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Abstract

Visible infrared person re-identification (VI-REID) aims
to match pedestrian images between the daytime visible and
nighttime infrared camera views. The large cross-modality
discrepancies have become the bottleneck which limits the
performance of VI-REID. Existing methods mainly focus
on capturing cross-modality sharable representations by
learning an identity classifier. However, the heterogeneous
pedestrian images taken by different spectrum cameras dif-
fer significantly in image styles, resulting in inferior dis-
criminability of feature representations. To alleviate the
above problem, this paper explores the correlation between
two modalities and proposes a novel syncretic modality
collaborative learning (SMCL) model to bridge the cross-
modality gap. A new modality that incorporates features of
heterogeneous images is constructed automatically to steer
the generation of modality-invariant representations. Chal-
lenge enhanced homogeneity learning (CEHL) and aux-
iliary distributional similarity learning (ADSL) are inte-
grated to project heterogeneous features on a unified space
and enlarge the inter-class disparity, thus strengthening the
discriminative power. Extensive experiments on two cross-
modality benchmarks demonstrate the effectiveness and su-
periority of the proposed method. Especially, on SYSU-
MM01 dataset, our SMCL model achieves 67.39% rank-
1 accuracy and 61.78% mAP, surpassing the cutting-edge
works by a large margin.

1. Introduction
Person re-identification (Re-ID) plays an essential role

in video surveillance, which automatically searches person

images across multiple non-overlapping cameras [39, 36].

Recently, fast-growing works contribute to visible modality

person Re-ID and have achieved remarkable performance

[1, 28]. However, visible cameras cannot capture enough
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identity information in the dark. To ensure the safety of

pedestrians at night, infrared cameras are deployed to ac-

quire infrared person images, cooperating with visible cam-

eras for 24-hour video surveillance. Hence, visible infrared

person re-identification (VI-REID) [27] has emerged to re-

trieve visible (infrared) images according to the given in-

frared (visible) images.

VI-REID is challenging due to the considerable visual

differences among heterogeneous pedestrian images. Ex-

isting studies aim to address this challenge mainly from

two aspects, i.e., image-level and feature-level. To achieve

modality unification, image generation-based methods [11,

22, 25, 3, 23] are proposed to translate heterogeneous im-

ages to the same modality for style consistency. However,

the introduction of additional noise during the image trans-

lation affects the extraction of discriminative features. To

ensure feature alignment, dual-path networks are exploited

to obtain modality-specific and modality-invariant repre-

sentations [38, 33, 7, 5, 32], but the last few layers are diffi-

cult to map the specific representations of each modality to

a shared space. Subsequently, one-stream weight-sharing

network is introduced in massive works [4, 24, 30, 9] to

directly extract modality-sharable features. However, the

performance of these methods is far inferior to that of visi-

ble modality person Re-ID because of the significant color

discrepancies between two modalities.

Recently, several researches have built a new modal-

ity and combine with two real modalities to conduct tri-

modal sharable feature learning, which gains inspiring per-

formance. Li et al. [13] introduce an auxiliary X modality

as an assistant for modality-invariant feature generation. Ye

et al. [37] propose a homogeneous augmented grayscale

modality and enhance the robustness against color varia-

tions. However, these methods neglect the distribution of

features in the intermediate modality. As shown in Figure

1, since the images of X modality and grayscale modality

are directly generated by the visible images without con-

sidering the infrared images, there are two main drawbacks

encountering in feature distribution of testing set: 1) The
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X modality Grayscale modality Syncretic modality

Figure 1. Feature representation distribution of ten randomly se-

lected identities in visible, infrared and three kinds of auxil-

iary modalities. “+” means visible modality, “*” means infrared

modality, and “·” means the auxiliary X, grayscale or the syncretic

modality. Different colors represent different identities.

feature distribution of intermediate modality is highly cor-

related with that of visible modality but not related to in-

frared modality. 2) The representations of infrared images

and visible images still have a great gap in the learned em-

bedding space. Therefore, it is difficult to establish distri-

bution correlation among three modalities only based on the

transitional images generated by visible images.

To break above limitations, this paper introduces a novel

syncretic modality collaborative learning (SMCL) model to

improve the similarity of feature distributions among het-

erogeneous pedestrian images. The images of syncretic

modality are self-generated from both visible and infrared

images, thus reserving their common representations. Mu-

tual interaction of three modalities prompts the genera-

tion of modality-shared pedestrian features. Specifically,

since the infrared images lack color information and are

hard to differentiate, we perform challenge enhanced ho-

mogeneity learning (CEHL) by bringing a pressure to bear

on the identity classifier of infrared images, thus reinforc-

ing the discriminative capability of embedded representa-

tions. Furthermore, auxiliary distributional similarity learn-

ing (ADSL) is designed to minimize the distance between

the centers of data distribution via three directional con-

straints. Ultimately, we introduce incremental training (IT)

strategy by firstly conducting representation learning to

roughly restrict the cross-modality feature distribution and

then executing metric learning to further narrow-down the

modality discrepancies.

Through the proposed method, the feature distributions

of visible, infrared and syncretic modalities are visualized

in Figure 1. Compared with X modality and grayscale

modality, the feature distribution of our syncretic modal-

ity is separated from that of visible modality, and the gen-

erated images no longer correspond to the visible images

one-to-one. Consequently, the syncretic modality really

works in feature learning and metric learning. In addition,

under the guidance of syncretic modality, the representa-

tions of heterogeneous images with the same identity have

been assembled, and the feature distances of different iden-

tities have been enlarged, thus promoting the performance

of VI-REID. The experimental results on SYSU-MM01 and

RegDB datasets validate the effectiveness of our method.

The main contributions of this paper can be summarized

as follows:

• We propose a novel syncretic modality collaborative

learning model for VI-REID task by constructing a

self-generated modality which combines visible and

infrared image information. Joint learning of three

modalities induces the network to capture modality-

invariant representations with high discriminability.

• We introduce challenge enhanced homogeneity learn-

ing to increase the difficulty of infrared image clas-

sifier, thereby urging the network to obtain more dis-

criminative features for correct classification. Besides,

auxiliary distributional similarity learning is employed

to shrink the cross-modality gap through tri-directional

distance suppression.

• We develop incremental training scheme to handle the

distribution of heterogeneous images from coarse to

fine, thus learning more effective modality-shared dis-

criminative representations for VI-REID. The perfor-

mance of our SMCL model outperforms the state-of-

the-art methods by a remarkable margin.

2. Related Work
Visible modality person Re-ID. The considerable view-

point changes, human posture variations and resolution

changes under different visible cameras are the main chal-

lenges of visible modality person Re-ID. The improve-

ments of this task in existing deep learning-based methods

are mostly from two aspects, i.e., representation learning

[18, 10, 15] and metric learning [14, 20, 29]. In representa-

tion learning-based methods, ID-discriminative embedding

(IDE) model [40] is usually introduced to regard each per-

son identity as a unique class for image classification. Sun

et al. [21] partition the person features into p horizontal

stripes and input each part of feature into a classifier to ex-

tract fine-grained representations. Liu et al. [15] propose

a view confusion mechanism to learn view-invariant rep-

resentations. In metric learning-based methods, discrimi-

native features are learned by narrowing down the feature

distances between person images. Triplet loss [8] and its

improved version [2] are exploited for metric learning. Ye

et al. [36] exploit weighted regularization triplet loss to op-

timize the distance between positive and negative samples

without fixed margin. Song et al. [20] improve the triplet

loss and propose the lifted structured embedding by com-

paring the positive pair with all negative pairs. However,
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above methods are only exploited for single-modality per-

son Re-ID. There are no specific designs for cross-modality

pedestrian retrieval.

Visible infrared person Re-ID. The large disparity of

visible and infrared images makes VI-REID a challenging

task. Wu et al. [27] firstly define the VI-REID problem and

contribute a new multiple modality Re-ID dataset SYSU-

MM01 for research. Simultaneously, they design a one-

stream deep zero-padding framework to explore domain-

specific structure automatically in network. Afterwards, Ye

et al. [38] exploit bi-directional top-ranking loss to han-

dle the modality gap. Dai et al. [4] introduce a one-stream

network with adversarial learning to compete with repre-

sentation learning for performance improvement. More-

over, Ye et al. [35] propose dynamic dual-attentive aggre-

gation (DDAG) learning to mine both intra-modality part-

level and cross-modality graph-level contextual cues for

VI-REID. However, the cross-modality representations in

above-mentioned methods are hard to map into the consis-

tent space, thus limiting the performance.

To mitigate the modality gap, massive image translation-

based methods are developed to firstly achieve modality

unification and then learn modality-shared representations.

D2RL [25] utilizes variational autoencoders to convert im-

ages between visible and infrared modalities. Then, they

combine arbitrary modality’s person images and the gen-

erated heterogeneous images as multi-spectral images to

reduce the appearance discrepancy. Wang et al. [22]

only perform unidirectional translation from visible to in-

frared modality, and conduct representation learning with

the real infrared images and fake infrared images which

generated from RGB images. Hi-CMD [3] attempts to cap-

ture ID-discriminative and color-irrelevant representations

for cross-modality person retrieval. In addition, an auxil-

iary X modality [13] and the grayscale augmented modality

[37] are proposed to better bridge the modality gap with

tri-modal learning. However, the learned representations of

these two self-generated modalities are close to the visible

modality data but far away from the infrared modality data,

thus affecting the ability of metric learning.

3. Proposed Method
In this section, we introduce the details of the proposed

syncretic modality collaborative learning (SMCL) model

for VI-REID. As shown in Figure 2, we firstly propose the

syncretic modality generative module (SMGM) with a

lightweight network, and then exploit challenge enhanced
homogeneity learning (CEHL) to acquire modality-shared

representations. In addition, auxiliary distributional sim-
ilarity learning (ADSL) is employed to narrow-down the

cross-modality gap. Finally, an incremental training (IT)
strategy is introduced to constrain the feature distribution

of heterogeneous images from coarse to fine.

3.1. Syncretic Modality Generative Module

In this section, we construct the self-generated syncretic

modality which is significant in the subsequent representa-

tion learning and metric learning. First, we denote the input

visible images and infrared images as {vn|vn ∈ V }Nn=1 and

{in|in ∈ I}Nn=1, where N is the number of visible and in-

frared images in a mini-batch. The heterogeneous images

are sent into a lightweight network composed of two 1×1

convolutional layers. Specially, we conduct a pixel-to-pixel

feature fusion operation to build the syncretic modality af-

ter the first convolutional layer, which can be expressed as:

Sn = Vn � In, n ∈ [1, N ], (1)

where the feature maps S ∈ R
C×H×W , V ∈ R

C×H×W ,

I ∈ R
C×H×W , C is the total number of channels and

H × W is the feature map size. “�” represents the

Hadamard product operation. Then, a ReLU activation

layer [12] is provided to improve the non-linear ability of

the syncretic modality representations. With the second

1×1 convolutional operation, the feature size of syncretic

modality is consistent with that of infrared and visible im-

ages, so that they can be sent to the parameter-sharing CNN

for tri-modality sharable feature learning. The images of

the constructed syncretic modality maintain spatial infor-

mation and pedestrian structure information. Importantly,

they reserve the representations of visible and infrared im-

ages, rather than only visible images in X-modality [13] and

grayscale modality-based methods [37].

3.2. Challenge Enhanced Homogeneity Learning

To acquire modality-sharable identity-discriminative

representations, we introduce CEHL to project cross-

modality representations on a consistent space. Through

CNN, global average pooling (GAP) and batch normaliza-

tion (BN) operations, the feature vectors are fed into fully

connected layers for identity classification. Softmax loss is

usually utilized in most person Re-ID methods for discrimi-

native representation learning. Since the visible images and

syncretic images have rich color information, the softmax

loss for visible representations can be defined as:

LV
id = − 1

N

N∑

n=1

log
eW

T
yn

fV
n

∑U
u=1 e

WT
u fV

n

, (2)

where yn and fV
n are the identity and feature vector of n-

th pedestrian image, N is the number of visible images

in a mini-batch, U is the number of identities, and Wu

is the classifier for u-th identity. The softmax loss for

syncretic features LS
id can be denoted by the same form.

With the supervision of softmax loss, the network can learn

salient modality-invariant representations from visible and

syncretic images.
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Figure 2. The proposed SMCL model for VI-REID which contains syncretic modality generative module, challenge enhanced homogeneity

learning, auxiliary distributional similarity learning and incremental training strategy. The syncretic features generated via the syncretic

modality generative module are exploited with visible and infrared images for modality-sharable feature learning. For CEHL, the improved

identity losses (LV
id,LS

id,LI
id) are leveraged to enhance the discriminative power of the embedding features. For ADSL, tri-directional

center-based constrained loss (Ltricenter) and global center-constrained loss (Lglobal) are integrated to handle the cross-modality gaps.

Finally, IT strategy is conducted to constrain the feature distribution from coarse to fine and improve the training efficiency.

However, the key challenge of VI-REID mainly lies in

the lack of homogeneous representations between infrared

and visible images. The classifier with standard softmax

loss has weak discriminative power for infrared images . To

enhance the capability of the identity classifier, we increase

the degree of difficulty to the classifier and design an im-

proved softmax loss which can be formulated as:

LI
id = − 1

N

N∑

n=1

log
eW

T
yn

fI
n−m

∑U
u=1 e

WT
u fI

n

, (3)

where m is the degree of difficulty. The manual pressure

stimulates the network to further learn identity-specific fea-

tures for correct classification. Meanwhile, the joint of syn-

cretic modality in the training phase brings more modality-

shared information, thereby boosting the intra-class cross-

modality similarity. The overall identity loss in challenge

enhanced homogeneity learning can be written as:

Lid = LV
id + LS

id + LI
id. (4)

3.3. Auxiliary Distributional Similarity Learning

To enhance the cross-modality intra-class similarity and

enlarge the intra-modality inter-class disparity, we con-

sider the correlation of three modalities and design a

tri-directional center-based constrained loss and a global

center-constrained loss. We leverage the center of feature

distribution in syncretic modality as an anchor. As shown in

Figure 3, suppose that there are P ×K images of P identi-

ties in a mini-batch, where each identity contains K images.

The feature distributional center of an identity in syncretic

modality can be expressed as:

cps =
1

K

K∑

k=1

spk, p ∈ [1, P ], (5)

where spk is the feature vector of k-th image output

from GAP. We introduce a tri-directional center-based con-

strained loss to handle the distances between the anchor and

centers of other modalities, which can be interpreted as:

Ltricenter =

P∑

p=1

max[(ρ+ d(cps , c
p
v)−min

p �=j
d(cps , c

j
s)), 0]

+

P∑

p=1

max[(ρ+ d(cps , c
p
i )−min

p �=j
d(cps , c

j
s)), 0],

(6)

where cpv and cpi are the centers of visible and infrared fea-

tures for the p-th identity, p and j represent different iden-

tities within a mini-batch. d(·) denotes the Euclidean dis-

tance between two centers. We aim to pull close the dis-

tances between centers of different modalities for the same

identity and push away the centers of syncretic modality for

different identities, thus suppressing cross-modality varia-

tions while ensuring high discriminability.

Moreover, to avoid falling into local optimum with the

center of syncretic modality as an anchor, we exploit a
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Figure 3. Illustration of the auxiliary distributional similarity

learning which contains tri-directional center-based constrained

loss (solid line) and a global center-constrained loss (dotted line).

Different colors and geometric shapes denote different modalities

and identities, respectively. The circle represents the center of fea-

ture distribution of a modality for an identity.

global center-constrained loss to directly restrain the dis-

tance of centers between visible and infrared features,

which can be formulated as:

Lglobal =

P∑

p=1

‖cpv − cpi ‖2 . (7)

For the features of the same identity, we not only regard

the features of syncretic modality as an intermediary to pro-

mote the cross-modality distributional similarity, but also

increase a straightforward restriction for heterogeneous im-

ages; for the features of different identities, the centers of

the syncretic modality are utilized to enlarge the feature dis-

tance. The overall loss in ADSL can be written as:

Ladsl = Ltricenter + Lglobal. (8)

The total loss of our SMCL model can be denoted as:

Ltotal = Lid + λLadsl. (9)

3.4. Incremental Training Strategy

Most of person Re-ID methods jointly exploit represen-

tation learning and metric learning to obtain effective fea-

tures for person matching. However, the heterogeneous im-

ages have random distribution in the initial state. The joint

training may cause inconsistency in the direction of gradi-

ent descent for the two learning manners, thus affecting the

training efficiency. To improve the training efficiency and

optimize the objective function to the maximum extent, we

propose an incremental training (IT) scheme as shown in

Algorithm 1. The CEHL performed in the initial stage of

training coarsely clusters the features of the same pedes-

trian, and the subsequent collaborative learning of CEHL

Algorithm 1 Incremental Training of SMCL Model

Input: Visible image set V = {v1, ..., vn}, infrared image

set I = {i1, ..., in}, label set Y = {y1, ..., yn}, the

total training epoch T , the start epoch of collaborative

learning Q, parameters m, ρ and λ;

1: for t = 1 to T do
2: Generate syncretic feature maps S by Eq.(1)

3: Output fV , fS and f I from the backbone

4: Compute the identity loss Lid by Eq.(4)

5: if t < Q then
6: Update parameters θid of CEHL

7: else
8: Calculate Ladsl according to Eq.(8)

9: Calculate Ltotal according to Eq.(9)

10: Update parameters θid of CEHL

11: Update parameters θadsl of ADSL

12: end if
13: end for
Output: Optimized model of the proposed method

and ADSL narrows the feature distance and reinforces the

similarity of cross-modality intra-class representations. The

proposed IT strategy can handle the distribution of hetero-

geneous images from coarse to fine, thus enhancing the dis-

criminability of the embedding features.

4. Experiments
4.1. Datasets and Settings

Datasets. To evaluate the performance of the pro-

posed method, we conduct experiments on two public cross-

modality person Re-ID datasets, i.e., SYSU-MM01 [27]

and RegDB [19]. SYSU-MM01 [27] consists of 44,745

heterogeneous pedestrian images of 491 identities captured

by 4 visible cameras and 2 infrared cameras. There are

22,258 visible images and 11,909 infrared images of 395

identities in the training set. In the testing phase, infrared

and visible images are adopted as query set and gallery

set, respectively. The search mode consists of all-search

mode and indoor-search mode. For both modes, we adopt

single-shot and multi-shot settings to evaluate the perfor-

mance. RegDB [19] contains 4120 images of 412 identities

acquired by dual-camera systems. Each person includes 10

visible images and 10 thermal images. We follow the eval-

uation protocol in [38]. To achieve statistically stable re-

sults, the procedure is repeated for 10 trials to calculate the

average performance. The standard Cumulative Matching

Characteristics (CMC) curve and mean Average Precision

(mAP) are adopted as the evaluation metrics.

Implementation details. The proposed method is im-

plemented with PyTorch framework on two TITAN RTX

GPUs. We adopt ResNet-50 model pretrained on ImageNet
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Table 1. Different components of the proposed method on two

datasets. CMC (%) at rank 1 and mAP (%).

B CEHL ADSL IT
SYSU-MM01 RegDB

r=1 mAP r=1 mAP

� × × × 57.00 55.49 75.77 70.52

� � × × 59.97 56.01 77.52 73.40

� � � × 63.16 59.92 80.63 73.85

� � � � 67.39 61.78 83.05 78.57

Table 2. Performance of different auxiliary modalities on two

datasets. CMC (%) at rank 1 and mAP (%).

Auxiliary Modality
SYSU-MM01 RegDB

r=1 mAP r=1 mAP

Nothing 57.58 54.69 78.49 76.89

X modality 62.34 59.33 79.46 73.00

grayscale modality 64.23 60.88 74.36 69.41

syncretic modality 67.39 61.78 83.05 78.57

as the backbone network and modify the stride of the last

convolutional block to 1. For a training batch, we randomly

select heterogeneous images of 4 person. Each identity con-

tains 4 infrared images and 4 visible images. All the images

are resized to 3 × 384 × 128. Adam optimizer is exploited

with the base learning rate initialized to 3.5×10−4, and then

decayed to 3.5× 10−5, 3.5× 10−6 after 40, 70 epochs, re-

spectively. We exploit CEHL and introduce ADSL for col-

laborative learning after 220 epochs with totally 300 epochs

on SYSU-MM01 dataset. For RegDB dataset, we train the

model with totally 200 epochs and introduce ADSL after

120 epochs. The parameter λ and ρ are set to 0.5 and 0.3, re-

spectively. During the testing phase, we utilize cosine sim-

ilarity to measure the distances of heterogeneous features.

4.2. Ablation Study

Effectiveness of each component. We evaluate the per-

formance of each component on SYSU-MM01 and RegDB

datasets in Table 1. Compared with the baseline model (B)

which utilizes the SMGM and standard softmax loss for

representation learning, the mAP of CEHL is enhanced by

0.52% and 2.88% on SYSU-MM01 and RegDB datasets,

respectively. Hence, the degree of difficulty m can effec-

tively promote the discriminative feature learning. When

we perform CEHL and ADSL from scratch simultaneously,

the rank-1 accuracy and mAP are improved by 3.19% and

3.91% on SYSU-MM01 dataset. Therefore, ADSL can fur-

ther shrink the cross-modality discrepancies and strengthen

the discriminative power of the network. Ultimately, after

introducing the IT strategy, we achieve the highest mAP of

61.78% and 78.57% on two datasets, which indicates the

effectiveness of our IT strategy.

Effectiveness of the syncretic modality. To verify the

superiority of the proposed syncretic modality, we replace

syncretic modality with X modality [13] and grayscale

modality [37] which are generated from visible images. In

62.34
63.44 63.79 64.52

67.39

63.00 

59.82 60.58 60.86 60.23
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Figure 4. Comparison of different m in CEHL on SYSU-MM01

(top row) and RegDB dataset (bottom row). CMC (%) at rank 1

and mAP (%).

addition, “Nothing” means that the input of CNN is visi-

ble and infrared images, without images from other aux-

iliary modalities. The comparison results are reported in

Table 2. The mAP of our method without auxiliary modal-

ity is at least 4.64% lower than that with auxiliary modal-

ity on SYSU-MM01 dataset. Consequently, the auxiliary

modality can induce the generation of modality-shared rep-

resentations. On SYSU-MM01 dataset, the performance of

grayscale modality is higher than that of X modality, which

proves that the images of grayscale modality assist the net-

work to map more heterogeneous features on the consistent

space compared with the images of X modality. On the con-

trary, X modality is more effective than grayscale modality

for RegDB dataset. The proposed method with syncretic

modality improves rank-1 accuracy by 3.16% as compared

to that with grayscale modality on SUSU-MM01 dataset,

and boosts the mAP by 5.57% compared with X modal-

ity on RegDB dataset. Therefore, our syncretic modal-

ity can effectively combine visible and infrared images for

modality-sharable representation learning.

Evaluation of different margin m. The margin in the

proposed CEHL affects the difficulty of classification in

representation learning. We vary m from 0 to 5 and report

the performance comparison on two datasets in Figure 4 .

For SYSU-MM01 dataset, we achieve the highest mAP and

rank-1 accuracy when m is set to 4. Since the pedestrian

images on SYSU-MM01 dataset have great intra-modality

and cross-modality divergences caused by illumination and

body posture, it is necessary to increase the classification

difficulty of identity classifier to facilitate the discrimina-

tive feature learning. For RegDB dataset, the heteroge-

neous pedestrian images taken by binocular cameras have

minor intra-class difference. Therefore, favorable perfor-
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Table 3. Comparison of computational costs in metric learning.
positive negative

Lbh tri 2PK × (2K − 1) 2PK × 2(P − 1)K
Lbdtr 2PK ×K + 2PK × (K − 1) 2PK × 2(P − 1)K

Lbicenter 2PK 2PK × (P − 1)
Lhc tri 2P 2P × 2(P − 1)
Ladsl 2P + P P × (P − 1)

Table 4. Comparison of rank-1 (%), mAP (%) and training time (s)

in metric learning.
rank-1 mAP Training Time

Lbh tri 61.53 59.13 0.35

Lbdtr 59.08 56.63 0.35

Lbicenter 60.50 57.09 0.34

Lhc tri 61.29 57.86 0.33
Ladsl 67.39 61.78 0.33

mance can be obtained with a slight increase of the classi-

fier difficulty, and the performance will drop with the large

degree of difficulty. We finally set m to 1 on RegDB dataset.

4.3. Computational Cost in Metric Learning

We compare the computational cost of our ADSL with

other metric learning methods for VI-REID. Lbh tri rep-

resents the batch hard sampling utilized in most VI-REID

methods [4, 31, 36] . Lbdtr means dual-constrained top-

ranking loss which is leveraged in BDTR [38] and HSME

[7]. We also compare Lbicenter in the sample to center-

based method [34] and Lhc tri in center to center-based

method [16]. Suppose that a mini-batch consists of P ×K
images of P identities, the computational costs are shown

in Table 3. For sample to sample-based methods, Lbdtr con-

strains the cross-modality and intra-modality discrepancies

simultaneously, which has inspiring performance but high

computational consumption. Lbicenter and Lhc tri don’t

require to compute distance between sample and sample,

thus reducing the computational cost greatly. In our ADSL

method, the feature centers of syncretic modality are viewed

as the anchor. Hence, the improved triplet loss Ladsl is de-

signed to calculate the pairwise distance between feature

centers of syncretic modality for different identities, which

achieves the lowest computational cost compared to above

methods. Moreover, as shown in Table 4, due to the fast

matrix operation of GPU, the training time of ADSL and

other methods are similar. However, the performance of

ours outperforms theirs to a great extent, which validates

the effectiveness of our method.

4.4. Comparison with State-of-the-art Methods

In this section, we compare our method with cutting-

edge VI-REID methods on two public datasets.

Comparison on SYSU-MM01 dataset. Our model

achieves 67.39% rank-1 and 61.78% mAP on SYSU-MM01

dataset. As shown in Table 5, for feature learning-based

methods with one-stream network ([27], [4], [30], [26], [6],

Initial CEHL

Feature distance

Fr
eq

ue
nc

y

CEHL+ADSL+ITCEHL+ADSL

Cross pos
Intra neg

Figure 5. The distribution of the cosine distance between cross-

modality positive samples and intra-modality negative samples.

[36], [13], [32], [37]), the proposed method exhibits inspir-

ing performance, which outperforms them at least 12.1% in

rank-1 accuracy and 7.89% in mAP under all-search single-

shot mode. Therefore, our SMCL model can capture more

modality-shared and discriminative features than other one-

stream network-based methods. Furthermore, compared

with two-stream network-based methods ([33], [38], [34],

[7], [31], [35]), our method exceeds DDAG by 12.64% in

rank-1 and 8.76% in mAP. Specially, for the best former

method cm-SSFT, we compare its performance with single

query (SQ) which is widely used in most methods. The

rank-1 accuracy and mAP of our method are 19.69% and

7.68% higher than cm-SSFT, respectively. Besides, SMCL

also improves the rank-1 by 5.79% compared to it in all

queries (AQ) search mode, which verifies the superiority

of the proposed method. For those image generation-based

methods ([25], [3], [23], [22]), our syncretic modality gen-

erated from lightweight network can effectively maps het-

erogeneous images on a common space, so the performance

of ours surpasses theirs by a large margin.

Comparison on RegDB dataset. To prove the effective-

ness and robustness of our method, we conduct experiments

on different query settings to compare with the state-of-the-

art methods in Table 6. Under visible to thermal query

settings, our method is 9.46% and 4.54% higher than the

best former method SIM [9] in rank-1 accuracy and mAP.

Moreover, the improvement in rank-1 and map is 7.81%

and 0.27% on thermal to visible query setting, respectively.

Hence, our SMCL model is robust against different query

settings and can better narrow the feature distribution of het-

erogeneous images.

4.5. Visualization Analysis

We visualize the cosine distance distribution of cross-

modality positive samples and intra-modality negative sam-
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Table 5. Comparison with state-of-the-art methods on SYSU-MM01 datasets. CMC (%) at rank r and mAP (%).
All-search Indoor-search

Methods Single-shot Multi-shot Single-shot Multi-shot

r=1 r=10 r=20 mAP r=1 r=10 r=20 mAP r=1 r=10 r=20 mAP r=1 r=10 r=20 mAP

Zero-Padding [27] 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64

TONE [33] 12.52 50.72 68.60 14.42 - - - - - - - - - - - -

BDTR [38] 17.01 55.43 71.96 19.66 - - - - - - - - - - - -

eBDTR [34] 27.82 67.34 81.34 28.42 - - - - 32.46 77.42 89.62 42.46 - - - -

D-HSME [7] 20.68 62.74 77.95 23.12 - - - - - - - - - - - -

cmGAN [4] 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76

D2RL [25] 28.90 70.60 82.40 29.20 - - - - - - - - - - - -

MAC [31] 33.26 79.04 90.09 36.22 - - - - 33.37 82.49 93.69 44.95 - - - -

Hi-CMD [3] 34.94 77.58 - 35.94 - - - - - - - - - - - -

JSIA-ReID [23] 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7

expAT Loss [30] 38.57 76.64 86.39 38.61 44.71 69.82 77.87 32.20 - - - - - - - -

AlignGAN [22] 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3

FMSP [26] 43.56 74.61 86.25 44.98 - - - - 48.62 79.01 89.50 57.50 - - - -

DFE [6] 48.71 88.86 95.27 48.59 54.63 91.62 96.83 42.14 52.25 89.86 95.85 59.68 59.62 94.45 98.07 50.60

AGW [36] 47.50 - - 47.65 - - - - 54.17 - - 62.97 - - - -

XIV-ReID [13] 49.92 89.79 95.96 50.73 - - - - - - - - - - - -

MACE [32] 51.64 87.25 94.44 50.11 - - - - 57.35 93.02 97.47 64.79 - - - -

DDAG [35] 54.75 90.39 95.81 53.02 - - - - 61.02 94.06 98.41 67.98 - - - -

HAT [37] 55.29 92.14 97.36 53.89 - - - - 62.10 95.75 99.20 69.37 - - - -

cm-SSFT [17]
SQ 47.7 - - 54.1 57.4 - - 59.1 - - - - - - - -

AQ 61.6 89.2 93.9 63.2 63.4 91.2 95.7 62.0 70.5 94.9 97.7 72.6 73.0 96.3 99.1 72.4

Ours (SMCL) 67.39 92.87 96.76 61.78 72.15 90.66 94.32 54.93 68.84 96.55 98.77 75.56 79.57 95.33 98.00 66.57

Table 6. Comparison with state-of-the-art methods on RegDB

datasets. CMC (%) at rank 1 and mAP (%).

Methods
Visible to Thermal Thermal to Visible

r=1 mAP r=1 mAP

Zero-Padding [27] 17.75 18.90 16.63 17.82

TONE [33] 16.87 14.92 13.86 16.98

BDTR [38] 33.47 31.83 32.72 31.10

eBDTR [34] 34.62 33.46 34.21 32.49

D-HSME [7] 50.85 47.00 50.15 46.46

D2RL [25] 43.4 44.1 - -

MAC [31] 36.43 37.03 36.20 36.63

Hi-CMD [3] 70.93 66.04 - -

JSIA-ReID [23] 48.5 49.3 48.1 48.9

expAT Loss [30] 66.48 67.31 67.45 66.51

AlignGAN [22] 57.9 53.6 56.3 53.4

FMSP [26] 65.07 64.50 - -

DFE [6] 70.13 69.14 67.99 66.70

AGW [36] 70.05 66.37 - -

XIV-ReID [13] 62.21 60.18 - -

MACE [32] 72.37 69.09 72.12 68.57

DDAG [35] 69.34 63.46 68.06 61.80

SIM [9] 74.47 75.29 75.24 78.30

HAT [37] 71.83 67.56 70.02 66.30

cm-SSFT [17]
SQ 65.4 65.6 63.8 64.2

AQ 72.3 72.9 71.0 71.7

Ours (SMCL) 83.93 79.83 83.05 78.57

ples with different components of our SMCL model. As

shown in Figure 5, the differences between negative sam-

ples are less than that of positive samples in the initial

state. With the addition of CEHL and ADSL, the dispar-

ity of intra-modality negative samples gradually becomes

greater than that of cross-modality positive samples. After

introducing the IT strategy, there is a slight increase in the

distance between two distributions. Therefore, our method

can effectively enlarge the distance between negative sam-

ples and reduce the discrepancies between positive samples,

thereby improving the retrieval accuracy.

5. Conclusion
In this paper, we propose a novel syncretic modality

collaborative learning (SMCL) model to learn modality-

invariant identity-discriminative representations for VI-

REID. The self-generated features of syncretic modality re-

serve the significant information of visible and infrared im-

ages, which can steer the network to project heterogeneous

images on a common space with the challenge enhanced

homogeneity learning and auxiliary distributional similar-

ity learning. Massive experiments on SYSU-MM01 and

RegDB datasets demonstrate the superior performance of

our SMCL model.
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