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Abstract

Automatic polyp segmentation from colonoscopy images
is an essential step in computer aided diagnosis for colorec-
tal cancer. Most of polyp segmentation methods reported
in recent years are based on fully supervised deep learn-
ing. However, annotation for polyp images by physicians
during the diagnosis is time-consuming and costly. In this
paper, we present a novel semi-supervised polyp segmenta-
tion via collaborative and adversarial learning of focused
and dispersive representations learning model, where fo-
cused and dispersive extraction module are used to deal
with the diversity of location and shape of polyps. In ad-
dition, confidence maps produced by a discriminator in an
adversarial training framework shows the effectiveness of
leveraging unlabeled data and improving the performance
of segmentation network. Consistent regularization is fur-
ther employed to optimize the segmentation networks to
strengthen the representation of the outputs of focused and
dispersive extraction module. We also propose an aux-
iliary adversarial learning method to better leverage un-
labeled examples to further improve semantic segmenta-
tion accuracy. We conduct extensive experiments on two
famous polyp datasets: Kvasir-SEG and CVC-Clinic DB.
Experimental results demonstrate the effectiveness of the
proposed model, consistently outperforming state-of-the-art
semi-supervised segmentation models based on adversarial
training and even some advanced fully supervised models.

1. Introduction
Automatic segmentation of polyp plays a key role in

computer-aided diagnosis for Colorectal cancer (CRC),
which is one of the most common type of cancer around
the world [26]. As for polyps, colonoscopy is an significant
detection way, which can help in the removal of the polyps
and greatly prevent them from developing into the CRC.

Recent years, convolutional neural networks (CNNs)
have exhibited excellent performance in the image segmen-

tation tasks. Semantic segmentation aims to assign each
pixel of an image with a label so that the pixels with the
same label can be used to infer the target of wanted. For
semantic segmentation tasks, most approaches based on
deep learning methods can be utilized in different medical
tasks [6, 29, 33, 34, 36] like segmentation of blood ves-
sel, skin lesion, lung nodule, and cell nuclei. Compared
to manual segmentation by physicians during the diagno-
sis, which is time-consuming and subjective, medical au-
tomatic segmentation has great advantages and huge po-
tential in computer-aided diagnosis (CAD). However, lack-
ing of a large number of pixel-wise annotations for train-
ing is a great challenge for automatic medical segmentation
task. Annotating medical data such as polyps, which vary
in shape, texture and appearance location, always needs a
lot of time and effort, results in a challenging task for polyp
segmentation.

Commonly in some medical image segmentation tasks,
allocating each pixel with a correct label in blurred im-
ages is very hard. However, obtaining the global informa-
tion of blurred images can effectively resolve the problem
about distinguishing target and background in a segmenta-
tion task. For this purpose, the non-local network [31] is
proposed to model the long-range dependencies using self-
attention mechanism [28]. Furthermore, Cao et al. [3] pro-
posed a new instantiation of the general network, called
global context (GC) block by a combination of the opti-
mal implementation of non-local (NL) block and squeeze-
and-excitation (SE) block [11] at each step. In addition,
convolutional block attention module (CBAM) provides a
simple yet effective attention mechanism for feed-forward
CNNs [32]. But these methods for distinguishing target
and background is in view of paired medical images and
its ground truth images.

In recent years, different kinds of semi-supervised
method are proposed for dealing with the shortage of la-
beled data. Hung et al. [13] adopted adversarial learning
by using a segmentation network and a discriminator net-
work to produce the confidence map based on the segmen-
tation predictions of unlabeled images as supervisory sig-
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nals to train the segmentation network. Another adversar-
ial training method can be found in [22] by using a virtual
adversarial regularization. Besides, the methods of consis-
tency are widely used in semi-supervised training for both
classification task and segmentation task [15, 24, 27]. The
augmentation methods of perturbations on images have also
proven their effectiveness for evaluating semi-supervised
regularizers[9].

In this paper, considering the characteristics of polyp and
the limited of pixel-wise annotations, we propose a novel
semi-supervised polyp segmentation method, which uses
collaborative segmentation networks with two different fea-
ture extraction modules to capture the location and edge in-
formation of polyp and uses an adversarial learning method
similar to [13] and another method for auxiliary adversarial
learning to fine tune the segmentation networks with unla-
beled images. We perform extensive experiments to evalu-
ate our method on the Kvasir dataset [14] and CVC-Clinic
DB [2] that the experiments results show the effectiveness
of our method.

Our contributions are summarized as follows:

• We propose a novel semi-supervised method for polyp
segmentation, named collaborative and adversarial
learning of focused and dispersive representations
learning model. We propose two extraction modules,
FEM and DEM, in the encoding path of two segmen-
tation networks respectively. FEM allows our network
to capture the focused information of the input feature
maps like location information and spatial information,
while DEM attempts to aggregate the scattered bound-
ary information of the inputs.

• We simultaneously train two segmentation networks
and a discriminator network with labeled images
through an adversarial training method. With the help
of consistency constraint, we can take the advantage
of the two feature maps of FEM and DEM to produce
confidence maps by the trained discriminator network
with high credibility. The confidence maps generated
based on unlabeled images in semi-supervised training
stage can be used as supervised signals to fine-tune the
segmentation networks.

• Another adversarial training method, named auxiliary
adversarial learning (AAL), is proposed to improve
the quality of segmentation predictions from unlabeled
images in the semi-supervised training stage. We adopt
a new discriminator to assign the true label for the seg-
mentation results of labeled images and fake label for
the prediction of unlabeled images. With AAL, we can
obtain confidence maps with higher credibility which
can be better utilized for the segmentation networks.

2. Related Work
2.1. CNN-based Polyp Segmentation

Polyp segmentation and recognition is essential for the
patient to prevent the death caused by colorectal cancer.
Alexander et al. [21] proposed to identify the polyps in
the video sequences based on binary classification and pre-
selection, which required predefined image features. Dur-
ing the last few years, U-Net [25] have been successfully
applied to many medical semantic segmentation tasks and
applications, which is based on a well-known encoder-
decoder architecture to obtain location and context infor-
mation from input data and infer a relative prediction. Sim-
ilarly, many modifications and improvements based on U-
Net structure were proposed to enhance the segmentation
performance [1, 10, 18, 30, 39]. For the automatic polyp
segmentation task, several representative networks were
also developed to improve the polyp segmentation perfor-
mance from different aspects, including ResU-Net [14, 37],
U-Net++ [40], PraNet [7] and HarDNet-MSEG [12]. ResU-
Net applies residual blocks to supplement the location infor-
mation of polyps, while HarDNet-MSEG consists of the en-
coder of HarDNet68 [4] and the decoder of Cascaded partial
decoder [35] with receptive field block [20] to improve both
accuracy and inference speed. Besides, PraNet adopted
three reverse attention modules with a parallel partial de-
coder connection to strengthen the area-boundary constraint
for polyp segmentation. However, these methods are based
on fully-supervised training strategies. Fully-supervised
methods usually require sufficient labeled medical samples
for training, but annotating medical data such as polyp im-
ages is often expensive and time consuming. In this regard,
semi-supervised segmentation method is a better direction
to achieve satisfying accuracy for polyp segmentation from
limited labeled images.

2.2. Semi-supervised Training

Due to the lack of labeled images for training, semi-
supervised methods turn to leverage unlabeled data to ob-
tain useful information. For example, Li et al. [17] proposed
a semi-supervised network for the skin lesion segmentation
task, which only used 15% labeled images and obtained
a similar performance of several fully-supervised meth-
ods. Similarly, several pseudo labeling methods [16, 38]
also successfully extracted useful information from the un-
labeled data to enhance the model training. For semi-
supervised segmentation tasks, several representative adver-
sarial learning methods [13, 23] were also proposed to im-
prove the performance of segmentation networks. Hung’s
method [13] employed the output of a fully convolutional
discriminator as supervisory signals, which is combined
with self-taught learning framework to provide more use-
ful pseudo labeling information for semi-supervised train-
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Figure 1. Our proposed collaborative and adversarial learning framework. In supervised training stage, two collaborative segmentation
networks equipped with focused extraction module (FEM) and dispersive extraction module (DEM) are applied to generate predictions for
the first discriminator network. In semi-supervised training stage, an auxiliary discriminator network is further employed to fine-tune the
collaborative segmentation networks by minimizing the bias of the first discriminator due to data imbalance.

ing. Generative Adversarial Network (GAN) method [23]
also produced realistic fake examples to prevent over-fitting
for segmenting 3D multi-modality images. However, tradi-
tional semi-supervised adversarial learning method usually
only contains a single segmentation network to implement
the generator, which may cause deviation because of over
emphasizing targeted aspects. As a result, the obtained in-
formation from the model of poor segmentation accuracy
may generate wrong guidance from unlabeled data. In this
paper, we employ two collaborative segmentation networks
to overcome this weakness. On the other hand, traditional
adversarial training framework also usually only employed
one discriminator trained with limited labeled data, which
also may easily suffer from the imbalance between the la-
beled and unlabeled data, resulting in less valid information
from unlabeled data can be used for the semi-supervised
training. To overcome this limitation, we further apply an-
other discriminator as auxiliary training module to improve
the utilization of unlabeled data.

3. Method
The framework of our proposed collaborative and adver-

sarial learning method is illustrated in Figure 1, where two
collaborative segmentation networks are trained under two
adversarial learning stages.

3.1. Collaborative Segmentation Networks

Unlike traditional fully supervised networks, which are
usually trained with sufficient labeled images, the genera-

tor in our semi-supervised framework for polyp segmen-
tation only utilizes limited labeled images. We observed
that single segmentation network may easily incur biases
by over emphasizing targeted aspects in designing the net-
work, especially for the insufficient condition of limited la-
beled images. Due to no reference like ground truth in the
semi-supervised training stage, the method with single seg-
mentation network has to accept the information from unla-
beled data no matter it is right or wrong. Obviously, inac-
curate confidence maps from unlabeled data based on bias
or wrong predictions may have misleading guidance in the
following semi-supervised training stage.

To achieve a more accurate and stable generator, we em-
ploy two collaborative segmentation networks in our semi-
supervised framework, which are optimized under a mutual
consistency constraint loss to minimize the bias. As shown
in Figure 1, we apply two collaborative segmentation net-
works to segment the polyp images, and one discriminator
to create confidence maps according to the segmentation re-
sults or ground truth.

Focused Extraction Module (FEM). Accurately iden-
tifying localization and position features of polyps is an es-
sential aspect in the task of polyp segmentation. Given the
feature map extracted in each layer of the original encoder
in U-Net, we introduce a FEM to further extract focused
location features of polyps from colonoscopy images.

As shown in Figure 2, our FEM first aggregates spatial
and global context features based on average pooling [19]
and global attention pooling (GAP) [3]. Based on the at-
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Figure 2. Focused extraction module. By aggregating spatial and
global context features based on average pooling and global at-
tention pooling, FEM can effectively extract focused location and
shape features of polyps from colonoscopy images. In addition,
bottleneck transform (BT) is also applied to reduce the number
of parameters for capturing the channel-wise dependencies, where
we not only can reduce the risk of overfitting, but also obtain a
better optimization efficiency.

tention weights [32] calculated from average-pooling and
GAP, we can further perform attention pooling operations
to obtain global context features, which mainly focus on
the location features of polyps. Furthermore, to minimize
the risk of overfitting and achieve a better optimization effi-
ciency, we also introduce a bottleneck transform (BT) after
average-pooling and GAP to reduce the number of param-
eters for capturing the channel-wise dependencies, where a
layer normalization is applied inside the bottleneck trans-
form before the ReLU operation. Obviously, the BT block
has a similar effect with the excitation operation in squeeze-
and-excitation (SE) block [11]. Finally, we obtain the fo-
cused features by merging the two feature vectors and ag-
gregating the global context features based on a broadcast
element-wise summation and sigmoid activation.

Dispersive Extraction Module (DEM). Accurately
capturing boundary features of polyps is another essential
aspect in the task of polyp segmentation. Different from
FEM, which obviously conceals more scattered boundary
features for polyp segmentation, dispersive attention is em-
phasized in the implementation of DEM. Similarly, we also
employ a DEM to the given feature map extracted in each
layer of the original encoder in U-Net. As shown in Fig-
ure 3, our DEM first apply three dilated convolutions to
extract dispersive information from the input feature map,
where dilated convolutions have the same small kernel size
of 3× 3 but with different dilated rates (r = 1, 2, 5). In ad-
dition, max-pooling operation is also adopted to infer finer
channel-wise attention inside three dispersive feature maps.
To encode channel-wise representations, we further apply
fully connected layer (FC) on each extracted dispersive fea-
ture map. Finally, we can obtain the aggregated dispersive
feature map based on a broadcast element-wise multiplica-
tion, where important scattered boundary feature points are
reinforced in the output of our DEM.

Collaborative Learning. Different from most of ex-
isting semi-supervised frameworks, which usually rely on
a single segmentation network in the generator and easily
incur biases under insufficient guidance of limited labeled
images, our generator can reduce the biases and enhance

Figure 3. Dispersive extraction module. By extracting dispersive
features based on three different dilated convolutions followed by
a max-pooling operation and a fully connected layer (FC), DEM
pays more attentions on aggregating scattered boundary features
for polyp segmentation.

the segmentation robustness via collaborative learning be-
tween two collaborative segmentation networks. Specifi-
cally, we first apply a discriminator based on FCN [13] to
produce confidence maps according to the segmentation re-
sults of two collaborative networks. In the supervised train-
ing stage, we apply a consistency constraint to the confi-
dence maps generated in both FEM network and DEM net-
work, making sure that the targeted regions of interest are
similar, which not only strengthens the feature representa-
tion, but also reduces the biases single segmentation net-
work via collaborative learning. Besides, dice loss on dif-
ferent confidence maps is used to prompt the results of two
collaborative segmentation networks equaling to the ground
truth. Therefore, with the help of collaborative segmen-
tation networks, the discriminator can produce confidence
maps with higher credibility than training a single segmen-
tation network in the supervised training stage. In the semi-
supervised learning, inaccurate confidence maps from un-
labeled data based on bias or wrong predictions may eas-
ily produce misleading guidances due to no reference like
ground truth in the semi-supervised learning. Obviously,
our consistency constraint on confidence maps still provide
reinforcing signals to fine tune the segmentation networks
according to sharing weights of targeted regions of interest
between two collaborative segmentation networks.

3.2. Primary and Auxiliary Adversarial Learning

Primary Adversarial Learning. In supervised train-
ing stage, the first discriminator in our framework is not
only trained to generate the confidence maps, but also in
charge of performing primary adversarial learning. Dur-
ing this adversarial training process, the primary discrim-
inator considers that the confidence map generated based
on ground truth is credible, and the confidence map gener-
ated from the results of two collaborative networks is un-
believable. Through continuous training, collaborative net-
works try to fool the discriminator by producing the confi-
dence maps very close to the ground truth. Therefore, the
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Figure 4. Auxiliary adversarial learning (AAL). To improve
the segmentation confidence of unlabeled images in the semi-
supervised stage, auxiliary discriminator network is trained to dis-
tinguish the segmentation results between the labeled images and
the unlabeled images.

confidence maps generated based on collaborative networks
can be more acceptable after primary adversarial learning,
which also conversely improve the accuracy of the segmen-
tation networks by producing more valid and stable segmen-
tation results. For the unlabeled data in the semi-supervised
training stage, we can also obtain corresponding confidence
maps from the trained discriminator network according to
the segmentation predictions of the two collaborative net-
works, as shown in Figure 1. However, if labeled images
used for training the discriminator network is very limited
and the amount of unlabeled data is much more than la-
beled data, the primary discriminator may generate confi-
dence maps for the unlabeled images with insufficient con-
fidence, which potentially produces misleading guidance in
the following semi-supervised training stage. To minimize
the impact of imbalance problem between labeled and unla-
beled data, we further introduce an auxiliary discriminator
and utilize auxiliary adversarial learning (AAL) to make up
the insufficient training of the primary discriminator due to
limited labeled polyp images.

Auxiliary Adversarial Learning (AAL). Inspired by
the principle of generative adversarial network(GAN), we
propose an AAL in semi-supervised training stage to im-
prove the performance of segmentation of unlabeled data
and relieve the insufficient trained primary discriminator
due to limited labeled images. As shown in Figure 4, AAL
servers as an auxiliary discriminator, which is trained to dis-
tinguish the segmentation results by judging the segmenta-
tion of labeled images to be true and the segmentation of
unlabeled images to be fake respectively. According to the
adversarial training for the auxiliary discriminator, the col-
laborative FEM network and DEM network are tend to op-
timize the quality and confidence of segmentation results
for unlabeled images, and produce a similar quality and
confidence of segmentation results as the labeled images.
By promoting the collaborative segmentation networks to
generate results with high quality, the corresponding confi-
dence maps for both labeled and unlabeled images can be
more credible. Therefore, we can finally obtain a better

trained primary discriminator and further fine-tune the col-
laborative segmentation networks in semi-supervised train-
ing stage.

3.3. Loss Functions

Collaborative Segmentation Loss. Given an input im-
ages Xi with a resolution of H × W × 3, we can obtain
two focused feature vectors Vavg and Vglb for FEM network
through the average-pooling and global attention pooling
respectively. By applying BT operations to capture channel-
wise dependencies and utilizing broadcast element-wise ad-
dition for feature fusion, we can finally obtain the focused
feature map fi written as

fi = δ(αb2ReLU(LN(αb1(Vavg, Vglb)))) (1)

where δ denotes the sigmoid function; αb1 and αb2 denote
a 1× 1 convolution. Similarly, we can obtain the dispersive
map di written as

di =

3∏
j=1

FC(Vrj ) (2)

where Vrj represents one of the three dispersive feature vec-
tors obtained via three different dilated convolutions and
max-pooling.

In supervised training stage, the Dice loss for training the
collaborative segmentation networks can be written as

Ldice =
(
1− 2|S(fi)

⋂
Yi|

|S(fi)|+ |Yi|

)
+
(
1− 2|S(di)

⋂
Yi|

|S(di)|+ |Yi|

)
(3)

where S(fi) and S(di) denote the outputs of FEM network
and DEM network respectively. Yi denotes the ground truth
images.

For adversarial training in supervised training stage, the
loss Ladv is formulated as

Ladv = −
(∑

h,w

log
(
D1(S(fi))

(h,w))+∑
h,w

log
(
D1(S(di))

(h,w)
)

(4)
where D1(·) denotes a fully convolutional discriminator

network. In addition, we also apply a consistency constraint
on the D1(S(fi)) and D1(S(di)) to train our collaborative
segmentation networks, and formulate the consistency loss
LC as

LC = ∥D1(S(fi))−D1(S(di))∥2 (5)

obviously, above mean square error (MSE) loss can be used
as a consistency loss in the supervised training of labeled
images, as well as in semi-supervised training of unlabeled
images. In addition, we also reshape the confidence maps
of unlabeled images to with the same resolution of the seg-
mentation prediction, and denote the signal maps S′ as

S′(fi, di) =
∑
h,w

(
D1(S(fi, di))

(h,w) > Tsemi

)
· Ŷ (h,w)

i

(6)
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where Ŷi is element-wise set with Ŷ
(h,w)
i = 1 if the loca-

tion of current point is same as argmaxS(fi, di)
(h,w). In

our experiment, Tsemi = 0.2 is a threshold to control what
kinds of points can be believed. So far, we can apply the
Dice loss and consitentcy loss on the signal maps and confi-
dence maps respectively to fine tune the FEM network and
DEM network, forming a semi-supervised loss as

Lsemi =

((
1− 2|S(fi)

⋂
S′(fi)|

|S(fi)|+ |S′(fi)|

)
+

(
1− 2|S(di)

⋂
S′(di)|

|S(di)|+ |S′(di)|

))
+ Lunlabel

C

(7)

To enhance the quality of confidence maps for unlabeled
data in semi-supervised training, our auxiliary adversarial
loss is written as

L′
adv = −

(
log
(
D2(S(fi))

)
+ log

(
D2(S(di))

)
(8)

Finally, we obtain an overall loss for training the collab-
orative segmentation networks as follow

Lseg = Ldice + Llabel
C + λadvLadv + λ′

advL′
adv + λsemiLsemi

(9)
where λadv and λ′

adv are weights for the two kinds of adver-
sarial loss in supervised training stage and semi-supervised
training stage respectively. λsemi is the weight for the semi-
supervised loss. In our implements, we set λadv = 0.01,
λ′
adv = 0.001 and λsemi = 0.1 respectively.

Discriminator Loss. Similar to Hung’s [13], we also
train the primary discriminator by minimizing the spatial
cross entropy loss written as

LD1 = −1

2

(∑
h,w

(1− yi)log
(
1−D1(S(fi))

(h,w))+
∑
h,w

(1− yi)log
(
1−D1(S(di))

(h,w)))+
yilog

(
D1(Yi)

(h,w)
)

(10)

where yi = 0 if the sample is drawn from the segmenta-
tion networks, while yi = 1 if the sample from the ground
truth label. Besides, D1 denotes discriminator to produce
the confidence maps.

Instead of producing confidence maps, the auxiliary dis-
criminator D2 produces values either 0 (for fake) or 1 (for
true). We can formulate its cross entropy loss as

LD2 =− 1

2
λD2

((
(1− yi)log

(
1−D2(S(fi))

)
+

(1− yi)log
(
1−D2(S(di))

)))
+

1

2
λ′
D2

(
yilog

(
D2(S(fi))

)
+ yilog

(
D2(S(di))

))
(11)

where yi = 0 if the segmentation results is drawn from
the unlabeled images, while yi = 1 if the segmentation re-
sults from the labeled images. λD2

and λ′
D2

are two weights
for the cross entropy loss of the auxiliary discriminator net-
work. λD2

, λ′
D2

is set as 0.01 and 0.05 separately in our
implements.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We evaluate the proposed method on the
two famous polyp datasets, including Kvasir-SEG [14] and
CVC-Clinic DB [2]. Kvasir-SEG contains 1000 polyp
images with ground truth manually segmented by experi-
enced gastroenterologists. CVC-Clinic DB also contains
612 polyp images with corresponding annotations. Each
image contains different amount of polyps with different
size and shape. In our experiments, we also performed 3
kinds of data augmentations to avoid overfitting, including
horizontal flipping, vertical flipping, and random rotation
between [-30, 30] degrees. In our ablation studies, we ran-
domly split the dataset into 30% / 50% / 10% / 10% for su-
pervised training, semi-supervised training, validation and
testing respectively.

Metrics. We employ the three most commonly used
metrics for medical image segmentation tasks to evaluate
our method, including Dice coefficient, IoU and MAE.
MAE can accurately reflect the actual prediction error of
the networks based on mean absolute deviation. Dice coef-
ficient calculates the similarity of the input and target, while
IoU calculates the intersection area, which can reflect the
authenticity of segmentation predictions to a certain degree.

4.2. Implementation Details

We implemented our proposed model using PyTorch
framework on two NVDIA GeForce RTX 2080TI with 24
GB memory. We first trained our model with labeled im-
ages for 100 epochs, and then performed the primary adver-
sarial training with both labeled and unlabeled images. Af-
ter training for 200 epochs, the confidence maps from un-
labeled images were converted to supervisory signals and
auxiliary adversarial learning was used to train our model
for 300 epochs to fine tune collaborative segmentation net-
works. The batch size is set to 8 and all the inputs were uni-
formly resized to 384×384 during both supervised training
and semi-supervised training. For training the segmentation
networks, we employed the Adam optimizer to reduce the
overall parameters with the learning rate of lr = 7e − 4.
Similarly, for training the discriminator networks, we also
adopt Adam optimizer with a learning rate lr = 3e − 4.
The learning rate of segmentation networks and discrimi-
nator networks is annealed following the polynomial decay
with power of 0.9 [5].
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Figure 5. Visual comparison of feature maps extracted with differ-
ent methods in ablation studies. (a) Input image. (b) Ground truth.
(c) Baseline. (d) Baseline+FEM. (e) Baseline+DEM.

Table 1. Statistical comparison of different models in ablation
studies on the Kvasir-SEG dataset.

4.3. Ablation Studies

We employed Hung’s adversarial learning method [13]
with single segmentation network (U-Net [25]) as the Base-
line for our ablation study. By adding FEM and DEM to the
baseline respectively, we can obtain two competitors (Base-
line+FEM and Baseline+DEM) and observe the impact of
the proposed feature enhancement modules. By simultane-
ously equipping FEM and DEM networks to the baseline,
we can obtain another competitor (Baseline+FEM+DEM)
to evaluate the effectiveness of collaborative segmentation
networks. Finally, our method is implemented by adding
AAL to Baseline+FEM+DEM method, where we can fur-
ther justify the advantages of auxiliary adversarial learning.

To visualize the impact of FEM and DEM on the fea-
ture extractions, we apply the Baseline, Baseline+FEM and
Baseline+DEM methods to the validation dataset and illus-
trate their feature maps. Typical feature maps extracted with
different competitors are shown in Figure 5. To demonstrate
the power of AAL in improving the segmentation accuracy,
we also compare the segmentation results between the mod-
els with and without AAL. Typical challenging cases are as
shown in Figure 6. Based on two collaborative segmenta-
tion networks, our method can extract both focused and dis-
persive features, and obtain much better segmentation accu-
racy than the Baseline even without using AAL.

In addition, we also performed a statistical comparison
among different competitors by collecting the average Dice,
IoU and MAE over the validation set. As shown in Table 1,
we can see that FEM and DEM improve the performance of
segmentation of Baseline with the Mean Dice by 1.64% and
2.93% respectively. Besides, our method obtains a much

Figure 6. Visual comparisons of segmentation results with and
without AAL in ablation studies. (a) Input image. (b) Ground
truth. (c) Baseline. (d) Our method without AAL. (e) Our method
with AAL. Red, green and yellow regions represent the ground
truth, prediction and their overlapping regions respectively.

Table 2. Statistical comparison of different methods on the Kvasir-
SEG dataset.

better accuracy than the competitors only using one seg-
mentation network, implying that our collaborative segmen-
tation networks with a consistency constraint extract more
location and boundary information of polyp to improve the
prediction of segmentation networks. By comparing the re-
sults in the bottom two rows in Table 1, we can also observe
the advantage of AAL in improving the segmentation accu-
racy.

4.4. Comparison with State-of-the-art Methods

To further validate the superiority of our proposed
method, we compared it with seven state-of-the-arts meth-
ods on Kvasir-SEG and CVC-Clinic DB, including six fully
supervised networks (ResU-Net[37], U-Net++[40], CE-
Net[10], CPF-Net[8], PraNet[7] and HarDNet-MSEG[12])
and one semi-supervised network (Hung’s method [13]). To
ensure the fairness of comparison, we implemented all com-
petitors using the same PyTorch framework on two NVDIA
GeForce RTX 2080TI with 24 GB memory, with the same
augmentation operations. In our experiments, except for six
fully supervised competitors, the other two semi-supervised
networks are trained with either 15% labeled data or 30%
labeled data for comparisons.

Compared with fully supervised competitors, we can ob-
serve that our method outperforms the ResU-Net and U-
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Figure 7. Comparisons with different State-of-the-art methods on the Kvasir-SEG and CVC-Clinic DB. (a) Input image. (b) Ground Truth.
(c) ResU-Net. (d) U-Net++. (e) CE-Net. (f) CPF-Net. (g) PraNet. (h) HarDNet-MSEG. (i) Ours. Note that, our semi-supervised polyp
segmentation method is trained with only 30% of labeled data, which still achieves comparable performance with other six fully supervised
networks. Red, green and yellow regions represent the ground truth, prediction and their overlapping regions respectively.

Table 3. Statistical comparison of different methods on the CVC-
Clinic DB.

Net++ only relying on 30% labeled data. Statistical compar-
isons for different competitors according to the three met-
rics are as shown in Table 2 and Table 3. Visual compar-
isons with different fully supervised competitors on typical
challenging cases are as shown in Figure 7.

Compared with the semi-supervised competitor only
using single segmentation network in the generator, our
method also generally outperforms Hung’s method in both
visual and statistical comparisons (Figure 6, Table 2 and
Table 3), which clearly demonstrates the superiority of our
collaborative segmentation networks and auxiliary adver-
sarial learning in the proposed semi-supervised framework.

On the other hand, our method also has some limitations.
As shown in Figure 8, our method still cannot handle well
the extreme challenging cases where polyps are extremely
big and the color contrast around polyps is extremely low.
One potential future direction is to extend our collaborative

Figure 8. Failure cases. Red, green and yellow maps denote the
ground truth, our prediction and overlapping regions respectively.
Our model is trained with 30% labeled data on the Kvasir-SEG
dataset.

and adversarial learning framework to solve video segmen-
tation tasks with similar limited labeled data.

5. Conclusion
In this work, we present a novel semi-supervised adver-

sarial learning method for polyp segmentation. Specifically,
we introduce collaborative segmentation networks with fo-
cused extraction module (FEM) and dispersive extraction
module (DEM) based on an adversarial training architec-
ture. In addition, we propose an auxiliary adversarial learn-
ing method for eliminating the impact of labeled and unla-
beled data amount imbalance. Both collaborative and adver-
sarial learning methods are simultaneously applied to fully
utilize the abundant unlabeled data to enhance the segmen-
tation performance. The experimental results on Kvasir-
SEG and CVC-Clinic DB have shown the effectiveness of
our proposed model. In the future, more collaborative and
adversarial learning mechanisms will be explored for better
leveraging of the unlabeled data.
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