimization, A can be used
to edit the generated images by G(z+ ηAωi).

3.4. Connections with SeFa and Hessian Penalty

We further discuss connections and differences of Oro-
JaR with two representative disentanglement learning meth-
ods, i.e., SeFa [38] and Hessian Penalty [32].
SeFa. SeFa [38] performs SVD on the weight matrix W ∈
Rm1×m of the first layer to discover semantically meaning-
ful directions in the latent space of pre-trained GAN. Let
W = UΛVT be the singular value decomposition (SVD)
of W. In SeFa [38], the semantically meaningful direc-
tions are given as the column vectors of V. We introduce
z′ = VT z and W′ = UΛ, and define G1(z) = Wz and
G′

1(z
′) = W′z′. One can easily see that (i) each dimen-

sion of z′ corresponds to a semantically meaningful direc-
tion discovered by SeFa [38]. (ii) G′

1(z
′) is equivalent with

G1(z), i.e., G1(z) = G′
1(z

′). (iii) Hard orthogonal Jaco-
bian constraint can be attained, i.e.,[

∂G′
1

∂z′i

]T
∂G′

1

∂z′j
= 0. (9)

Thus, SeFa [38] can be treated as a special case of our Oro-
JaR by finding the globally optimum of LJ defined only on
the first layer G′

1(z
′) and keeping the parameters of all other

layers unchanged. In contrast to SeFa, our OroJaR can be
deployed to multiple layers and be jointly optimized with
GAN in an end-to-end manner, thereby being beneficial to
learn better disentangled representation.
Hessian Penalty. To learn disentangled representation,
Hessian Penalty [32] encourages the generator to have di-
agonal Hessian of the output with respect to the input. By
only considering two latent dimensions zi and zj , the ob-
jective of Hessian Penalty can be written as,∥∥∥∥ ∂2G

∂zi∂zj

∥∥∥∥2 = 0. (10)

The left term can be further decomposed into 4 components,
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Figure 2: Comparison of disentanglement quality by our OroJaR, Hessian Penalty [32] and SeFa [38] on Edges+Shoes. For
each method, we randomly sample two 12-dimensional Gaussian vectors. We select two interpretable dimensions to display,
i.e., the shape and style of shoes, and every two rows correspond to one interpretable dimension. Moving across a row, we
vary the value of dimension zi from −2 to +2 while keeping the other 11 dimensions unchanged.
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Figure 3: Comparison of disentanglement quality by our OroJaR, Hessian Penalty [32] and SeFa [38] on CLEVR-Simple.
Our method has the ability to shrink the latent space when it is overparameterized. So we only show the top six activeness
scoring dimensions (See Fig. 7 and Sec. 4.3). (a) SeFa disentangles the positions (top two rows). However it entangles the
color with the shape variation (3rd-5th rows). (b) Hessian Penalty learns to control the vertical position, shape and color of
the object independently (2nd-5th rows). However, horizontal position is unexceptedly controlled by two dimensions (1st and
6th rows). (c) Our method can successfully disentangle the four factors (two dimensions for color variation, but the colors
controlled by them are non-overlapping) in CLEVR-Simple, and achieves better disentanglement performance.∥∥∥∥ ∂2G

∂zi∂zj

∥∥∥∥2

=

[
∂2G

∂zi∂zj

]T
∂2G

∂zj∂zi

≈ 1

δziδzj

[
∂G(zi, zj + δzj)

∂zi

]T
∂G(zi + δzi, zj)

∂zj

− 1

δziδzj

[
∂G(zi, zj + δzj)

∂zi

]T
∂G(zi, zj)

∂zj

− 1

δziδzj

[
∂G(zi, zj)

∂zi

]T
∂G(zi + δzi, zj)

∂zj

+
1

δziδzj

[
∂G(zi, zj)

∂zi

]T
∂G(zi, zj)

∂zj
.

(11)

where ∂G(zi,zj+δzj)
∂zi

is the partial gradient of G at (zi,
zj + δzj) in the zi direction, and the other items are sim-

ilarly defined. When the partial gradient is smooth with the
small changes in zi and zj , our OroJaR constrains both the
last component and the other three components of Eqn. (11)
to approach zero. Thus, OroJaR can offer an indirect and
stronger regularization of Hessian Penalty. Moreover, Oro-
JaR constrains the change caused by latent dimension in a
holistic way, making it effective in disentangling latent di-
mensions corresponding to spatially correlated variations.

4. Experiments
In this section, we begin with an introduction of the

datasets and implementation details, and then evaluate our
OroJaR qualitatively and quantitatively by comparing it
with the state-of-the-art methods. A comprehensive abla-
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Figure 4: Comparison of disentanglement quality by our OroJaR, Hessian Penalty [32] and SeFa [38] on CLEVR-Complex.
Here we show three representative factors discovered by all methods, i.e., color (Top), shape of the rightmost object (Middle),
and shape of the leftmost object (Bottom). (a) SeFa fails to disentangle the shape with color (see Middle and Bottom), and
results in entangled representations. (b) Hessian Penalty performs poorly in controlling a single object while keeping another
object unchanged. It learns to control the color of two objects by one dimension (see Top), and the shape or color of another
object is also changed when changing the shape of one object (see Middle and Bottom). (c) Our OroJaR is effective in
disentangling the color of leftmost object and the shape of each object.

tion study is given in the suppl.

4.1. Datasets and Implementation Details
4.1.1 Datasets

Edges+Shoes. Edges+Shoes [46] consists of 50,000 edges
and 50,000 shoes images. Following [32], we adopt this
dataset to evaluate whether our method can discover an
independent input component to control image-to-image
translation without domain supervision.
CLEVR. CLEVR dataset contians three synthetic datasets
based on CLEVR [20]. The first dataset, CLEVR-1FOV,
features a red cube with just a single factor of variation
(FOV): object location along a single axis. The second,
CLEVR-Simple, has four FOVs: object color, shape, and
location (both horizontal and vertical). The third, CLEVR-
Complex, retains all FOVs from CLEVR-Simple and adds
a second object and another FOV (i.e., object size), result-
ing in a total of ten FOVs (five per object). Each dataset
consists of approximately 10,000 images.
Dsprites. Dsprites [29] contains totally 737,280 images
generated from 5 independent latent factors (shape, size, ro-
tation, horizontal and vertical positions).

4.1.2 Implementation Details
For Edges+Shoes and CLEVR datasets, we follow [32] to
train the ProGAN [22] on them and set the dimension of
input to 12. The image size is set to 128 × 128. For the
Dsprites dataset, we train a simple GAN (6 convolution lay-
ers), and the dimension of input is set to 6. The image size

is set to 64 × 64. In all the experiments, the OroJaR is ap-
plied right after the projection/convolution outputs for the
first D (10 for ProGAN and 4 for simple GAN) layers. We
find that our OroJaR empirically achieves the best disentan-
glement performance when D corresponds to the last layer
before the last upsampling layer.

For BigGAN experiments, we set the N = m and re-
strict A to be orthonormal by applying Gram-Schmidt and
normalization during each forward pass.
4.2. Qualitative Evaluation

In this subsection, we qualitatively compare the dis-
entanglement quality of our OroJaR with three state-of-
the-art disentanglement methods, i.e., SeFa [38], Hessian
Penalty [32], and GAN-VP [48].
Edges+Shoes. Edges+Shoes dataset is a real-world but rel-
atively simple dataset, where no ground-truth factors are
provided. For a fair comparison, we choose the attributes
corresponding to top two eigenvalues (lower value means
ambiguous semantic direction) in SeFa. From Fig. 2, SeFa,
Hessian Penalty, and our OroJaR learn the same two major
disentangled variations, i.e., the shape and style of shoes.
While our method covers more diverse shapes.
CLEVR-Simple. Fig. 3 shows the comparison on the
CLEVR-Simple dataset. We note that the number of fac-
tors in this dataset is 4, while the dimension of input is 12.
When the latent space is overparameterized, our OroJaR can
automatically turn off the extra dimensions. Here we only
compare the top six activeness scoring dimensions with the
competing methods (See Fig. 7 and Sec. 4.3). The remain-
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Figure 5: Comparison of disentanglement quality by
SeFa [38], GAN-VP [48], Hessian Penalty [32], and our
OroJaR on the Dsprites dataset. Top-Left: SeFa [38] entan-
gles the rotation with the positions of object (2nd row). It
also entangles the size factor with the shape factor (4th and
5th rows). Top-Right: For GAN-VP [48], the positions are
entangled with shape and rotation. Bottom-Left: Hessian
Penalty [32] entangles the rotation with positions, and also
entangles the size with shape. Bottom-Right: Our method
can successfully disentangle these five factors. From top
to down, each row controls the horizontal position, vertical
position, rotation, size, and shape, respectively. The latent
dimension of the last row is correctly deactivated.

ing dimensions are deactivated based on both our OroJaR
and Hessian Penalty [32], and thus are not shown. From
Fig. 3, SeFa learns to control the horizontal and vertical po-
sitions of the object (top two rows), but entangles the color
with the shape variations (3rd-5th rows). Hessian Penalty
successfully disentangles the vertical position, shape, and
color of the object (2nd-5th rows), but the horizontal posi-
tion is unexpectedly controlled by two dimensions (1st and
6th rows). In comparison, our method successfully disen-
tangles the four factors (top five rows) and deactivates the
extra dimension (6th row).

CLEVR-Complex. Fig. 4 shows the comparison on the
CLEVR-Complex dataset. Obviously, SeFa fails to disen-
tangle the shape with color variations. Hessian Penalty per-
forms poorly in controlling a single object while keeping
another object unchanged. When changing the shape of one
object, the shape or color of another object is also changed
at the same time. A possible explanation is that Hessian
Penalty constrains each entry of output independently. This
makes it not sufficient in disentangling the complex latent
directions (e.g., shape and color of an object) corresponding
to spatially correlated variations. On the contrary, our Oro-
JaR effectively disentangles the color of the leftmost object
and the shape of each object, and thus learns a better disen-
tangled representation.

Original Move along the direction

V
oynov [41]

H
essian [32]

O
urs

Figure 6: Comparing the quality of latent space editing by
our OroJaR, Hessian Penalty [32], and Voynov [41]. The
direction is added from η = -2.5 to 2.5 for Hessian Penalty
and our OroJaR, and from -8 to 8 for Voynov. Our OroJaR
better disentangles zoom from rotation and color.

Dsprites. Fig. 5 shows the qualitative comparison with
SeFa [38], Hessian Penalty [32], and GAN-VP [48] on the
Dsprites dataset. GAN-VP [48] is still limited in learn-
ing disentangled representations, where the positions are
entangled with the shape and rotation. As for Hessian
Penalty [32] and SeFa [38], the positions of object are en-
tangled with the rotation. They also fail to disentangle the
shape with the size variation. In contrast, our OroJaR can
successfully disentangle these five factors while correctly
deactivating the latent dimension of the last row. The results
indicate that our OroJaR is superior in disentangling spa-
tially correlated variations (e.g., shape, size, rotation, etc.).
BigGAN. According to Sec. 3.3, our OroJaR can also be
used to discover the meaningful latent directions of pre-
trained GAN. Here we apply it to class-conditional Big-
GAN [4] trained on ImageNet [8]. Fig. 1 shows our results
on Golden Retrievers and Churches, and our method is able
to discover several disentangled directions, such as rotate,
zoom, and color. Fig. 6 shows the qualitative comparison
with Hessian Penalty [32] and Voynov [41]. Voynov [41]
entangles the color of the dog with zoom variation. Hes-
sian Penalty entangles the rotation with zoom variation. In
contrast, our OroJaR performs a better zoom quality.
More Results. More qualitative results (e.g. CLEVR-U,
CLEVR-1FOV, and BigGAN) are given in the suppl.
4.3. Quantitative Evaluation

In this subsection, we quantitatively compare our Oro-
JaR with several state-of-the-art deep generative models.
Following [32], we use Perceptual Path Length (PPL) and
Frechet Inception Distance (FID) as the quantitative met-
rics. PPL [23] measures the smoothness of the generator by
evaluating how much G(z) changes under perturbations to
z. While FID [14] exploits the distance between activation
distributions for measuring the quality of generated images.
However, neither PPL nor FID are designed for assessing
disentanglement performance. So we also report the Varia-
tion Predictability Disentanglement Metric (VP) [48] in the
quantitative evaluation.

Table 1 lists the quantitative comparison results on the
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Table 1: Comparison of Perceptual Path Length (PPL), Frchet Inception Distance (FID) and Variation Predictability Metric
(VP) for different methods on Edges+Shoes and CLEVR. For FID and PPL, lower is better, and for VP, higher is better. We
report the model with the best FID within the same number of training iterations. PPL, FID, and VP are computed with
100,000, 50,000 and 10,000 samples. The CLEVR-U dataset indicates that we train the model on CLEVR-Simple by setting
m = 3. Due to CLEVR-1FOV only has one factor, we do not report the VP results on it.

Method
Edges+Shoes CLEVR-Simple CLEVR-Complex CLEVR-U CLEVR-1FOV

PPL (↓) FID (↓) VP (↑) PPL FID VP PPL FID VP PPL FID VP PPL FID VP

InfoGAN [7] 2952.2 10.4 15.6 56.2 2.9 28.7 83.9 4.2 27.9 766.7 3.6 40.1 22.1 6.2 -
ProGAN [22] 3154.1 10.8 15.5 64.5 3.8 27.2 84.4 5.5 25.5 697.7 3.4 40.2 30.3 9.0 -
SeFa [38] 3154.1 10.8 24.1 64.5 3.8 58.4 84.4 5.5 30.9 697.7 3.4 42.0 30.3 9.0 -
Hessian Penalty [32] 554.1 17.3 28.6 39.7 6.1 71.3 74.7 7.1 42.9 61.6 26.8 79.2 20.8 2.3 -
Ours 236.7 16.1 32.3 6.7 4.9 76.9 10.4 10.7 48.8 40.9 4.6 90.7 2.8 2.1 -

Table 2: Comparison of Variation Predictability Metric
(VP) for different methods on Dsprites.

Method GAN SeFa GAN-VP Hessian Penalty Ours
VP(%, ↑) 30.9 (0.84) 48.6 (0.70) 39.1 (0.48) 48.5 (0.56) 54.7 (0.27)
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Figure 7: Comparison of Activeness Scores (how much
each dimension controls G’s output) on CLEVR-Simple
and Dsprites. (a) On CLEVR-Simple, both our OroJaR and
Hessian Penalty [32] can deactivate the redundant dimen-
sions (5/6 of 12 are activated). (b) On Dsprites, we have
similar observation. SeFa [38] and GAN-VP [48] also have
the ability to deactivate redundant dimensions.
Edges+Shoes and the CLEVR datasets. The CLEVR-1FOV
dataset has only one factor and all the competing methods
have the same VP value. So we do not report the VP results
on this dataset. From Table 1, our OroJaR achieves better
VP results on all datasets, indicating that it can learn better
disentangled representation. Besides, it also serves as a path
length regularization in [24] and helps learn a smooth latent
space, resulting better PPL results. For our OroJaR, we em-
pirically find that removing the normalization and activa-
tion of the first fully-connected layer is beneficial to the im-
provements on disentanglement. Albeit InfoGAN [7] gets
lower FID on most datasets, it performs poorly in learn-
ing disentangled representation. Table 2 lists the VP results
on the Dsprites dataset, and our OroJaR also achieves the
highest VP among the competing methods, indicating that
our OroJaR performs favorably against the state-of-the-art
methods for unsupervised disentanglement learning.

In many practical scenarios, we do not have sufficient
prior to setting the number of disentangled factors. One
feasible solution is to use a larger dimension of input, and

the disentanglement algorithm is able to identify and turn
off redundant dimensions. Following [32], the activeness
of a dimension zi is introduced as the mean variance of
G(z) as we change zi while keeping the other dimensions
fixed. For assessing the ability to find redundant dimen-
sions, Fig. 7 shows the activeness scores on CLEVR-Simple
and Dsprites. In comparison to the GAN counterpart, both
SeFa [38], Hessian Penalty [32], and our OroJaR is able to
find redundant dimensions with smaller activeness scores.
However, SeFa [38] and Hessian Penalty [32] fails to find
all the redundant dimensions, which can also be observed
from Fig. 3. As for GAN-VP [48], we note that the VP loss
encourages the variation caused by each dimension of z to
be distinguishable. Consequently, it can only deactivate at
most one dimension, and the dimension of z should be care-
fully set to ensure GAN-VP works well. So we do not re-
port the results of GAN-VP on Edges+Shoes and CLEVR,
in which the dimension of input is set to 12 and is higher
than the number of FOVs.

5. Conclusion
In this paper, we proposed an Orthogonal Jacobian Reg-

ularization (OroJaR) to help the generative model in learn-
ing disentangled representations. It encourages disentan-
glement by constraining the changes of output caused by
different latent dimensions (i.e., Jacobian vectors) to be or-
thogonal. Moreover, our OroJaR can be applied to multiple
layers of the generator, and constrains the output in a holis-
tic way, making it effective in disentangling latent dimen-
sions corresponding to spatially correlated variations. Ex-
perimental results demonstrate that our OroJaR is effective
in disentangled and controllable image generation, and per-
forms favorably against the state-of-the-art methods. In the
future, we will extend OroJaR to VAE and other generative
models for improving disentanglement learning.
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