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Abstract

Fine-grained 3D segmentation is an important task in
3D object understanding, especially in applications such
as intelligent manufacturing or parts analysis for 3D ob-
jects. However, many challenges involved in such prob-
lem are yet to be solved, such as i) interpreting the com-
plex structures located in different regions for 3D objects;
ii) capturing fine-grained structures with sufficient topol-
ogy correctness. Current deep learning and graph ma-
chine learning methods fail to tackle such challenges and
thus provide inferior performance in fine-grained 3D anal-
ysis. In this work, methods in topological data analysis
are incorporated with geometric deep learning model for
the task of fine-grained segmentation for 3D objects. We
propose a novel neural network model called Persistent
Homology based Graph Convolution Network (PHGCN),
which i) integrates persistent homology into graph convolu-
tion network to capture multi-scale structural information
that can accurately represent complex structures for 3D ob-
jects; ii) applies a novel Persistence Diagram Loss (LPD)
that provides sufficient topology correctness for segmenta-
tion over the fine-grained structures. Extensive experiments
on fine-grained 3D segmentation validate the effectiveness
of the proposed PHGCN model and show significant im-
provements over current state-of-the-art methods.

1. Introduction

Fine-grained 3D semantic segmentation is a task to se-
mantically classify the labeling of each 3D point input in
detailed levels. It is an essential task for many applica-
tions for detailed processing and analysis of 3D shapes,
such as intelligent manufacturing, automatic interior design
and furniture arrangement, autonomous robotic manipula-
tion, human-machine interaction, 3D clothing analysis.

Segmenting fine-grained 3D objects involves many chal-
lenges, due to the specific properties in fine-grained 3D ob-
jects, such as i) complex structures located in different re-

gions; ii) shape-dependent topological structures (e.g, han-
dles of objects, doorknobs, device wires). These properties
always exhibit in slim parts or multiple small connected
components, which are semantically important to down-
stream tasks, such as robotic manipulation. Sufficiently in-
terpreting such two main structures is essential for accu-
rate 3D fine-grained semantic segmentation task. Failing
to tackle such challenges will drastically lower the perfor-
mance of semantically understanding the 3D fine-grained
objects and produce incoherent segmentation output, which
is vital for intelligent manufacturing and robotic manipula-
tion.

In recent years, deep neural network based methods
[6,16,21] and geometric learning methods [15,27,28] have
become the mainstream methods in 3D point cloud under-
standing tasks, from general 3D object classification to se-
mantic segmentation on objects and scenes. In retrospect
to these methods, it is found that they are not designed
specifically for the task of understanding fine-grained 3D
objects with complex structures or shape dependent topo-
logical structures. Methods in [15, 27, 28] apply graph neu-
ral network (GNN) or graph convolutional network (GCN)
model to extract features from geometrical structures in 3D
point cloud. However, such approach only captures the
pairwise relations represented by edges, since the neigh-
boring graphs constructed in GNN/GCN model only rep-
resent the pairwise relationships among 3D point clouds.
As a result, high dimensional relationships existed in com-
plex structures of fine-grained 3D objects cannot be finely
captured. The recent work PartNet model [31] applies cas-
cade binary labeling to represent a top-down recursive parts
decomposition for hierarchical segmentation. However, the
representation capability of binary labeling is limited by the
hierarchy depth and thus suffers from handling 3D objects
with multiple complex structures.

In fact, the geometric and topological information ex-
isted in complex structure is the essential clue to under-
stand the shapes of fine-grained objects. Topological Data
Analysis (TDA) [3] is an emerging field which infers rele-
vant topological and geometric features from complex data.

7098



TDA uses a mechanism called complex filtration to con-
struct the multi-scale topological structures for the input
point clouds, which extracts the high dimensional relation-
ships existed in complex structures of point cloud, as illus-
trated in Fig. 1(a). Then, persistent homology, a tool in
TDA, is applied on the resulting nested sequence of strictly
increasing subcomplexes, which are called filtered com-
plexes, to compute the multi-scale topological features, rep-
resented as persistence barcodes and persistence diagram,
as shown in Fig. 1(b) and (c). The 0-dim, 1-dim and 2-dim
persistent homological features in the resulting persistence
diagram correspond to the connected components, cycles
and higher dimensional counterparts (e.g, cavities) in point
cloud.

In this work, we opt for the TDA tools [10] to propose
a novel network model called Persistent Homology based
Graph Convolution Network (PHGCN), which incorporates
persistent homological features into GCN network to en-
hance its capability to capture multi-scale topological fea-
tures of complex structures in fine-grained 3D objects.

To further tackle the fine-grained segmentation problem,
we found that the shape-dependent topological structures
in fine-grained objects, especially the connected parts (e.g,
handles, wires, knobs) are always exhibited as small-sized
objects or thinly-connected components, which makes co-
herent segmentation difficult since cross entropy loss gen-
erally used in segmentation task may not sufficiently reflect
the topological error even the overall loss value is low. To
overcome such issue, we propose a Persistence Diagram
Loss (LPD), which works as topological constraint to en-
sure the segmented output with sufficient topology correct-
ness to obtain coherent segmentation output.

To the best of our knowledge, our work is the first work
which introduces persistent homology to tackle fine-grained
3D semantic segmentation problem. The main contribu-
tions of our work are summarized as follows:

1. With the persistent homological features, a novel GCN
network model is able to capture multi-scale topolog-
ical features of complex structures in fine-grained 3D
objects.

2. A novel persistence diagram loss is applied to reinforce
the topological correctness in prediction to provide co-
herent fine-grained segmentation output.

3. The proposed work demonstrates the feasibility on the
extension of generic GNN/GCN structure with compu-
tational topological methods.

Extensive experiments on fine-grained semantic segmen-
tation are evaluated on challenging 3D object-parts segmen-
tation benchmarks, which demonstrate that the proposed
PHGCN model achieves state-of-the-arts results.

2. Preliminaries in Topological Data Analysis
Topological data analysis (TDA) [3] is an emerging field

which goal is to capture the related topological and geomet-
ric features from data of complex structure. In this section,
a brief overview is provided to highlight the mechanism in
TDA. The details of TDA can be found in the seminal pa-
pers [11, 33].

2.1. Simplicial Complex

As there is no direct approach in extracting topolog-
ical information from data points, simplicial complex is
constructed as a topological approximation to the underly-
ing shape of the sampled points. Simplicial complex can
be regarded as a high dimensional extension of a graph,
which contains collection of simplices of different dimen-
sion. The geometrical realizations of k-dim simplices are
vertices(k=0), edges(k=1), triangles(k=2), tetrahedra(k=3)
and higher-order counterparts(k ⩾ 4), respectively.

2.2. Homology Group

To computationally analyze the topological features of
simplicial complex, homology groups are assigned to sim-
plicial complex. The homology group is a kind of math-
ematical group which describes the topological features of
simplicial complex in different dimension. The topologi-
cal features of k-dim homology group refer to connected
components (k=0), cycles (k=1), and cavities (k=2), respec-
tively.

2.3. Persistent Homology and Filtration

Persistence is a kind of measurement on how a shape
changes when a given parameter varies. Persistent homol-
ogy provides a way for keeping track of when topological
features appear and vanish during the variation of certain
parameter, such as the scale of each data point. In this pe-
riod, a nested sequence of simplical complexes, also known
as filtration, is generated as shown in Fig. 1(a). The filtra-
tion captures the evolution progress of simplical complex
by increasing the scale parameter, which can be considered
as the multi-scale topological spaces underlying the data
points. Consequently, the lifetime of each multi-scale topo-
logical feature is recorded as persistence barcode, as shown
in Fig. 1(b). The persistence barcode can then be converted
into the birth time and death time of each topological feature
and is represented as persistence diagram, as illustrated in
Fig. 1(c). As a result, the multi-scale topological informa-
tion of the shape underlined in the data points is captured.

3. Related Works
In this section, the two main related techniques: deep

learning methods on point clouds and persistent homology
methods are discussed.
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3.1. Deep Learning on Point Clouds

The success of deep neural network based methods in
2D image semantic segmentation tasks [7,23,32], have pro-
moted its feasibility for 3D point cloud input [6, 16, 17, 21,
30]. However, such methods lack of sufficient capability in
capturing the connections among the points. Graph based
methods such as DGCNN [28], ResGCN-28 [15] explic-
itly construct the graph from point cloud by assigning each
point as node and building the edges through measuring the
relatedness between pair of points. However, such meth-
ods only capture the pairwise relationships among points
and suffer in capturing high-order relationships of complex
structures, which are prevalent in fine-grained objects.

3.2. Persistent Homology in Machine Learning

Persistent homology is an essential method in topolog-
ical data analysis for extracting topological features from
geometric realizations at different spatial resolutions. The
extracted topological features give the insights of the under-
lying shapes of data and work as powerful features deployed
in machine learning pipeline [1,2,14]. Therefore, the effec-
tiveness of TDA methods have attracted the wide adoption
of computational topological methods for various applica-
tions, including action recognition [25], medical imaging
[8, 22], shape matching [20] and design of neural network
[4, 9]. Some recent works [12, 13] also explore the feasi-
bility in differentiability of persistence homology. Inspired
by these promising works, a novel PHGCN is proposed to
integrate persistent homology mechanism with graph con-
volution network for capturing the multi-scale structural in-
formation in complex structures of fine-grained objects.

4. Methods
In this section, the details of our proposed method for

fine-grained 3D semantic segmentation are presented. The
proposed method consists of two core modules: 1) Persis-
tent Homology based Graph Convolution Neural Network
(PHGCN) for capturing multi-scale structural information
in complex structures via the combination of topological
persistence (PH) and graph convolution network (GCN), 2)
Persistence Diagram Loss (LPD) applied in the optimiza-
tion to segment the fine-grained structures with reduced
topological error. The entire network architecture is illus-
trated in Fig. 2. The details of each proposed module are
described in the following sections.

4.1. General Graph Convolution Network (GCN)

Following the network design of GACNet [27] and AD-
Convnet [29], we construct a general graph convolution
network (GCN) layer through aggregation step and update
step. In aggregation step, each point Pi of point cloud
input is represented by its 3D position ri ∈ R3 and D-

dimensional feature fi ∈ RD. By thresholding the ball
radius, a K-neighbors graph of Pi is built by randomly se-
lecting its K neighboring points namely as Pij= (rij , fij),
within its spherical neighborhood Ni, where rij = rj−ri ∈
R3 is the relative position and fij ∈ RD′

is the enhanced
feature. D′ is the dimension number of transformed fea-
tures. Through soft attention mechanism, the weighted sum
of the features of neighboring points is obtained as the ag-
gregated feature h′

i ∈ RD′
for center point Pi,

h′
i =

∑
j∈Ni

aijfij ∈ RD′
(1)

where the attentional weight aij can be learned by back-
propagation, as detailed in [29]. In update step, the aggre-
gated feature h′

i is fed into a multilayer perceptron (MLP)
and then followed by a ReLU [19] activation function to
obtain the transformed feature fout

i = ReLU(MLP(h′
i)) ∈

RC , as the output of GCN layer. The collection of such
point features {fout

i } (i = 1, ...,M) constitute a output
feature map F out ∈ RM×C , where M is the number of
sub-sampled points and can be regarded as the spatial size
of output feature map. For simplicity in notations, we de-
note the output pointwise feature map of the last GCN layer
as FL ∈ RM×C . The details of the procedure mentioned
above can be referenced from [27] and [29].

4.2. Persistent Homology based Graph Convolution
Network (PHGCN)

By applying the computation of sequential GCN layers,
the resulting local feature map only captures the features of
local neighborhood, which is insufficient for understanding
the 3D fine-grained objects. In this work, we adopt tools
from topological data analysis to extract the essential infor-
mation hidden in the complex structures of 3D fine-grained
objects.

Persistent homology (PH) is a mathematical tool from
topological data analysis which is able to extract provably
stable topological features of the shapes underlined in point
clouds. To overcome the issue that general GCN model can-
not capture the complex structures of 3D fine-grained ob-
jects, we extend the GCN model by integrating PH module
for extracting the essential topological information in com-
plex structures.

The approach on extracting persistent homology features
is described in PH module, as illustrated in Fig. 3(b): the
input point cloud of N 3D points can be considered as a
finite metric space, denoted as XN , a filtration construc-
tion is applied on XN to extract a chain of multi-scale fil-
tered simplical complexes via varying scale parameter, de-
noted as Filt(XN ). Then, persistent homology is applied to
compute the evolution of topological features and the pe-
riod between the appearance time and disappearance time
of topological features are kept, denoted as birth time, b and
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Figure 1. The pipeline of computing persistence diagram. (a). The evolution of filtered subcomplexes (in dark blue and orange color) when
varying the scale parameter, which is represented as the radius of the light blue circle around each data point. (b). The corresponding
persistence barcode for each filtered subcomplex, which keeps the lifetime for homological class. The topological features of 0-dim and
1-dim homological class are illustrated as red bars and blue bars respectively, for this example of 2D plane case. (c) The final persistence
barcode is converted into the persistence diagram.

Figure 2. The entire network architecture of PHGCN.

death time, d. Such periods are often depicted by persis-
tence diagrams (PD) which are sets of points in 2D plane,
where each point (b, d) represents the k-th persistent ho-
mology class which appears at time b and disappears at
time d (The dimensions k=0,1,2 refer to connected compo-
nents, cycles and cavities, respectively). The resulting PD
reflects the multi-scale summarized topological information
which is essential for interpreting the complex structures.
Let PD = dgm(Filt(XN )) denote the resulting persistence
diagram obtained from previous filtration construction. We
denote PDk as the persistence diagram for k-dimensional
homological features. The counterparts correspond to con-
nected components (k=0), cycles (k=1) and cavities (k=2),
respectively. We argue that the essential topological infor-
mation of complex structure mainly exists in cycles and cav-

ities and hence 1-dimensional and 2-dimensional homolog-
ical features are used in our method. By applying the TDA
pipeline as illustrated in Fig.1, the persistence diagram of 1-
dimension and 2-dimension are extracted as PD1 and PD2

respectively. As persistence diagram is originally a multi-
set but not linear vectors, it is unsuitable to be used as in-
put for general machine learning pipeline. Therefore, PD1

and PD2 are further featurized into persistence image [1],
denoted as PI1 and PI2 , and then flattened as feature vec-
tors. To combine the strength of both 1-dimensional and
2-dimensional homological features, vector concatenation
is adopted to obtain the feature vector as a topological de-
scriptor, denoted as p ∈ RP . P is the feature dimension
of topological descriptor. For combining with local feature
map FL ∈ RM×C , topological descriptor is repeated by M
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Figure 3. The pipeline of PHGCN module. (a) Data processing flow on GCN module. (b) Data processing flow on PH module.

times to obtain the topological feature map FPH ∈ RM×P .
Then topological feature map FPH is concatenated with lo-
cal feature map FL. Finally, for learning a better feature
map fusion, a learnable 1 × 1 conv filter is applied on the
concatenated feature map to obtain the augmented feature
map FA ∈ RM×C . Consequently, the topological informa-
tion existed in complex structure is adaptively aggregated
to augment the pointwise feature representation for better
performing the fine-grained semantic segmentation task.

As the feature maps are down-sampled after processed
by each GCN layer, the augmented feature map FA is sub-
sequently interpolated by Feature Propagation Convolution
(FPConv) module [21] for recovering the point features as
the original scale of input point cloud, which is the final
point-wise predictions. The whole proposed network model
PHGCN can be trained in an end-to-end manner.

4.3. Persistence Diagram Loss LPD

By insights that it is challenging to obtain coherent seg-
mentation output for fine-grained structures, we further en-
force the segmentation output with topological correctness
by the utility of persistence diagram. In this work, instead
of only using cross-entropy loss which is widely used in se-
mantic segmentation, we integrate a novel topological loss
which measures the topological error between the two per-
sistence diagrams of the prediction likelihoods and ground-
truth labels. This specific topological loss is called persis-
tence diagram (PD) loss, denoted as LPD. The PD loss
LPD applies the 1-order Wasserstein distance [26] W1 to
find the best match m∗ between these two persistence dia-
grams (persistence diagram for likelihood dgmL and persis-

tence diagram for ground-truth dgmGT ).

m∗ = argmin
m

W1(dgmL, dgmGT )

= argmin
m

∑
(u,v)∈m

∥u− v∥∞
(2)

where u ∈ dgmL, v ∈ dgmGT and the Wasserstein dis-
tance here uses the L∞-norm distance between each pair
of points (u, v) ∈ m, for each possible match m between
diagrams dgmL and dgmGT . Once the optimal match m∗

is found, LPD is computed as the square distance between
each matched pair of points from dgmL and dgmGT .

Lc
PD =

∑
(u,v)∈m∗

∥u− v∥22 (3)

Note that Lc
PD here is computed in terms of each part

class of certain category of 3D object. The summation over
PD loss of all part classes (c = 1, 2, ..., Nc) is performed to
obtain the final one,

LPD =

Nc∑
c=1

Lc
PD (4)

then LPD is integrated with cross entropy loss LCE to ob-
tain the final objective function L for optimization.

L = LCE + LPD (5)

As a result, topological constraints are appended in opti-
mization to enhance the coherency and connectivity in seg-
mentation output, especially for fine-grained objects with
shape-dependent topological structures.
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4.4. Network Architecture

Taking reference from the network architecture design
of Pointnet++ [21], our proposed PHGCN model adopts the
encoder decoder style [21,27,29] for part semantic segmen-
tation task. The encoder module contains four graph convo-
lutional network (GCN) layers, which are considered as ex-
tractor for local features. Then, the local features extracted
are fused with topological features extracted from complex
structures, which are captured by the persistent homology
(PH) module. For upsampling the features downsampled
by the encoder, the decoder module which consists of four
FPConv layers is applied for gradually interpolating the fea-
tures as the original size of the input. For optimization, the
predicted likelihood and ground truth for each part class of
3D object are used to compute PD loss LPD, which is then
integrated with cross entropy loss LCE .

5. Experiments
5.1. Segmentation on ShapeNet-Part Dataset

The ShapeNet-Part [5] dataset is the first complete
benchmark on 3D fine-grained point-wise segmentation. It
contains 16,881 CAD shape instances from 16 categories,
with part labels annotated on 2,048 sampled points. There
are 50 kinds of part labels in total. Each category is anno-
tated with two to five part labels.

For quantitative evaluation, we follow the setting from
PointNet [6] to select 14,007 shape instances as the training
set, and the remaining 2,874 ones as the validation set for
accuracy evaluation. The 3D coordinates of 2,048 sampled
points of each instance are used as the input.

Quantitative and Qualitative Results: The quantita-
tive results evaluated for ShapeNet-Part dataset are provided
in Table 1. The part-wise Intersection-over-Union (IoU) is
used as the metric in our evaluation, and is given for each
object category and the mean value (mIoU). It is shown that
the proposed PHGCN provides the best result with 89.2%
part-wise mean IoU, outperforming all other competitive
methods. Specifically, PHGCN achieves significant gains in
fine-grained objects with complex structures, such as lamp,
guitar, and objects with thin parts, such as ear-phone, mug,
table and chair, which are illustrated as the consistent re-
sults that the persistent homology mechanism in PHGCN
takes effects in interpretating complex structures and shape
dependent topological structures of fine-grained objects.

The qualitative segmentation results on validation set
of ShapeNet-Part dataset are illustrated in Fig. 4(a), in
which the prediction from PHGCN model is greatly con-
sistent with the ground truth part labels annotations, even
the ShapeNet-Part dataset contains a lot of shapes in com-
plex structures and thin parts. To give a better intu-
ition on the effectiveness on the extracted topological fea-
tures, we perform qualitative comparison to two representa-

tive geometric deep learning methods (DGCNN, ResGCN-
28). In Fig.4(b), for objects (lamp and mug) with fine-
grained parts, the segmentations (DGCNN, ResGCN-28)
suffer from broken connections and mis-classification on
small component, while PHGCN provides coherent seg-
mentation with sufficient topology correctness. For object
(motor) with multi-scale and complex structures, the seg-
mentations (DGCNN, Res28GCN) show that handles and
parts near the wheel are mis-segmented while the output of
PHGCN is accurate enough as the ground-truth.

5.2. Segmentation on PartNet Dataset

The proposed PHGCN model is further evaluated on a
larger and more complex benchmark called PartNet [18]
dataset. The PartNet [18] dataset contains 26,671 shape
instances and divided in 573,585 part instances with fine-
grained part annotations. It covers 24 object categories.
Among these categories, there are some categories which
have complex structures, such as lamp, faucet, chair. Also,
some categories such as door, refrigerator, earphone, con-
tain thin and semantically important parts, e.g. the cord of
an earphone, the handle of a door or a refrigerator. All of
these properties of PartNet dataset bring great challenges
for accurate segmentation.

For quantitative evaluation, we follow the setting from
PartNet [18] to split the dataset into train set, validation set
and test set in the ratios of 70%, 10%, 20%, respectively.
Each input instance is the 10,000 points sampled from each
CAD model and only 3D coordinates are used as the in-
put. To validate the effectiveness of our proposed method
on fine-grained object segmentation, the fine level (level-3)
of PartNet (17 categories) is selected for the evaluation.

Quantitative and Qualitative Results: In Table 2, the
results of PHGCN are presented with comparisons to sev-
eral state-of-the-art methods on PartNet dataset. The com-
parison result shows that the proposed PHGCN model out-
performs all prior state-of-the-art methods such as Point-
Net++ [21], PointCNN [16], ResGCN [15], ADConvnet
[29], as reported by the part-wise IoU for each category and
the mean IoU across all categories. Particularly, PHGCN
provides over 10% relative improvement against graph
deep learning methods, such as DGCNN and ResGCN-28
method. It is observed that fine grained object with complex
structures such as faucet, lamp and chair can be segmented
in improved accuracy. Together with this result, objects
with thin parts such as earphone, door and refrigerator, the
proposed PHGCN achieves significant accuracy gains com-
pared with other state-of-the-art methods. This is the sig-
nificance and the most important point for segmenting the
fine-grained 3D objects, i.e., thin parts, while the prior state-
of-the-art methods may not obtain higher accuracy on thin
parts. By applying persistent homology method, the pro-
posed PHGCN captures the structural information of these

7103



Method mIoU
air

plane
bag cap car chair

ear
phone

guitar knife lamp laptop motor mug pistol rocket
skate
board

table

PointNet [6] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [21] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SPLATNet [24] 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
PointCNN [16] 86.1 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
DGCNN [27] 85.0 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
ResGCN-28 [15] 85.5 85.3 83.5 86.6 78.1 90.9 75.1 91.5 86.8 83.1 95.9 68.1 95.2 80.9 63.8 74.8 83.1
PartNet [31] 87.4 87.8 86.7 89.7 80.5 91.9 75.7 91.8 85.9 83.6 97.0 74.6 97.3 83.6 64.6 78.4 85.8
ADConvnet [29] 87.0 87.4 86.4 89.5 80.1 91.4 78.9 91.5 86.2 82.9 96.9 76.9 97.1 84.0 64.3 79.6 85.4
PHGCN 89.2 88.9 86.6 90.2 81.5 92.8 80.2 93.1 88.2 87.8 97.5 79.2 98.6 85.8 64.7 80.9 87.8

Table 1. Comparison of semantic segmentation on the ShapeNet-Part dataset. Metric is part-wise IoU (%).

Figure 4. (a) Qualitative results of PHGCN on the ShapeNet-Part [5] validation set. (b) Qualitative comparison to baseline methods
(DGCNN, ResGCN-28). Erroneous segmentations are circled in dash lines.

thin parts more effectively and thus gives the reason why
PHGCN provides higher accuracy.

5.3. Ablation Analysis

The ablation analyses are conducted on both ShapeNet-
Part and PartNet dataset to validate the efficacy of the pro-
posed PHGCN model. The ablation result is presented in
Table 3.

(1). Replace PHGCN module with general GCN mod-
ule. The persistent homology mechanism of PHGCN en-
ables the model to extract the topological information from
complex structures in multi-scale manner. For comparison,
general GCN layer only captures information in pairwise
structures in local neighborhood. As a consequence, the
performance is greatly decreased.

(2). Use LCE only. The LPD loss function provides suf-
ficient topology correctness for coherent segmentation over
the fine-grained structures. By removing LPD from Eq. (5),

the performance is lowered due to the incoherent segmenta-
tion output.

The part-wise mIoU scores of all ablated variants are
compared in Table 3. It is concluded that: i) The most im-
portant ingredient comes from the PHGCN module, since
the multi-scale structural information is essential in fine-
grained objects. ii) The role of LPD shows the next impor-
tant factor in performance, especially for fine-grained ob-
jects with thin parts. From this ablation study, it is shown
that the proposed module and loss function (which consti-
tute the full PHGCN model) achieve the state-of-the-art ac-
curacy.

5.4. Complexity Analysis on Persistence Diagram

To reduce computational cost while retaining the perfor-
mance of proposed model, we apply Alpha-complex filtra-
tion rather than time-consuming filtrations such as Vietoris-
Rips or Cech complex filtration. The running time for com-
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Method mIoU bed bottle chair clock
dish

washer display door
ear

phone faucet knife lamp
micro-
wave

refri-
gerator storage table

trash
can vase

PointNet [6] 35.6 13.4 29.5 27.8 28.4 48.9 76.5 30.4 33.4 47.6 32.9 18.9 37.2 33.5 38.0 29.0 34.8 44.4
PointNet++ [21] 42.5 30.3 41.4 39.2 41.6 50.1 80.7 32.6 38.4 52.4 34.1 25.3 48.5 36.4 40.5 33.9 46.7 49.8
PointCNN [16] 46.5 41.9 41.8 43.9 36.3 58.7 82.5 37.8 48.9 60.5 34.1 20.1 58.2 42.9 49.4 21.3 53.1 58.9
DGCNN [28] 44.6 36.1 48.9 40.7 34.4 55.9 80.4 30.8 45.1 51.5 42.9 22.6 50.9 33.6 46.9 34.2 50.6 53.4
ResGCN-28 [15] 45.1 35.9 49.3 41.1 33.8 56.2 81.0 31.1 45.8 52.8 44.5 23.1 51.8 34.9 47.2 33.6 50.8 54.2
ADConvnet [29] 47.0 42.1 41.7 44.2 35.9 58.4 82.9 38.1 48.5 58.9 33.3 19.8 58.4 43.4 49.2 34.2 52.9 57.5
PHGCN 49.8 43.0 48.7 45.9 41.9 59.3 84.2 37.5 50.2 62.9 46.1 26.2 59.1 44.2 49.1 35.2 54.3 59.5

Table 2. Comparison of semantic segmentation on fine-grained objects (level=3) in PartNet dataset [18]. Metric is part-wise IoU (%).

Figure 5. Qualitative results of PHGCN on the PartNet [18] test set.

mIoU
(ShapeNet-Part) (PartNet)

(1). Use general GCN module 85.2 46.3
(2). Use LCE only 86.3 47.0
(3). (1)+(2) 83.4 44.2
(4). The full PHGCN model 89.2 49.8

Table 3. The part-wise mIoU scores of all ablated variants based
on the full PHGCN model. Both the ShapeNet-Part and PartNet
dataset are selected for evaluation.

puting PD for an instance of ShapeNet-Part is 0.25sec in
average (using Intel i7 CPU), which is suitable enough in
our scenario.

6. Conclusion
In this work, a novel point cloud based neural network

model called PHGCN is proposed which integrates com-
putational topological methods to tackle several challenges
in semantic segmentation for fine-grained 3D objects. The
proposed PHGCN applies persistent homology mechanism
into graph convolution network to handle input with multi-
scale complex structures. It also applies LPD loss function
to reinforce the topological correctness in prediction to pro-

vide coherent fine-grained segmentation output.

From these two improvements, the segmentation results
for fine-grained objects (especially objects with complex
structures such as faucet, lamp, chair and objects with thin
parts such as earphone, door and refrigerator) have got sig-
nificant gain in accuracy. The performance of PHGCN is
validated in terms of accuracy over two challenging bench-
marks. From the experiments, PHGCN outperforms sev-
eral state-of-the-art point cloud based segmentation meth-
ods. The experimental results also validate the contribu-
tions of PHGCN: i) persistent homology based GCN is an
effective mechanism to capture multi-scale structural infor-
mation from 3D objects; ii) a more accurate and coher-
ent semantic segmentation with sufficient topology correct-
ness for fine-grained structures; iii) much higher accuracy
than state-of-the-art geometric deep learning methods (e.g.,
more than 10% relative improvement over DGCNN and
ResGCN-28 method on PartNet dataset evaluation).
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