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Abstract

Modern cameras are equipped with a wide array of sen-
sors that enable recording the geospatial context of an im-
age. Taking advantage of this, we explore depth estimation
under the assumption that the camera is geocalibrated, a
problem we refer to as geo-enabled depth estimation. Our
key insight is that if capture location is known, the corre-
sponding overhead viewpoint offers a valuable resource for
understanding the scale of the scene. We propose an end-
to-end architecture for depth estimation that uses geospatial
context to infer a synthetic ground-level depth map from a
co-located overhead image, then fuses it inside of an en-
coder/decoder style segmentation network. To support eval-
uation of our methods, we extend a recently released dataset
with overhead imagery and corresponding height maps. Re-
sults demonstrate that integrating geospatial context signif-
icantly reduces error compared to baselines, both at close
ranges and when evaluating at much larger distances than
existing benchmarks consider:

1. Introduction

Accurately estimating depth is important for applications
that seek to interpret the 3D environment, such as aug-
mented reality and autonomous driving. The traditional ge-
ometric approach for solving this problem requires multiple
views and infers depth by triangulating image correspon-
dences. Lately, more attention has been paid to the single-
image variant, which has great potential value but is known
to be ill-posed. Ranftl et al. [29] point out that to solve this
problem “one must exploit many, sometimes subtle, visual
cues, as well as long-range context and prior knowledge.”

One of the primary difficulties with inferring depth from
a single image is that there is an inherent scale ambiguity.
In other words, different sized objects in the world can have
the same projection on the image plane (simply by adjusting
the focal length or position in space). Despite this, meth-
ods that take advantage of convolution neural networks have
shown promise due to their ability to capture prior informa-
tion about the appearance and shape of objects in the world.

There are broadly two classes of methods in this space.
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Figure 1: We explore a new problem, geo-enabled depth
estimation, in which the geospatial context of a query image
is exploited during the depth estimation process.

Supervised approaches assume a ground-truth labeling is
provided during training, often obtained from another sen-
sor such as LiDAR. This labeling could be absolute (met-
ric values) or have an unknown scale. Self-supervised ap-
proaches, on the other hand, do not require ground-truth
depth. Instead, the consistency of multiple inputs (e.g., se-
quences of images from a video, or a stereo pair) are used
to derive depth up to a scaling factor, often by formulat-
ing the problem as a novel view synthesis task. For both
of these classes of methods, it is common to make strong
assumptions about the scale of the scene during training, or
to require computation of a scaling factor at inference time
in order to interpret the predicted depths.

For example, supervised methods often presume to know
the maximum observed depth of the scene, by constrain-
ing the output of the network using a sigmoid activation
and scaling by the maximum depth [9, 19]. If the scale is
unknown, i.e., a scale-invariant loss was used during train-
ing, then a scaling factor must be computed at inference
to interpret the predictions relative to the world. Such ob-
jective functions have been proposed when metric depth is
not available or for combining training datasets with differ-
ent properties. For example, Ranftl et al. [29] align their
predictions with the ground-truth via a least squares crite-
rion before computing error metrics. These caveats limit
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the generalizability of such methods when applying them
to real-world imagery from novel locations (e.g., varying
depth ranges or lack of ground truth).

A similar phenomena occurs in self-supervised monocu-
lar approaches that estimate depth up to an unknown scale.
The maximum observed depth of the scene is often used to
constrain the predicted depths during training, and a scaling
factor is computed at inference to bring the predictions in
line with the ground truth. As before, the common strat-
egy in the current literature is to compute this scaling fac-
tor using the ground-truth directly (per image), in this case
by computing the ratio of the median predicted values and
median ground-truth values [12]. The issue of how to cali-
brate self-supervised monocular depth estimation networks
has only recently been highlighted by McCraith et al. [26],
who point out that current approaches severely limit practi-
cal applications.

Beyond these issues, estimating depth at long ranges is
known to be extremely challenging. Zhang et al. [41] note
the limitations of LiDAR (sparse, reliable up to 200m) and
argue the need for “dense, accurate depth perception beyond
the LiDAR range.” Most state-of-the-art depth estimation
networks assume a maximum depth of 100 meters for out-
door scenes [12]. Further, popular benchmark datasets for
depth estimation are constrained to small ranges, typically
below 100 meters (using a depth cap to filter pixels in the
ground truth). For example, Ranftl et al. [29] evaluate on
four different datasets, ETH3D, KITTI, NYU, and TUM,
with the depth caps set to 72, 80, 10, and 10 meters, respec-
tively. Reza et al. [30] have similarly pointed out the need
for depth estimation to function at much larger distances.

In this work we explore how geospatial context can be
used to augment depth estimation, a problem we refer to
as geo-enabled depth estimation (Figure 1). Modern cam-
eras are commonly equipped with a suite of sensors for
estimating location and orientation. Kok et al. [17] pro-
vide an in-depth overview of algorithms for recovering po-
sition/orientation from inertial sensors, concluding that as
quality has improved and cost has decreased “inertial sen-
sors can be used for even more diverse applications in the
future.” Accordingly, a great deal of work has shown that
geo-orientation information is extremely valuable for aug-
menting traditional vision tasks [24,25,35,39,40].

Given a geocalibrated camera, we explore how to inject
geospatial context into the depth estimation process. In this
scenario, our goal is to develop a method that takes advan-
tage of the known geocalibration of the camera to address
the previously outlined weaknesses. Specifically, we want
to use geospatial context to 1) reduce the inherent scale am-
biguity and to 2) enable more accurate depth estimation at
large distances. Our key insight is that if the location of
the capturing device is known, the corresponding overhead
viewpoint is a valuable resource for characterizing scale.

We propose an end-to-end architecture for depth esti-
mation that uses geospatial context to infer an intermedi-
ate representation of the scale of the scene. To do this, we
estimate a height (elevation) map centered at the query im-
age and transform it to a synthetic ground-level depth map
in a differentiable manner via a sequence of voxelization
and ray casting operations. This intermediate representa-
tion is metric, and we fuse it inside of an encoder/decoder
segmentation architecture that outputs absolute depth esti-
mates. Importantly, our approach makes no assumptions
during training about the maximum observed depth and re-
quires no post-processing step to align predictions.

To support evaluating our methods, we extend the re-
cently released HoliCity dataset [44] to include overhead
imagery and corresponding height data from a composite
digital surface model. Extensive experiments show that
when geospatial context is available our approach signifi-
cantly reduces error compared to baselines, including when
evaluating at much longer depth ranges than considered by
previous work.

2. Related Work

Traditional work in depth estimation relied on geometric
cues from multiple images to infer depth. Interest quickly
shifted to the single-image variant of the problem with early
approaches relying on a set of assumptions about the geo-
metric layout of the scene [14]. For example, Delage et
al. [5] proposed a 3D reconstruction method for a single in-
door image that makes assumptions about the relationship
between vertical and horizontal surfaces and uses visual
cues to find the most probable floor-wall boundary. Sax-
ena et al. [34] later assumed the environment is made up of
many small planes and estimated the position and orienta-
tion of each using a Markov random field.

More recently in machine vision it has become com-
mon to directly regress depth using convolutional neural
networks. Supervised approaches use ground-truth depth
from RGB-D cameras, LiDAR sensors, or stereo match-
ing [7]. In this space there has been much exploration into
various architecture and design choices [1, 9, 18, 19, 20].
However, the primary challenge for supervised methods re-
mains the difficulty in acquiring high quality and varied
training data. To navigate this issue, Atapour-Abarghouei
and Breckon [2] propose to train using a synthetic dataset
and then apply style transfer to improve performance on
real-world images. Other work has relaxed the requirement
for absolute depth supervision by proposing scale-invariant
objective functions [4]. Ranftl et al. [29] argue that per-
formance is primarily impacted by the lack of large-scale
ground truth, proposing a scale-invariant loss that enables
mixing of data sources.

Alternatively, self-supervised methods circumvent the
need for ground-truth depth entirely, instead relying on mul-
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Figure 2: We introduce the HoliCity-Overhead dataset which extends the recently introduced HoliCity dataset [44] to include
overhead imagery and associated ground-truth height maps. From left to right, equirectangular panorama, perspective cutout,
corresponding depth map, co-located overhead image, and corresponding height map.

tiple inputs (e.g., sequences of images from a video, or a
stereo pair) during training to derive depth up to a scaling
factor. The problem is commonly reformulated as an image
reconstruction task with [11] or without [12,42,43] known
camera pose information. While self-supervised methods
that take advantage of stereo supervision can infer scale di-
rectly from the known camera baseline [12], self-supervised
monocular approaches suffer from the need to align predic-
tions with the ground-truth at inference by computing the
scaling factor [26]. When considering both supervised and
self-supervised approaches, it is common to make an as-
sumption about the maximum observed depth during train-
ing [9,19]. In addition, popular benchmarks such as ETH3D
and KITTT are evaluated sub-100 meters. This limits the
practical application of these methods when considering
images from novel locations, thus methods that function at
larger distances are needed [30].

Motivated primarily by the surge in interest in au-
tonomous driving, another strategy is to frame the problem
as depth completion or depth refinement where, in addi-
tion to the input image, an approximate (possibly sparse)
depth image is provided (e.g., from a LiDAR sensor). Here,
the objective is to produce a dense, more accurate depth
map [31]. Our approach is similar to this line of work in
the sense that we use geospatial context to produce an in-
termediate depth estimate that is used along with the input
image to infer a final depth prediction. Though we focus on
integrating geospatial context, our method can conceivably
be combined with any recent depth refinement approach.

Geospatial context has become a powerful tool for im-
proving the performance of traditional vision tasks. For
example, Tang et al. [35] consider the task of image clas-
sification and show how geolocation can be used to incor-
porate several different geographic features, ultimately im-

proving classification performance. Similarly, overhead im-
agery has proven to be useful as a complementary view-
point of the scene. Luo et al. [24] combine hand-crafted
features for a pair of ground-level and overhead images to
improve ground-level activity recognition. In the realm of
image geolocalization, overhead imagery has been used as
an alternative to a ground-level reference database [21, 38]
to enable dense coverage. Other use cases include making
maps of objects [25,36] and visual attributes [32, 39], un-
derstanding traffic patterns [37], detecting change [10], and
visualizing soundscapes [33]. To our knowledge, this work
is the first to consider how geospatial context can be used to
improve depth estimation.

3. HoliCity-Overhead Dataset

To support our experiments, we introduce the HoliCity-
Overhead dataset which extends the recently introduced
HoliCity [44] dataset. HoliCity is a city-scale dataset for
learning holistic 3D structures such as planes, surface nor-
mals, depth maps, and vanishing points. The dataset was
constructed by taking advantage of a proprietary computer-
aided design (CAD) model of downtown London, United
Kingdom with an area of more than 20km?. Note that as
labels are derived from the CAD model, they do not con-
tain dynamic objects (e.g., pedestrians). We do not consider
this a limitation as deriving depth in this manner enables
ground-truth depth values at significantly greater ranges
compared to existing datasets (on the order of kilometers
for HoliCity), which is crucial for supporting our goal of
enabling more accurate depth estimation at larger distances.

In the source region, 6,300 panoramas were collected
from Google Street View with a native resolution of 6, 656 x
13,312. The individual panoramas were aligned with the
CAD model such that the average median reprojection er-
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Figure 3: An overview of our approach. Given a geolocated image, we transform a co-located height map to an intermediate
representation of the scale of the scene via a series of differentiable operations that take advantage of the known camera
geocalibration. We then fuse it into an encoder/decoder segmentation architecture that operates on the ground-level image.
Importantly, our approach can function on a known height map if available (e.g., from a composite DSM), or instead estimate

height from a co-located overhead image (shaded region).

ror is less than half a degree. From each panorama, eight
perspective cutouts (of size 512 x 512) were extracted at
45 degrees apart, with yaw and pitch angles randomly sam-
pled and field-of-view set to 90°. Labels were generated for
each cutout using the CAD model. Importantly, the geo-
orientation information for the original 360° equirectangu-
lar panoramas, as well as the camera parameters defining
the perspective cutouts, are provided. Example images from
the dataset are shown in Figure 2.

For our purposes, we extended the dataset to include
overhead imagery and ground-truth height maps, which
we refer to as the HoliCity-Overhead dataset. For each
Google Street View panorama, we collected a co-located
overhead image at multiple resolutions (zoom levels 16-
18) from Bing Maps (each of size 512 x 512). Then, we
generated a height map for each overhead image by align-
ing to a 1 meter composite digital surface model (DSM)
of London produced by the Environment Agency in 2017.
The DSM data is made publicly available via the UK gov-
ernment at the open data portal." Examples of the result-
ing overhead image and height map pairs contained in the
HoliCity-Overhead dataset are shown in Figure 2 (right).

Though HoliCity provides an official evaluation split,
ground-truth data for the test set is reserved for a future
held-out benchmark. As such, in our experiments we report
performance numbers using the validation set and instead
reserve a small portion of the training set for validation.

lhttps://data.qov.uk/

4. Geo-Enabled Depth Estimation

We propose an end-to-end architecture for depth estima-
tion that integrates geospatial context. Figure 3 provides
a visual overview of our approach. For the purposes of
description, we outline our approach as if a height map is
estimated from a co-located overhead image, but it can be
provided directly as input if available.

4.1. Approach Overview

Given a geocalibrated ground-level image (i.e., known
geolocation, orientation, field of view), our approach has
two primary components. First, we estimate a height
map from a co-located overhead image and use it to gen-
erate an intermediate representation of the scale of the
scene. To generate the intermediate representation from the
height map, we render a synthetic ground-level depth im-
age through a sequence of differentiable operations that take
advantage of the known camera geocalibration (i.e., con-
version to a voxel representation and ray casting). This in-
termediate representation is metric and has many potential
uses. The second component of our approach performs joint
inference on a ground-level image and the synthetic depth
image in an encoder/decoder style segmentation architec-
ture, fusing the two modalities inside the decoder.

4.2. Inferring Scale from an Overhead Viewpoint

We leverage geospatial context to generate an intermedi-
ate representation of the scale of the scene from an overhead
viewpoint.
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Figure 4: Transforming a height map from an overhead
viewpoint to a depth panorama using a voxel representation
combined with ray casting. (left, bottom) The input height
map and (right, bottom) the generated depth panorama. As
the ground sample distance of the overhead height map is
known, the resulting depth panorama is metric.

4.2.1 Estimating a Height Map

Given a geocalibrated ground-level image and a co-located
overhead image, we first estimate a per-pixel height map
from the overhead image. We represent this as a supervised
regression task that outputs per-pixel metric height values.
For our segmentation architecture, we use LinkNet [3] with
a ResNet-34 [13] encoder (initialized using weights from a
model trained on ImageNet [60]). For the objective function,
we minimize the Pseudo-Huber loss (also recognized as the
Charbonnier loss):

Lheight = 6>(V/1+ ((y —§)/6)2 — 1), (1)

where y and ¢ are the observed and predicted values, re-
spectively. The Pseudo-Huber loss is a smooth approxima-
tion of the Huber loss, where § controls the steepness.

4.2.2 Synthesizing a Depth Panorama

Drawing inspiration from Lu et al. [23] who tackle the prob-
lem of cross-view image synthesis, we use the estimated
height map to render north aligned panoramic depth images.
Given that the overhead imagery has known ground sam-
ple distance (the spatial extent of each pixel in the world
is known), we use the overhead height map to construct
a voxel occupancy grid. The grid is generated such that
voxel v; ;= 1 if height value h; ; > k at pixel loca-
tion (%, ). The overhead image, and subsequently the voxel
grid, is centered at the geolocation of the query ground-
level image. Then, a synthetic panoramic depth image is
constructed from the voxel grid by sampling at uniform dis-
tances along the ray for each pixel in the output panorama.

The output depth is set to the minimum sampling distance
that intersects a non-zero voxel. Figure 4 visualizes the out-
put of this process using a ground-truth height map.

4.2.3 Extracting a Perspective Cutout

The previous step generates a synthetic ground-level
panoramic depth image directly from an overhead height
map. For use in our end-to-end system, we also imple-
ment a differentiable layer for extracting perspective cutouts
from a 360° panorama. Given an equirectangular panorama
and target geocalibration (yaw, pitch, roll, field of view),
we extract the corresponding perspective image by treating
the panorama as a cylindrical image and sampling the pro-
jections onto the image plane under the given camera ge-
ometry. We implement this as a separate layer so that the
panoramic depth image can be accessed directly, and addi-
tionally for resource conservation in the event that several
perspective cutouts are needed from a single panorama.

4.3. Depth Refinement using Geospatial Context

Here we outline our depth refinement architecture (Fig-
ure 3, bottom) that takes as input a ground-level image
and the intermediate estimate of scale generated from a co-
located height map. We start from the architecture proposed
by Alhashim and Wonka [ 1] and regress depth using an en-
coder/decoder segmentation network with skip connections.
In this approach, the decoder consists of a series of upsam-
pling blocks. In each block, the input feature map is upsam-
pled via bilinear interpolation, concatenated with the corre-
sponding feature map from the encoder (skip connection),
and passed through two 3 x 3 convolutional layers with the
number of output filters set to half of the input filters. Unlike
existing work, which often estimates half resolution depth,
we add an extra convolutional transpose layer before the fi-
nal output layer of the decoder in order to generate full res-
olution depth. For the encoder, we use DenseNet-161 [15]
pretrained on ImageNet.

To incorporate geospatial context (in the form of a syn-
thetic depth image obtained from the estimated height map)
we fuse it with image features inside the decoder. Specif-
ically, before each convolutional layer and upsampling
block, we concatenate the synthetic depth image as an ad-
ditional channel of the input feature map, resizing as nec-
essary. The final two layers of the decoder (convolutional
transpose layer and output convolutional layer) are excluded
from this process. Fusing in the decoder allows the encoder
to learn features solely focusing on the content of the query
image.

Similar to height estimation, we minimize the Pseudo-
Huber Loss (1). However, we omit pixels from the objec-
tive function that do not have ground-truth depths using a
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Table 1: HoliCity evaluation results (depth cap 80m).

AbsRel SqRel RMSE RMSElog §<1.25 §<1.252 §<1.25°
overhead 0.886  21.564 10.571 0.602 0.314 0.600 0.771
ground (variant of [1]) 0.503  10.631 5.626 0.301 0.675 0.876 0.940
ours (concatenate) 0.515 14.790  5.057 0.290 0.711 0.883 0.944
ours 0.501 12.205 4.895 0.279 0.711 0.893 0.950
ground + median scaling (overhead) 0.923 25.355 8.635 0.457 0.400 0.709 0.847
ground + median scaling (ground truth)  0.229 3.249  5.388 0.255 0.749 0.905 0.957
ours + median scaling (ground truth) 0.216 2.967 4.782 0.239 0.774 0.920 0.964
validation mask. The final loss becomes Table 2: Estimated versus known height maps (HoliCity,
depth cap 80m).
L = anLheight + Ldepths 2

where «, is a weighting term used to balance the two tasks.
Our approach can be thought of as a depth refinement tech-
nique that takes into account the overhead approximation of
scene scale.

4.4. Implementation Details

We implement our methods using PyTorch [28] and Py-
Torch Lightning [8]. Our networks are optimized using
Adam [16] with the initial learning rate set to le=%. All
networks are trained for 25 epochs and the learning rate pol-
icy is set to reduce-on-plateau by an order of magnitude us-
ing the validation set (patience equal to 5 epochs). For the
Pseudo-Huber loss, we set § = 2. To balance the two tasks,
we set ay, = 0.1. This weighting term is decreased a sin-
gle time after 5 epochs, by a factor of 10. When estimating
heights, we normalize each ground-truth height map indi-
vidually such that the minimum value is zero. For render-
ing perspective cutouts, we set non-intersections to a value
of -1.

5. Evaluation

We evaluate our methods quantitatively and qualitatively
through a variety of experiments. Results demonstrate
that our approach, which builds on a recent state-of-the-art
method to inject geospatial context, significantly reduces er-
ror at close ranges while simultaneously enabling more ac-
curate depth estimates at larger ranges than have been pre-
viously considered.

Baseline Methods To evaluate the proposed architecture,
we compare against several baseline methods that share
low-level components with our proposed method. Our full
approach is outlined in Section 4 and is subsequently re-
ferred to as ours. We also compare against a baseline that
omits geospatial context from our approach (referred to as
ground). Note that without geospatial context, this baseline

RMSE RMSE log

4.935 0.287
4.895 0.279

ours (estimated height)
ours (known height)

is simply a variant of the recent state-of-the-art method of
Alhashim and Wonka [ 1]. Additionally, we compare against
a baseline that uses only the intermediate estimate of scale,
derived from geospatial context, as the final prediction (re-
ferred to as overhead). Finally, we compare against a base-
line that concatenates the intermediate estimate as an ad-
ditional channel to the input image and we refer to this as
ours (concatenate). The strategy for this baseline is similar
in concept to the recent work of Liu and Li [22] who add ori-
entation as an additional input channel for cross-view image
geolocalization.

5.1. Ablation Study

We present results using the HoliCity-Overhead dataset.
As mentioned previously, we report metrics on the HoliC-
ity [44] validation set as ground-truth data for the test set
is unavailable. Unless otherwise specified, all methods
are trained using HoliCity-Overhead data corresponding to
zoom level 17 (approx. 0.74 meters per pixel, or 190 meter
half width) and use the known height map.

For our initial experiment, we evaluate the ability of our
approach at short ranges (depth cap of 80 meters), comput-
ing metrics as in [12]. Table 1 summarizes the results of this
study. As expected, the ground-only baseline outperforms
the overhead-only baseline, likely due to the difficulty in
precisely recovering fine-grained details from an overhead
viewpoint. Despite the limited evaluation range, our meth-
ods that integrate geospatial context significantly outper-
form all baselines, e.g., by over half a meter in RMSE ver-
sus the ground-only baseline. Additionally, our approach of
fusing in the decoder outperforms the variant of our method
that concatenates as an additional input channel.

4567



30 A
2541
0
&
£ 20 1
s
o 15 A
&
=
2 10
Qo
<
overhead
51 —— ground
—— ours
0 50 100 150 200 250 300 350

Distance (meters)

Figure 5: Integrating geospatial context reduces average er-
ror as distance increases when compared to baselines, in-
cluding an overhead-only approach.

In addition, we show the impact of adding median scal-
ing (a per-image scaling factor used to align results) to the
ground-only baseline using both the overhead estimate and
the ground truth. This result demonstrates the benefit of our
end-to-end architecture over an approach that simply uses
the intermediate estimate of scale directly as a calibration
tool. Though we have previously noted the impracticality
of median scaling using the ground truth, for fairness we
show that our approach can similarly benefit, achieving sig-
nificantly lower error.

Finally, Table 2 shows that our method that simultane-
ously learns height maps (from co-located overhead im-
ages) performs competitively against our approach that ac-
cepts known height maps directly (e.g., from a composite
DSM). These results show that geospatial context, if avail-
able, can be extremely useful for augmenting depth estima-
tion, even at small ranges.

5.2. Long Range Depth Estimation

Next, we analyze the performance of our methods at
much greater distances. One of the major limitations of
existing work is that evaluation is typically limited to less
than 100 meters [29,30]. This can be partly attributed to the
increased difficulty of accurately estimating depth at long
ranges, but also due to the limited range of LiDAR sensors,
which are often used for collecting ground truth. An advan-
tage of the HoliCity dataset [44] is that the truth labels are
derived from a CAD model, enabling ground-truth depth to
reflect much larger distances.

Figure 5 visualizes the performance of our approach over
a range of up to 400 meters, using absolute error as the
metric, versus two baselines. As expected, average error
increases as the magnitude of the depth increases. Our
method not only exhibits lower depth error overall, but
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Figure 6: Evaluating the impact of varying ground sam-
ple distance. As anticipated, the greater spatial coverage
of lower zoom levels positively impacts depth estimation
performance at greater distances.

greatly reduces error at long ranges. We attribute this to our
explicit intermediate representation of scale derived from
an overhead viewpoint, which enables a good approxima-
tion of depth even at far distances.

Finally, we evaluate the impact of varying ground sam-
ple distance on our methods. In other words, does having a
greater spatial coverage in the overhead height map pos-
itively impact depth estimation performance? Intuitively
this makes sense, as greater spatial coverage in the height
maps would enable capturing objects further away in the
synthetic depth panorama (Figure 4) and subsequent per-
spective cutout, with the trade-off of less detail (i.e., be-
ing zoomed out). For this experiment, we train variants
of our method for the different zoom levels of imagery
contained in HoliCity-Overhead. Figure 6 visualizes the
results, with the x-axis representing the maximum depth
considered (depth cap) when computing the error metric
(RMSE). As anticipated, at further distances, starting from
height maps with greater spatial coverage leads to an ad-
vantage, with all methods significantly outperforming the
ground-only baseline.

5.3. Impact of Geo-Orientation Accuracy

As our approach relies on geospatial context, we ex-
plore the ability of our method to handle increasing levels
of error in geo-orientation. Note that as the HoliCity [44]
dataset has non-zero alignment error, previous results al-
ready demonstrate this to a degree. Since high-end sys-
tems can achieve position accuracy on the order of centime-
ters [27], we assume accurate geolocation and focus our
attention on orientation. Specifically, we follow the find-
ings of Kok et al. [17] who demonstrate that it is gener-
ally easier to obtain accurate roll and pitch estimates from
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Figure 7: Evaluating performance with increasing orienta-
tion error. Even with significant noise, our approach outper-
forms the ground-only baseline.

inertial sensors than it is to obtain accurate heading (yaw)
estimates. We evaluate our approach by adding increasing
levels of maximum heading error, 6, at inference, by sam-
pling uniformly on the interval [—6,6]. Note that the av-
erage error in this scenario is approximately g. Intuitively,
performance should decrease as orientation error increases.
Figure 7 shows the results of this experiment. Our approach
still outperforms the ground-only baseline even with signif-
icant added noise. Additionally, in the supplemental mate-
rial we demonstrate how components of our approach can
be used to refine geo-orientation.

5.4. Application: Calibrating Self-Supervised
Monocular Approaches

In this section, we demonstrate the potential of our
method to be used as a tool for calibrating self-supervised
depth estimation approaches. As discussed previously, self-
supervised monocular methods can only estimate depth up
to an unknown scale and a scaling factor must be computed
to align predictions. Recent work has highlighted that using
the ground-truth to compute this scaling factor is not a prac-
tical solution [26]. We begin by investigating the impact
this scaling step has on performance by analyzing a recent
state-of-the-art self-supervised approach, Monodepth2 [12],
using the KITTI depth benchmark.

Though Monodepth2 only predicts depth up to an un-
known scale, depth predictions are constrained to a range
of [0, 100] meters (for KITTI) by passing the final logits
through a sigmoid activation and scaling by a fixed max
depth value. To align predictions, median scaling is used,
where the scaling factor for each image is computed from
the ratio of the median predicted values and median ground-
truth values (considering only pixels inside the depth cap).
Table 3 shows results for Monodepth2 with and without me-
dian scaling. For this experiment, the depth cap is set to

Table 3: Evaluating Monodepth2 [12] on KITTI.

RMSE RMSE log
no scaling 19.176 3.459
median scaling (ground truth)  4.863 0.193

Table 4: Evaluating Monodepth2 [12] on HoliCity.

RMSE RMSE log
17555  3.054
15743  1.138
14.105  1.064

no scaling
median scaling (overhead)
median scaling (ground truth)

80m as is typical for KITTI. To generate these results, we
use a pretrained model and evaluation scripts made avail-
able by the authors. As observed, median scaling has a
drastic impact on performance, with the average root-mean-
square error (meters) increasing by almost a factor of four
when it is disabled.

Next, we evaluate the ability of our approach to be used
as a calibration tool. For this experiment, we use the
HoliCity-Overhead dataset as overhead imagery and height
data are not available for KITTI. Note that retraining Mon-
odepth2 on HoliCity is not possible due to the lack of image
sequences. Using the same process outlined above and the
same pretrained model, we replace the ground-truth depth
values in median scaling with our intermediate representa-
tion of scale. Table 4 shows results for three different sce-
narios: with median scaling disabled, median scaling using
the ground truth, and median scaling using the depth from
the voxelized overhead height map as in our approach. As
observed, when ground-truth is not available our approach
drastically improves results compared to no scaling.

6. Conclusion

We explored a new problem, geo-enabled depth estima-
tion, in which the geospatial context of a query image is
leveraged to improve depth estimation. Our key insight was
that overhead imagery can serve as a valuable source of in-
formation about the scale of the scene. Taking advantage
of this, we proposed an end-to-end architecture that inte-
grates geospatial context by first generating an intermediate
representation of the scale of the scene from an estimated
(or known) height map and then fusing it inside of a seg-
mentation architecture that operates on a ground-level im-
age. An extensive evaluation shows that our method signifi-
cantly reduces error compared to baselines, especially when
considering much greater distances than existing evaluation
benchmarks. Ultimately our hope is that this work demon-
strates that existing depth estimation techniques can benefit
when geospatial context is available.
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