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Abstract

Event cameras, which output events by detecting spatio-
temporal brightness changes, bring a novel paradigm to
image sensors with high dynamic range and low latency.
Previous works have achieved impressive performances on
event-based video reconstruction by introducing convolu-
tional neural networks (CNNs). However, intrinsic lo-
cality of convolutional operations is not capable of mod-
eling long-range dependency, which is crucial to many
vision tasks. In this paper, we present a hybrid CNN-
Transformer network for event-based video reconstruction
(ET-Net), which merits the fine local information from CNN
and global contexts from Transformer. In addition, we fur-
ther propose a Token Pyramid Aggregation strategy to im-
plement multi-scale token integration for relating internal
and intersected semantic concepts in the token-space. Ex-
perimental results demonstrate that our proposed method
achieves superior performance over state-of-the-art meth-
ods on multiple real-world event datasets. The code is
available at https://github.com/WarranWeng/
ET-Net.

1. Introduction

Event cameras, also known as neuromorphic cameras
[45], are novel bio-inspired visual sensors, providing re-
searchers with a radically different sensing paradigm.
Rather than directly reporting frame-based representation
at a fixed rate in conventional cameras, event cameras are
specifically designed to detect and record spatio-temporal
changes for each pixel. Compared with frame-based coun-
terparts, event cameras possess several superior properties:
high temporal resolution (about 1 µs), high dynamic range
(140 dB) and low power consumption (5 mW) [24], which
are suitable in scenarios that are challenging for conven-
tional cameras, such as HDR scenes and high speed mov-
ing scenes. However, the event streams are not convenient
for observation and post-processing due to their sparse, ir-
regular and unstructured properties. To better utilize the
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advantages of event cameras, an intuitive way is to con-
vert event streams to video composed of sequential intensity
frames, which serves as a bridge that connects the off-the-
shelf frame-based algorithms [12, 13, 11, 26, 42, 41, 44, 43]
to event cameras.

Deep learning techniques, especially convolutional neu-
ral networks, have achieved great successes in the area of
computer vision. Recently, several works performed event-
based video reconstruction via deep learning methods and
demonstrated impressive performance. Using supervised
learning, Rebecq et al. [29, 28] first proposed the E2VID
CNN-based model, achieving significant performance boost
in terms of image quality and temporal consistency against
hand-crafted methods [4, 21, 32]. Based on E2VID, Scheer-
linck et al. [33] reduced inference time and model capac-
ity using a light-weight network FireNet with only a minor
drop in accuracy incurring. Further, Stoffregen et al. [35]
presented that these supervised training methods showed
a strong dependence on the synthetic data generated by
event camera simulators, such as ESIM [27]. Consequently,
for relaxing this data dependency, Federico et al. [22] ap-
proached, for the first time, the reconstruction problem from
a self-supervised learning perspective via combining esti-
mated optical flow and the event-based photometric con-
stancy to train neural networks without ground-truth.

These CNN-based architectures [29, 28, 35, 22] show the
preponderance in video reconstruction for event cameras.
However, classic CNN-based models are not capable of
modeling the long-range dependency due to the essential lo-
cality of convolution operations. Actually, capturing long-
range dependency plays a crucial role in deep neural net-
works for both sequential data in NLP tasks and image data
in vision tasks. Especially, CNN-based models are not ef-
fective to deal with structures that show large internal vari-
ation in terms of texture, shape and size. In order to tackle
this limitation, some works have been proposed recently.
Wang et al. [39] proposed a non-local operation, which can
be plugged into multiple existing CNN models. Schlemper
et al. [34] integrated additive attention gate modules into the
skip-connections for global contexts. More recently, Trans-
former [36], designed for sequence-to-sequence prediction,
has emerged as a popular architecture in both NLP and vi-

2563



sion tasks [36, 38, 6, 10, 7]. Built upon the self-attention
mechanisms solely instead of CNNs, Transformer shows an
appealing potential in modeling global context information.

In this paper, we present the first attempt that explores
the application of Transformer in the context of high speed
video reconstruction for event cameras. Based on the novel
perspective of sequence-to-sequence prediction, we pro-
pose Event Transformer Network (ET-Net) to exploit the
powerful potentials of Transformer for reconstructing video
from pure events. Different from previous works [10, 48],
our ET-Net adopts a hybrid CNN-Transformer architecture
to leverage both detailed multi-resolution spatial informa-
tion from CNN features and the global context encoded by
Transformer. We verify that the combination of localized
features and global contexts is able to further promote the
reconstruction quality. Additionally, we propose a novel
Token Pyramid Aggregation (TPA) module to implement
multi-scale token integration, which is a core component
of ET-Net. The proposed TPA represents the 2-D features
using visual tokens and learns to directly relate semantic
concepts in token-space instead of convolution operators,
yielding a better reconstruction accuracy. Extensive ex-
periments conducted on the existing frequently-used event
camera datasets show that our proposed architecture ET-Net
outperforms existing CNN-based methods, substantiating
effectiveness of our transformer-based method.

We summarize our contributions as three-fold. (1) We
propose ET-Net, a novel hybrid CNN-Transformer frame-
work, to leverage both fine local information from CNN
and global context from Transformer for approaching the
event-based video reconstruction task. (2) We propose a To-
ken Pyramid Aggregation module to perform multi-scale to-
ken integration for relating internal and intersected seman-
tic concepts in the token-space. (3) We comprehensively
demonstrate the effectiveness of our architectural design via
extensive experiments, achieving a substantial performance
boost over CNN-based methods.

2. Related Work

2.1. Event-based video reconstruction

Video reconstruction is a popular topic in the event-
based vision literature. Photometric constancy, which
means each event provides one equation relating intensity
gradient and optical flow, serves as an early attempt to
approach event-based video reconstruction problem. Kim
et al. [14] showed the first study to design an Extended
Kalman Filter to reconstruct a gradient image and presented
the feasibility to predict 6-DOF camera motions in their fu-
ture work [15]. Using the primal-dual algorithm, Bardow et
al. [4] simultaneously optimized both optic flow and inten-
sity estimation through a sliding spatio-temporal window.
Another parallel route of research is built upon direct event

integration without assuming scene structure or motion dy-
namics. Reinbacher et al. [21] introduced direct integration
with periodic manifold regularization on the Surface of Ac-
tive Events and optimized an energy function to reconstruct
video from events. Scheerlinck et al. [32] proposed comple-
mentary and high-pass filtering to achieve computationally
efficient, continuous-time video reconstruction.

Recently, deep learning methods, especially convolu-
tional neural networks (CNNs), have shown the potentials to
solve the event-based video reconstruction problem. Wang
et al. [37] and Pini et al. [25] utilized generative adver-
sarial networks (GANs) to reconstruct intensity with real
grayscale frames. Rebecq et al. [29, 28] presented a novel
CNN-based model that was trained in a supervised man-
ner with a large-scale synthetic dataset for promoting re-
construction quality. Scheerlinck et al. [33] proposed a
light-weight framework to achieve significant acceleration
in terms of inference time. More recently, Stoffregen et al.
[35] proposed a novel strategy of reducing the simulation-
to-reality gap in between the synthetic dataset and the re-
alistic dataset, bringing a considerable performance boost
on multiple datasets. Instead of only using CNN net-
works, in this paper, we present a new method to reconstruct
video from pure events by formulating a Transformer-based
framework, enabling us to synthesise higher quality video.

2.2. Transformer

Transformer was first proposed by Vaswani et al. [36] for
machine translation and have dominated in various natural
language processing tasks [9, 46, 8, 16] as a de-facto archi-
tecture. Transformer consists of multiple self-attention lay-
ers for modeling long-range dependency and aggregating
global contexts across the whole sequence, which is anal-
ogous to Non-Local Neural Networks [39] but without any
recurrence or convolution operators.

With the significant success of Transformer in NLP field,
many explorations for applying Transformer in computer
vision tasks have been made recently. Carion et al. [6] re-
formulated the object detection as a direct set prediction
problem from a sequence-to-sequence view and proposed
a novel end-to-end detection Transformer (DETR) to gen-
erate bounding boxes. Chen et al. [7] utilized pre-trained
technique to maximally excavate the capacities of trans-
former and attained state-of-the-art performance in multi-
ple low-level image processing tasks. Dosovitskiy et al.
[10] proposed Vision Transformer (ViT) to conduct image
recognition, showing that when coupled with pre-training
on sufficient data, Transformer possesses solid advantages
against convolution neural networks. To the best of our
knowledge, no prior works develop Transformer model for
event-based video reconstruction.
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Figure 1. (a) The overview of our reconstruction framework. (b) The architecture of our proposed ET-Net. Generally, ET-Net is a U-shaped
network, consisting of Recurrent Convolution Backbone (RCB), Token Pyramid Aggregation (TPA) and Multi-Level Upsampler (MLU).
RCB extracts a feature pyramid from the event voxel grid. TPA further models internal and intersected long-range dependency from the
feature pyramid and outputs the global context. Then MLU aggregates the localized feature from RCB and the global context from TPA to
reconstruct the final intensity frame. The details of our network architecture including hyper-parameters and Transformer block design are
elaborated in Sec. 3.2 and the supplementary material.

3. Proposed method

In this section, we present our transformer-based model
ET-Net to approach this problem. Firstly, we introduce our
strategy to generate fixed-size voxel grid for accommodat-
ing the processing fashion in canonical neural networks in
Sec. 3.1. Subsequently, our proposed framework ET-Net
and loss functions are elaborated in Sec. 3.2 and Sec. 3.3
respectively. The overall pipeline of our method is illus-
trated in Fig. 1.

3.1. Event Representation

The pure event stream E = {etk}
Ne

k=1, where Ne rep-
resents the number of events, is feed into our network.
Each event etk ∈ E is denoted as a four-element tuple
(xk, yk, tk, pk), reporting spatial coordinates, timestamp
and polarity respectively. In order to make the event stream
compatible with the processing algorithms designed for
frame-based vision, it is necessary to convert event stream
E into a grid-like event voxel grid V ∈ RB×H×W with B
time bins via temporal bilinear interpolation [50]. Specifi-
cally, we perform this conversion according to

V (k) =
∑

i pi max(0, 1− |k − ti−t0
tNe−t0

(B − 1)|), (1)

where t0, tNe
denote the start time and end time of event

stream E respectively, k ∈ [0, B − 1]. This converting
method evenly populates the whole event stream to B con-
secutive and non-overlapping sections, of which each event
contributes its polarity to two closest bins. In this work, we
use B = 5 for conducting all experiments.

3.2. Event Transformer Network (ET-Net)

We propose a hybrid CNN-Transformer model ET-Net
for event-based video reconstruction. Our model jointly ex-
ploits CNN and Transformer to produce localized features
and global contexts respectively. The proposed ET-Net fol-
lows the classic encoder-decoder architecture. The input of
our network is an event voxel grid V by populating a event
stream E as described in Sec. 3.1. The output of our model
is the final reconstructed intensity frame I.

Recurrent Convolution Backbone (RCB). Instead of
directly performing feature sequentialization on the event
voxel grid V , we first feed it to a recurrent convolution
backbone, which is composed of a head and three recurrent
convolution blocks. The head is employed for transforming
the input event voxel grid V ∈ RB×H×W into the first scale
feature fRCB

0 ∈ RC0×H×W . In our work, we set C0 as 32.
Exploiting temporal consistency between successive
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Figure 2. The detailed structure of Transformer Blocks utilized in
TPA (four scales shown here). A single Transformer Block con-
sists of N Transformer encoders and M Transformer decoders.
Skip connection is employed to transfer the output tokens by
Transformer encoder to the final tokens Z′

l .

frames benefits our video reconstruction for events. As
in [29], a ConvLSTM layer is employed in each recurrent
block, which utilizes the previous states to enhance the tem-
poral stability of reconstruction. Furthermore, in each re-
current block, we apply a convolutional layer (stride to 2)
to decrease the spatial size of features by half. Meanwhile,
the channel number doubles with the increase of scale level,
i.e. Cl = C0 × 2l. Consequently, three stacked recurrent
blocks produce feature maps at three scales, which can be
formulated as

fRCB
l , stl = frecl (fRCB

l−1 , st−1l ), (2)

where l ∈ {1, 2, 3} denotes the lth layer, stl denotes the
state of lth layer at time t. Through recurrent convolution
backbone, we finally obtain a multi-scale feature pyramid
{fRCB

l | l ∈ {0, 1, 2, 3}}, which is passed to token pyra-
mid aggregation module and multi-level upsampler module
subsequently. Please see Fig. 1 for more details of RCB.

Token Pyramid Aggregation (TPA). For Vision Trans-
former, prior works [10, 48] generate single scale tokens via
performing image sequentialization on input images. Simi-
larly, built upon the features by CNN backbone, DETR [6]
models the long-range dependency on the last scale feature
(with small spatial size) by ResNet50, which loses the inter-
sected correlation and spatial details from the other scales.
Actually multi-scale aggregation has shown the excellent
promotion in many vision tasks [18, 31, 30]. Therefore, we
design the Token Pyramid Aggregation module, which is
based on Transformer, to model the internal and intersected
dependency from the feature pyramid extracted by RCB.

First, sequentialization operation is performed on each
feature in the feature pyramid extracted by RCB. Specifi-
cally, we divide the feature fRCB

l ∈ RCl×H

2l
×W

2l into small
patches. The dimension of each patch in the lth scale is
Cl × P

2l
× P

2l
(P = 8 in our work). Thus for each scale,

we have the same number (HW
P 2 ) of small patches. Then we

flatten these patches into one-dimensional vectors, forming

a sequence {fPl,i ∈ R
P2Cl

4l | i ∈ {0, .., HW
P 2 − 1} }. We

further apply a linear projection fprojl and sinusoidal posi-
tional encoding [36] ei ∈ RD to map each patch fPl,i into a
latent one-dimensional embedding token Tl,i ∈ RD, which
is formulated as

Tl,i = fprojl (fPl,i) + ei. (3)

Please refer to [36] for the reason of positional encoding if
needed, which is not claimed here for brevity. The illus-
trative process of sequentialization operation can be found
in the supplementary material. After patch embedding and
positional encoding, we reformulate the token sequence
{Tl,i} to a token matrix Zl ∈ R

HW
P2 ×D, which can be pro-

cessed by Transformer Blocks subsequently. In our work,
we set D as 256.

As shown in Fig. 2, for each scale, one Transformer
block is employed to model both internal dependency and
intersected dependency from the feature pyramid. Within
each Transformer block, we stack several vanilla Trans-
former encoders, which extract the internal dependency of
tokens in each scale via the self-attention operations. Then
Transformer decoders are appended to build the intersected
dependency on adjacent scale tokens. Note that the key and
value vectors fed to Transformer decoders are from the En-
coder of the Transformer Block in the lower scale, while
the query vector are still from the encoder of current Trans-
former Block. This design endows our network with the ca-
pacity of learning to extract and exchange multi-scale con-
texts, which can be further demonstrated in Sec. 4.3.

Additionally, we also introduce the residual connection
to maintain the internal dependency by Transformer en-
coders. Specifically, for each scale, the output tokens from
Transformer encoder and Transformer decoder are added as
Z ′l via skip connection. We then aggregate all tokens {Z ′l}
from different scales to generate the hidden token matrix
ZTPA for TPA. Note that ZTPA shares the same dimension
as Zl. The details of Transformer Block that are utilized in
our work are illustrated in Fig. 2.

Multi-Level Upsampler (MLU). TPA outputs a two-
dimensional matrix ZTPA ∈ R

HW
P2 ×D, the resolution of

which is not the same as the original resolution. Therefore,
we design a Multi-Level Upsampler to recover the full res-
olution intensity image I ∈ RH×W from the hidden tokens
ZTPA and feature pyramid {fRCB

l | l ∈ {0, ..., 3}}. No-
tably, the hidden tokens capture the long-range dependency
across the multi-scale feature set, while the feature pyra-
mid provides localized information. These two data streams
merit both CNN and Transformer, significantly enhancing
the reconstruction quality compared with using only one of
them, which can be further demonstrated in Sec. 4.3.
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Specifically, MLU consists of three stacked upsampling
blocks and a tail (please see Fig. 1 for more details). Each
upsampling block is built with a bi-linear interpolation oper-
ation followed by a convolutional layer, where the upsam-
pling factor is 2 to maximally alleviate the adversarial ef-
fect. Before feeding the token matrix ZTPA ∈ R

HW
P2 ×D to

MLU, we reshape it to a three-dimensional feature fTPA ∈
RD×H

P ×
W
P . Formally, the calculation process of upsam-

pling blocks can be formulated as

fMLU
l =

{
fup(f

MLU
l+1 + fRCB

l+1 ), l = 0, 1, 2

fTPA, l = 3
(4)

where fMLU
l denotes the feature generated by upsampling

block in the lth scale. The tail is a simple convolution layer,
which takes the combination of fMLU

0 and fRCB
0 features

as input (please see the skip connection between RCB and
MLU in Fig 1), generating the final reconstructed intensity
image I ∈ [0, 1]H×W .

3.3. Loss functions

We employ LPIPS and temporal consistency loss func-
tions for training, which are also adopted in [29]. The
LPIPS loss is a differentiable similarity metric to evaluate
the frame quality. The temporal consistency loss measures
a photometric error between two aligned successive recon-
structed images, which is used to mitigate the temporal ar-
tifacts.

The final loss L over T time-steps can be calculated as

L =

T∑
t=0

Lt
R + λTC

T∑
t=L0

Lt
TC , (5)

where Lt
R, Lt

TC are the LPIPS reconstruction loss and tem-
poral consistency loss at time t, L0 denotes the starting in-
dex for computing temporal consistency loss and λTC con-
trols the temporal consistency proportion in the final loss.
We set T , L0 and λTC to 40, 2 and 1 respectively.

4. Experiments and results
4.1. Experimental setup

Training dataset. Our proposed network performs
video reconstruction from pure events in a supervised man-
ner. A large number of event sequences with correspond-
ing ground-truth frames are indispensable for training. In
order to make fair comparison, we follow the same gen-
eration scheme as E2VID+ [35] to synthesize the training
dataset via ESIM[27], an excellent simulator for synthesiz-
ing events with reliable ground-truth frames. Specifically,
“Multi-Object-2D” is adopted as the rendering mode to run
the simulation, which enables the foreground multi-objects

moving across a background image with various 2-D mo-
tion properties in terms of translations, rotations and dila-
tion. We combine the object images provided by [35] with
images from the COCO dataset [17] to make the candidate
foreground multi-objects. The background images are ran-
domly chosen from the COCO dataset too. We launch the
simulation procedure by endowing each image with random
trajectories. The contrast thresholds (CTs) are picked be-
tween 0.1 and 1.5 in an ascending order, of which posi-
tive CTs and negative CTs are restricted to the limitation:
Cp = Cn × x, x ∈ N (µ = 1.0, σ = 0.1). The whole
training dataset contains 280 sequences with 256×256 res-
olution. Each sequence lasts 10 seconds.

The training data augmentation strategy is the same as
[35]. Specifically, Gaussian noise N (µ = 0, σ = 0.1)
is added to the input event tensor for simulating the back-
ground noise. A few ‘hot’ pixels that fire spurious events
are also simulated. We perform random cropping with size
of 112×112 and random flipping for the input event tensor.
Additionally, we also employ random pause augmentation.
Please refer to [35] for the pause augmentation.

Testing datasets. We evaluate our model on three pub-
licly released event-based datasets: HQF [35], IJRR [20]
and MVSEC [49]. The HQF dataset, recorded by two
DAVIS240C [5] cameras, provides high quality ground-
truth frames, of which the motion blur is maximally mit-
igated under preferable exposure. 14 sequences are con-
tained , covering a wider range of motions and scene types,
including static scenes and motion scenes of slow, medium
and fast, indoor and outdoor scenes. IJRR provides 25 real-
istic datasets by DAVIS240C [5] and two synthetic datasets
via the event camera simulator. MVSEC is recorded by a
synchronized stereo event camera system. Each sequence
of MVSEC releases extensive ground-truth reference data
for evaluations. Compared with HQF, IJRR and MVSEC
are not designed specifically for the event-based video re-
construction problem. For fair comparison, we select the
same sequences from the two datasets as those reported in
[35]. The exact cut times of IJRR and MVSEC sequences
can be found in the supplementary material.

Evaluation metrics. For quantitative evaluation, we
consider three widely-used evaluation metrics: (i) mean
squared error (MSE), (ii) structure similarity (SSIM) [40]
and (iii) perceptual similarity (LPIPS) [47], which are also
utilized in [28, 35, 33]. A lower value of MSE and LPIPS
or a higher value of SSIM indicates a better performance.

Implementation details. Our network is implemented
using the Pytorch framework [23]. AdamW [19] is utilized
as the optimizer with the initial learning rate 0.0002. We
adopt an exponential decay strategy of learning rate with
gamma of 0.99. Our model is trained for 300 epochs with
batch size of 2 on 2 NVIDIA Tesla V100 GPUs.
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FireNet FireNet+ E2VID E2VID+ Ground-truthET-Net (Ours)

Figure 3. Qualitative comparison with baseline methods on HQF (Row 1&2), IJRR (Row 3&4) and MVSEC (Row 5). Our proposed
network demonstrates better reconstruction results with fine-grained details and minor artifacts, while other baselines present foggy effects
across the whole image, which induces a severe brightness disturbance. More visual results can be found in the supplementary material.

Methods MSE ↓ SSIM ↑ LPIPS ↓
HQF IJRR MVSEC HQF IJRR MVSEC HQF IJRR MVSEC

FireNet 0.0981 0.1333 0.287 0.522 0.488 0.247 0.467 0.338 0.718
FireNet+ 0.0465 0.0568 0.228 0.595 0.535 0.265 0.326 0.298 0.574
E2VID 0.1824 0.1830 0.313 0.477 0.448 0.227 0.515 0.357 0.727
E2VID+ 0.0371 0.0650 0.135 0.638 0.551 0.337 0.258 0.241 0.513
Ours 0.0349 0.0503 0.113 0.643 0.585 0.358 0.274 0.237 0.491

Table 1. Quantitative comparison of baseline methods of event-based video reconstruction on HQF, IJRR and MVSEC. Best in bold, the
second best with underline. The breakdown results can be found in the supplementary material.

4.2. Comparison with the state-of-the-art methods

We compare our proposed method with four state-of-the-
art methods FireNet [33], FireNet+ [35], E2VID [28] and
E2VID+ [35]. FireNet+ and E2VID+, which share the same
architecture with FireNet and E2VID, are retrained using
the synthetic training dataset [35].

For all state-of-the-art methods, we perform evaluations
using the pre-trained model obtained from [1, 2, 3]. For
fair comparison, we keep all experiment settings the same.

No post-processing operations (such as grayscale normal-
ization and histogram equalization) are performed for all
the methods. Table 1 shows the quantitative comparison re-
sults. In terms of MSE, our ET-Net outperforms FireNet+
and E2VID+ by 15 % over all three datasets, which is a
solid improvement. As for SSIM, our ET-Net surpasses
E2VID+ with a clear margin, achieving 0.643, 0.585 and
0.358 on HQF, IJRR, and MVSEC respectively. In terms
of LPIPS, ET-Net still matches or exceeds the state-of-the-
art method E2VID+ except for a minor drop on HQF. The
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Model MSE ↓ SSIM ↑ LPIPS ↓
ET-Net-2-s4 0.113 0.376 0.494
E2VID-res6 0.165 0.319 0.536
ET-Net-4-s4 0.118 0.355 0.491
E2VID-res12 0.169 0.309 0.521
ET-Net-6-s4 0.167 0.312 0.538
E2VID-res16 0.180 0.311 0.518

Table 2. Ablation results of ET-Net and E2VID variants on
MVSEC. Each pair of models has similar parameter amounts. The
difference lies in whether Transformer-based TPA is utilized in the
model.

quantitative comparison of each scene of three datasets are
provided in the supplementary material. It should be noted
that we achieve the best performance when N = 3,M = 2
in Transformer Blocks and three scales are aggregated in
TPA. The total parameter amount of this ET-Net is 22M.

Figure 3 illustrates the qualitative results reconstructed
by our ET-Net and all baseline methods on images of
video clips from the HQF, IJRR and MVSEC datasets.
The ground-truth images are also listed for comparison.
It can be observed that FireNet and E2VID reconstruct
frames with higher intensity values, presenting foggy ar-
tifacts across the whole image plane. The reconstruction
results of E2VID+ and FireNet+ are better than those of
FireNet and E2VID in visual effects, presenting a more
realistic scene. Our ET-Net further brings more detailed
contexts to the final reconstructions, additionally reducing
common failure cases like stretch marks witnessed in the
FireNet+. The image contrast of our reconstructed frame is
very close to that of the ground-truth image. These quali-
tative results support the quantitative results in Table 1. In
the supplementary material, we also provide several recon-
structed video clips and apply our model to the High Speed
and HDR scenes.

4.3. Network architecture analysis

In order to investigate the importance of components in
our ET-Net, we perform the ablation analysis under vari-
ous settings, including: 1) TPA exists or not; 2) the num-
ber of scales in TPA; 3) the depth of Transformer block in
each scale; 4) Transformer decoders in TPA exist or not; 5)
skip connection between RCB and MLU. All the models are
trained on our synthetic training dataset for 200 epochs with
batch size of 8, and evaluated on all three testing datasets.
Notably, unless specialized in the main paper, the other ab-
lation results can be found in the supplementary material
with additional clarifications. All other experimental set-
tings stay the same as Sec. 4.1.

Before presenting the detailed ablation results, we de-
scribe a nomenclature for ET-Net variants. The names

Model MSE ↓ SSIM ↑ LPIPS ↓
ET-Net-4-s4 0.0552 0.587 0.236
ET-Net-5-s3 0.0584 0.564 0.242
ET-Net-8-s2 0.0636 0.547 0.260
ET-Net-16-s1 0.0991 0.509 0.284

Table 3. Ablation results of ET-Net variants which have different
aggregation scales in TPA on IJRR.

Model MSE ↓ SSIM ↑ LPIPS ↓
ET-Net-2-s4 0.0413 0.619 0.288
ET-Net-4-s4 0.0403 0.635 0.277
ET-Net-6-s4 0.0430 0.623 0.286

Table 4. Ablation results of ET-Net variants which have different
encoder and decoder numbers in Transformer Blocks on HQF.

of ET-Net variants follow the pattern “ET-Net-(A)-s(B)”,
where A represents the total number of Transformer en-
coders and decoders at each scale in TPA and B represents
the aggregation scales in TPA. Please refer to our supple-
mentary material for details.

TPA. Our proposed TPA is utilized to exploit the global
context of event tensors, which is also the major contribu-
tion of our work. We design ablation experiments to val-
idate the effectiveness of TPA. The basic structure of our
ET-Net is similar to that of E2VID. Thus we compare ET-
Net with E2VID and evaluate the performance quantita-
tively. We first choose three ET-Net variants with different
configurations: ET-Net-2-s4, ET-Net-4-s4 and ET-Net-6-s4,
which have different parameter amounts. For fair compar-
ison, we revise the structure of E2VID via adding more
residual blocks so that these E2VID variants have similar
parameter amounts to their counterparts. Specifically, we
construct three E2VID variants: E2VID-res6, E2VID-res12
and E2VID-res16, of which the Resblock number utilized
in the model is 6, 12 and 16 respectively. Table 2 shows the
quantitative results of three pairs of models on MVSEC. It
can be seen that with our TPA module, the performance is
improved to a large extent, which validates the effectiveness
of TPA.

Aggregation scales in TPA. We further investigate the
influences of TPA with different scales for ET-Net. For
keeping the similar parameter number, we adopt ET-Net-
4-s4, ET-Net-5-s3, ET-Net-8-s2 and ET-Net-16-s1 to con-
duct this ablation on IJRR. Notably, these ET-Net variants
consist of similar number of Transformer encoders and de-
coders, with the stacking fashion as the main distinction.
Table 3 presents that our ET-Net with multiple-scale TPA
performs better than single scale variant (ET-Net-16-s1),
although ET-Net-16-s1 variant possesses deeper layers for
modeling global context.
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Setting IJRR MVSEC HQF
MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓

w/ Trans-Decoders 0.0522 0.587 0.236 0.118 0.355 0.491 0.0403 0.635 0.277
w/o Trans-Decoders 0.0563 0.572 0.245 0.129 0.341 0.498 0.0399 0.634 0.280

Table 5. Ablation results of the ET-Net-4-s4 model with and without Transformer decoders in TPA.

Setting MSE ↓ SSIM ↑ LPIPS ↓
ET-Net-4-s4 E2VID-res12 ET-Net-4-s4 E2VID-res12 ET-Net-4-s4 E2VID-res12

w/ Skip Connection 0.118 0.169 0.355 0.309 0.491 0.521
w/o Skip Connection 0.132 0.179 0.320 0.273 0.653 0.716

Table 6. Ablation results of the ET-Net-4-s4 and E2VID-res12 models with and without skip connection on MVSEC.

Depth of Transformer block. We provide our investiga-
tion on the number of Trans-block in each scale for explor-
ing appropriate number of encoders and decoders in each
TPA scale. We choose ET-Net variants ET-Net-2-s4, ET-
Net-4-s4 and ET-Net-6-s4 to perform ablation experiments
on HQF. Table 4 shows the ablations results. It can be ob-
served that small or large number of Transformer encoders
and decoders cannot result in a satisfying performance. Our
models with small capacity are not capable of capturing the
long range dependency from the latent CNN features, while
large models show overfitting and degrade the generaliza-
tion ability. Therefore, we speculate that the best perfor-
mance should be achieved near the place where the total
number of Transformer encoders and decoders in Trans-
former blocks is 4. The ET-Net model on which we report
the best performance in Sec. 4.2 has 5 encoders and de-
coders, which is consistent with previous speculation.

Transformer decoder in TPA. The TPA in our ET-Net
possesses two kinds of Transformer components: Trans-
former encoder for modeling the internal dependency of
tokens in each scale and Transformer decoder for building
the intersected dependency across tokens from the adjacent
scales. In order to investigate the influence of Transformer
decoder in TPA, we replace the Transformer decoders with
Transformer encoders of the same number to form a new
ET-Net variant for conducting this ablation. We report the
results on IJRR, MVSEC and HQF for the extensive com-
parison in Table 5. It can be observed that the utilization of
Transformer decoders improves the reconstruction perfor-
mance on all three datasets.

Skip connection. Our ET-Net leverages both the low-
level precise details from CNN and the global contexts
from Transformer. We merge the localized features into
global tokens generated by Transformer progressively in
MLU via skip connection. In order to determine the ef-
fect of localized features in ET-Net, we perform an abla-
tion experiment via removing the skip connection and re-
port the results in terms of MSE, SSIM and LPIPS. More-

over, we also perform this ablation on the E2VID model,
which takes the skip connection following the UNet [31]
design. Both the ET-Net-4-s4 and E2VID-res12 variants are
employed to conduct the experiments, which share similar
amount of parameters. This experiment is conducted on the
MVSEC dataset. As shown in Table 6, the two variants with
skip connection outperform those without skip connection,
bringing an average improvement of 15%. It is worth noting
that our ET-Net achieves better performances over E2VID
both under w/ skip and w/o skip settings, which intensively
reinforces the importance of global context in our ET-Net.

5. Conclusion

In this paper, we propose ET-Net, a novel Transformer-
based framework, to approach the event-based video recon-
struction problem for the first time. Coupling CNN with
Transformer, ET-Net possesses the potentials to maximally
excavate the respective advantages of CNN and Trans-
former. Additionally, we further propose the TPA module to
perform multi-scale token integration. With the input from
pyramidal low-level features extracted by CNN, TPA rep-
resents the 2-D features using visual tokens and learns to
directly relate semantic concepts in token-space instead of
convolution operators. Extensive experiments demonstrate
that our proposed network achieves superior performances
over state-of-the-art methods on multiple datasets, opening
up a new avenue for event-based video reconstruction.

However, while ET-Net shows significant improvements,
inference time and model memory consumption are occu-
pied more than CNN-based models due to complex self-
attention calculations in Transformers. In the future, we
will further apply knowledge distillation and model prun-
ing techniques to promote our model.
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