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Abstract

Recent works have advanced the performance of self-
supervised representation learning by a large margin. The
core among these methods is intra-image invariance learn-
ing. Two different transformations of one image instance
are considered as a positive sample pair, where various
tasks are designed to learn invariant representations by
comparing the pair. Analogically, for video data, rep-
resentations of frames from the same video are trained
to be closer than frames from other videos, i.e. intra-
video invariance. However, cross-video relation has barely
been explored for visual representation learning. Un-
like intra-video invariance, ground-truth labels of cross-
video relation is usually unavailable without human labors.
In this paper, we propose a novel contrastive learning
method which explores the cross-video relation by using
cycle-consistency for general image representation learn-
ing. This allows to collect positive sample pairs across dif-
ferent video instances, which we hypothesize will lead to
higher-level semantics. We validate our method by trans-
ferring our image representation to multiple downstream
tasks including visual object tracking, image classification,
and action recognition. We show significant improvement
over state-of-the-art contrastive learning methods. Project
page is available at https://happywu.github.io/
cycle_contrast_video .

1. Introduction
There has been a surge of recent interest in contrastive

learning of visual representation [66, 29, 3, 28, 57, 9,
26, 41]. We have witnessed that contrastive learning out-
performs supervised pre-training with large-scale human
annotations in various visual recognition tasks [26, 9]. The
key of this self-supervised task is to construct different
views and transformations of the same instance, and learn
the deep representation to be invariant to the view changes.
To construct different views for forming positive image
pairs in contrastive learning, the most common way is to
use different data augmentations on the same instance (e.g.
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Figure 1: Cross-video cycle-consistency for image representation
learning. Starting from one frame in a video, we find its soft near-
est neighbor from other videos as a forward step, then the cycle-
consistency is achieved when the soft nearest neighbor finds its
closest frame within the same video as the start frame in a back-
ward step.

random cropping, image rotation, colorization).
However, simply performing artificial augmentation on

single instance has shown its limitation in multiple applica-
tions [58, 67]. For example, Tian et al. [58] have performed
detailed analysis on how different augmentations can affect
different downstream visual recognition tasks. Going be-
yond single image, researchers have also looked into videos
as the source for obtaining positive pairs of training im-
ages [49, 21, 61]. That is, two nearby frames in the same
video can be taken as a natural augmentation in time for the
same object instance. By training using temporal augmen-
tation, the representation can learn viewpoint and deforma-
tion invariance. However, these approaches are still limited
to find positive pairs and learning their similarity within a
single instance.

In this paper, we propose to perform contrastive learning
with positive image pairs sampled across different videos
instead of the same video. We hypothesize this can po-
tentially capture higher-level semantics and categorical in-
formation beyond low-level intra-instance invariances mod-
eled by previous approaches. Specifically, given two image
frames Ii and Ij from a video, instead of directly using them
as a positive pair for training [49, 21], we will first “explain”

10149



frame Ii by composing frames from other videos that are
similar to Ii, then compare the composed frames to Ij for
contrastive learning.

Assuming we have a neural network feature extractor to
learn, we extract the feature representations for the image
frame Ii as qi, and representations for frames from other
videos as U = {u1, u2, ..., um}. Given these representa-
tions, we compute the similarities between qi and U , and
normalize them to a probability distribution. We use this
probability distribution to re-weight and compose the fea-
tures U as a new feature representation for frame Ii (frames
that are more similar to Ii will have larger weight). We call
this new feature as a soft nearest neighbor to Ii. We then
form a positive pair of training data with this new represen-
tation and the feature of Ij (a different frame from the same
video as Ii). As shown in Figure 1, this procedure goes
through a cycle of starting from one frame Ii in a video,
searching forward by matching frames from other videos,
and retrieving frame Ij backward in the first video. We
call this process Cycle-Consistent Contrastive Learning. In-
tuitively, enforcing such a cycle-consistency can explicitly
push video frames with similar structure closer, thus leads
to a natural clustering of semantics.

We perform the proposed self-supervised representa-
tion learning on unlabeled video dataset Random Related
Video Views (R2V2) [21] and transfer the learned repre-
sentation to various downstream tasks including visual ob-
ject tracking, image classification and action recognition.
We stress our goal is to use the temporal signal to learn
a general image-level representation for multiple appli-
cations beyond videos-level recognition tasks. We show
significant improvements over multiple state-of-the-art ap-
proaches. We also conduct extensive ablation studies of dif-
ferent components and design choices of our method.

Our contributions include: (i) A novel cross-video cycle-
consistent contrastive learning objective that explores cross-
video relations, going beyond previous intra-image and
intra-video invariant learning; (ii) The proposed loss en-
forces image representations from the same category (of
similar visual structures) closer without explicitly generat-
ing pseudo labels; (iii) The learned image representation
achieves significant improvement in multiple downstream
tasks including object tracking, image classification and ac-
tion recognition.

2. Related Work
Contrastive learning. The self-supervised contrastive

learning methods [23, 16, 66, 29, 45, 3, 28, 57, 79, 9, 26,
41, 10, 8] try to learn image representations under differ-
ent transformations agree by forming positive and negative
pairs, and make the representations of positive pairs have
high similarity and negative pairs have low similarity. The
typical way of generating positive pairs is performing artifi-

cial data augmentations on a single image instance. For ex-
ample, Chen et al. [9] introduce a contrastive learning base-
line with different types of augmentations, including ran-
dom cropping, resizing, color distortion, gaussian blur, etc.
He et al. [26] proposes MoCo which introduces a momen-
tum network to encode a queue of a large number of egative
samples for efficient learning. In this work, we build our
model based on the MoCo framework. However, instead
of learning with positive pairs by augmenting the same im-
age, we propose a new objective which finds positive pairs
of sample across videos for contrastive learning of image
representations.

Self-supervised image representation learning from
videos. Going beyond learning from a single image [15, 13,
48, 14, 73, 19, 56], video naturally offers temporal informa-
tion and multi viewpoints for objects, which have been ex-
tensively utilized as self-supervisory signals in representa-
tion learning [22, 1, 33, 61, 47, 46, 42, 62, 40, 7, 64, 35, 52].
For example, Wang and Gupta [61] use tracking to provide
supervision signals that makes the feature representations
of tracked patches similar. Recent works [21, 49, 32, 69]
further extend similarity learning between video frames un-
der the contrastive learning framework, where the positive
pairs for training are frames sampled from the same video.
It has been shown image representations with viewpoint in-
variance can be learned. Our work is motivated by these
previous works, and going beyond viewpoint invariance,
learning using positive pairs across videos can potentially
lead to image representations with higher-level semantics.
While contrastive learning has also been applied to video
representation learning with 3D ConvNets for action recog-
nition [35, 24, 37, 5, 51, 59, 25, 34, 43], we emphasize our
work is focusing on learning a general image representa-
tion for multiple tasks beyond action recognition including
visual tracking and image classification.

Cycle-consistency learning. Our work is influenced by
cycle-consistency learning in different computer vision ap-
plications including 3D scene understanding [31, 74, 20,
72], image alignment and translation [75, 77, 76, 78], and
space-time alignment in videos [4, 63, 39, 17, 60, 32, 50,
38]. For example, Wang et al. [63] propose to perform
forward and backward tracking in time to achieve a cycle-
consistency for learning temporal correspondence. Dwibedi
et al. [17] formulates a temporal cycle consistency loss
which aligns frames from one video to another between
a pair of videos, and achieves good performance in video
frame alignemnt tasks. Building on these two works, Pu-
rushwalkam et al. [50] propose to track object patches in-
side a video and align them across videos at the same
time. While these results are encouraging, both approaches
learning from video pairs [17, 50] require human annota-
tors to provide ground-truth pairs (video-level) in training
with a small scale of videos. In this paper, we propose to
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go beyond these restrictions, and apply cross-video cycle-
consistency learning without any human annotations. These
not only allows learning with a large-scale videos, but also
generalizes our representations to multiple downstream vi-
sion tasks.

3. Cycle-Consistent Contrastive Learning
In this section, we first introduce contrastive learning

with different forms of invariant learning targets. Then
we propose our method with cross-video cycle-consistency
learning.

3.1. Intra-Image and Intra-Video Invariance

The core of self-supervised contrastive learning [26, 9]
is to learn representations which maximize the agreement
between different views, augmentations of one image in-
stance, and minimize the similarity between two different
and unrelated instances at the same time. Most methods
share the similar learning objective, which is to make the
representations intra-image invariant. We describe the for-
mulation of the objective as follows.

Given an query image Ii, the feature extractor encodes
it to feature representations qi and ki under two differ-
ent data augmentations. The intra-image invariance learn-
ing considers qi and ki as an a positive training pair and
minimizes their representation distance, while maximiz-
ing the representation distance of qi and a set of negatives
U = {u1, u2, ..., um}, which is a set of feature represen-
tations extracted from different images. The intra-image
invariance contrastive learning loss function is defined as,

Lintra-image = − log
exp (sim (qi, ki) /τ)∑

u∈{U,ki} exp (sim (qi, u) /τ)
, (1)

where τ is the temperature constant and sim(x, y) =
x⊤y/∥x∥∥y∥ is the cosine similarity between two feature
vectors. The loss function tries to classify qi is similar to
ki from the same image against features in U from different
images, achieving the intra-image invariance learning.

While intra-image invariance learning gives us good rep-
resentations, augmentations of static images fail to capture
viewpoint and deformation variations of instances (e.g. dif-
ferent viewpoints or gestures of one person) [49]. It is nat-
ural to resort to sequential video data that has variations of
the same instance across time, extending the intra-image
invariance learning to intra-video invariance learning. The
intra-video invariance learning considers frames within the
same video in a local time window as a invariant set to form
positive pairs in training [53, 21, 49]. Similarly to Eq. 1, the
intra-video invariance contrastive learning loss is defined as,

Lintra-video = − log
exp (sim (qi, kj) /τ)∑

u∈{U,kj} exp (sim (qi, u) /τ)
, (2)
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Figure 2: The pipeline for the proposed cross-video cycle-
consistency loss Lcycle. U = {u1, u2, ..., um} is the neighbor rep-
resentation set. Given the query feature qi, we construct its soft
nearest neighbor q̂i by combining frame information from other
videos. We use the key feature kj from the same video and q̂i as a
positive pair for contrastive learning.

where kj is the feature representation of image Ij , which
is sampled from the same video of Ii. Lintra-video tries to
make the feature representations of images from the same
video closer than images from different videos. When the
sampled image Ij is the same as Ii, Lintra-video is identical to
Lintra-image. We can see the intra-image invariance learning
as a special case of the intra-video invariance learning.

3.2. Cross-Video Cycle-Consistency Objective

Both intra-image and intra-video invariance learning
make the feature representations of the same instance (from
the same image or video) closer. However, there is no ex-
plicit regularization on the distances between representa-
tions from the same class (or images of similar visual struc-
tures). For instance, the representations of different cat in-
stances should be close and representations of frames from
different videos on playing tennis should also be similar.
In this section, we propose to find cross-video correspon-
dence with cycle-consistency without using any ground-
truth labels, and incorporate the correspondence in con-
trastive learning. The pipeline of the new proposed objec-
tive is shown in Figure 2 and we will introduce the formu-
lations as following.

Our new objective consists of a forward and a backward
nearest neighbor processes. Given a encoded query feature
representation qi of Ii from a video V , we first compute its
nearest neighbor q̂i in a candidate set U containing frames
from any videos. Then, we find the nearest neighbor of q̂i
backwards within the union set of U and V . We emphasize
that U does not include any frames from the video V . The
cycle-consistency is achieved when the backward nearest
neighbor of q̂i is in the desired invariance learning set of
qi from V . In order to make the learning differentiable, we
propose to compute the soft nearest neighbor as the forward
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step in our objective. Formally, the soft nearest neighbor q̂i
of qi in U = {u1, u2, ..., um} is calculated as,

q̂i =
∑
u∈U

αqi,uu, (3)

where αqi,u is the normalized similarity of qi and u, which
is defined as

αqi,u =
exp(sim(qi, u)/τ)∑

u′∈U exp(sim(qi, u′)/τ)
, (4)

where τ is the temperature and sim(x, y) = x⊤y/∥x∥∥y∥
is the cosine similarity.

Given the soft nearest neighbor q̂i, we assume if a rep-
resentation is good for understanding the high-level seman-
tics, q̂i should be in the invariance set of qi. Recall that we
denote the invariance target of qi as kj (feature of a different
frame in the same video) in intra-video invariance learning.
We perform non-parametric classification as the backward
step, and the cross-video cycle contrastive loss is defined as,

Lcycle = − log
exp (sim (q̂i, kj) /τ)∑

u∈{U,kj} exp (sim (q̂i, u) /τ)
, (5)

where kj is the feature representation of image Ij from the
invariant set of Ii, and we consider Ij and Ii are sampled
from the same video V .

Intuitively, Eq. 3 tries to use the representations in the
candidate set to reconstruct the query feature representation,
according to the similarity measurement of Eq. 4. Then
Lcycle is minimized when the reconstructed feature repre-
sentation is close to the representations of another image
from video V . In this way, the model will learn to find cor-
respondence across videos where images with similar vi-
sual structures are encouraged to be the same, and invariant
within a video at the same time. By building the correspon-
dence across videos, it can potentially help the representa-
tions to learn category-level information.

The overall learning target is a combination of intra-
video invariant loss Lintra-video and cross-video cycle con-
sistency loss Lcycle, defined as

L = Lintra-video + λLcycle, (6)

where λ is a balancing factor of the two learning targets. We
will provide ablation on λ in our experiments.

Implementation details for neighbor set U . In our exper-
iments, we use two separate nearest neighbor sets for for-
ward and backward steps for our objective Lcycle. The near-
est neighbor set U in Eq. 3 is selected by randomly sam-
pling from the current memory bank [26] at each training
iteration. The remaining elements in the memory bank are
used as negative candidates for finding the nearest neighbor
backwards in Eq. 5.

OTB
Method Backbone Dataset Precision Success
Supervised [27] ResNet-18 ImageNet 61.4 43.0
SimSiam [11] ResNet-18 ImageNet 58.8 42.9
MoCo [26] ResNet-18 ImageNet 62.0 47.0
VINCE [21] ResNet-18 R2V2 62.9 46.5
Ours ResNet-18 R2V2-S 65.6 48.6

Supervised [27] ResNet-50 ImageNet 65.8 45.5
SimSiam [11] ResNet-50 ImageNet 61.0 43.2
MoCo [26] ResNet-50 ImageNet 63.7 46.5
SeCo* [71] ResNet-50 Kinetics 71.9 51.8
VINCE [21] ResNet-50 R2V2 40.2 30.0
Ours ResNet-50 R2V2 69.3 49.2
Ours ResNet-50 Kinetics 72.7 53.3

Table 1: Visual Object Tracking performance on OTB-100 com-
pared with other unsupervised representation pretrain methods.
SiamFC with one addtional 1x1 convolution is added. Note that
concurrent work SeCo* uses two-stage training strategy, where it
uses MoCo pretrained on ImageNet as first stage.

4. Experiments
In this section, we conduct experiments to perform unsu-

pervised representation learning using the proposed learn-
ing objectives. We show that the learned representation
transfer well to various downstream tasks. Then we design
extensive ablation experiments to study the effectiveness of
the proposed cross-video cycle-consistent learning method.

4.1. Experiments settings

Dataset. We perform unsupervised representation learn-
ing on Random Related Video Views (R2V2) [21] dataset,
which is a large-scale diverse video frames collection. It
has 2.7M videos, with 4 frames for each video. For smaller
models and ablation studies, we use a subset of it for time
efficient, which has 109k videos and 438k frames in total,
which we refer as R2V2-S.

Network Architecture. ResNet-18 [27] is used as back-
bone for major ablation studies for its efficiency and ac-
curacy. One fully connected layer (512 x 64) is used as
projection layer after the global average pooling layer to
obtain the embedding features. ResNet-50 is also adapted
for comparing with other methods. Following the study
in [67], Lintra-video and Lcycle use separate projection lay-
ers as they have different invariance learning targets. Fol-
lowing MoCo [26], we use a query encoder network fq
and a key encoder network fk, where the parameters θk
of fk is updated by the parameters θq of fq , using θk ←
mθk + (1 −m)θq. The momentum coefficient m is set to
0.999 and the memory bank size for classification is 65536.
The temperature τ is set to 0.07.

Training. We use SGD to optimize the unsupervised
representation learning for a total of 200 epochs. The mini-
batch size is 256 in 8 GPUs. The initial learning rate is 0.06.
Other training recipes follow [26].
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Invariance OTB
intra

image
intra
video

cross
video Backbone Precision Success

✓ ResNet-18 53.7 41.2
✓ ✓ ResNet-18 60.1 45.5
✓ ✓ ✓ ResNet-18 65.6 48.6
✓ ResNet-50 47.4 34.4
✓ ✓ ResNet-50 68.4 48.9
✓ ✓ ✓ ResNet-50 69.3 49.2

Table 2: Ablation of different losses components (invariance tar-
get) for OTB-100 tracking on frozen features. Representations are
pretrained on R2V2-S with ResNet-18, and R2V2 with ResNet-
50. We clearly see that our proposed method with cross-video
cycle consistency learning target achieves the best performance.

4.2. Transfer to visual object tracking

We perform object tracking on the learned representa-
tions. SiamFc [6] is used as tracking method, which con-
sists of one 1x1 convolution upon the pre-trained frozen rep-
resentations. The training is performed on GOT-10k [30]
dataset and we test it on OTB2015 [65]. The results are
shown in Table 1. As we could see, when using ResNet-
18 as backbone, our method outperforms previous unsuper-
vised representation methods, as well as ImageNet super-
vised one, obtaining 65.6 precision, an 2.7 improvement
over VINCE [21], which trains on the same dataset. Our
method also surpasses previous contrastive learning meth-
ods when using ResNet-50 as backbone, and achieves 3.5
precision improvement over ImageNet supervised pretrain
model. Note that we observed a performance drop when
using intra-image objective alone when switching from
ResNet-18 to ResNet-50. This also occurred in VINCE [21]
which uses the same dataset for pretraining. We conjure
that it is because there are only 4 frames per video, cov-
ering a long temporal window, making it hard to find cor-
respondence within the same video, which is important for
tracking task. Additionally, we report the results of our self-
supervised learning method using Kinetics-400 [36] and
ResNet-50 for fair comparisons, achieving 72.7 precision
on OTB, surpassing previous best SeCo [71] by 0.8.

In order to validate the effectiveness of our method, we
conduct ablation study on different loss components with
respect to the tracking performance, the results are shown
in Table 2. It shows that our proposed Lcycle clearly im-
proves methods considering only intra-image or intra-video
constrative learning. Note that when training with only
intra-image invariance without using temporal invariance
in videos in R2V2 dataset, the performance for tracking
will drop significantly, which is consistent with the results
shown in VINCE [21].

ImageNet
Methods Backbone Dataset Top-1 (%)

Supervised ResNet-50 ImageNet 76.2
MoCo [26] ResNet-50 ImageNet 67.7
MoCo [26] ResNet-50 R2V2 53.6
VINCE [21] ResNet-50 R2V2 54.4

Ours ResNet-50 R2V2 55.6
Table 3: Linear classification on frozen features results on Ima-
geNet compared with other unsupervised representation learning
methods.

4.3. Transfer to image classification

4.3.1 Comparison to state of the art

To further show the generalizability of our method, we
transfer the learned representations to perform static image
classification task. We use ImageNet dataset [12] to vali-
date our method. We apply one fully-connected layer on
frozen representation as linear probing setting in [26, 21].
The results are shown in Table 3. As we could see, our
method achieves 55.63% ImageNet Top-1 accuracy, which
is 1.23% improvement over VINCE [21], and 2% improve-
ment over MoCo [26] under the same setting, which shows
the effectiveness of our proposed method for learning image
representation.

4.3.2 Ablation Study

In this section, we design various experiments to show how
each of the components of our method affects performance.
We use ImageNet, as well as ImageNet-100 dataset [12] as
our transferring dataset for ablation study, which has 126k
train images and 20k test images from 100 classes.

Effect of different loss components. In this part, we
study the effect of using different losses to perform un-
supervised representation learning and validate the perfor-
mance on transferring to ImageNet classification. We study
three different target of invariance learning, correspond to
three loss functions, (a) Lintra-image (intra-image invariance)
, (b) Lintra-video (intra-image, intra-video invariance), (c)
L = Lintra-video + λLcycle (λ = 0.1) (intra-image, intra-
video, cross-video invariance). The unsupervised represen-
tation training is performed on R2V2-S (ResNet-18), R2V2
(ResNet-50) dataset. The results are shown in Table 4

As we could see, using a intra-video invariance learn-
ing target Lintra-video improves the ImageNet Top-1 accu-
racy from 33.0% to 33.1%, indicating that frames within
the same video are natural views of the query image. Fur-
thermore, our method, which adds Lcycle to perform cross-
video cycle contrastive learning, further boosts the Top-1
accuracy to 34.4%, which is an absolute 1.4% improvement
compared to intra-image invariance learning. With a deeper
backbone ResNet-50, a similar trend is observed as the pro-
posed full loss with Lcycle improves 1.8% Top-1 accuracy
over intra-image objective. This shows that adding Lcycle
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Invariance
intra

image
intra
video

cross
video Backbone ImageNet

Top-1 (%)
✓ ResNet-18 33.0
✓ ✓ ResNet-18 33.1
✓ ✓ ✓ ResNet-18 34.4
✓ ResNet-50 53.8
✓ ✓ ResNet-50 55.1
✓ ✓ ✓ ResNet-50 55.6

Table 4: Ablation of different losses components ImageNet clas-
sification on frozen features. Representations are pretrained on
R2V2-S with ResNet-18 and R2V2 with ResNet-50. We clearly
see that our proposed method with cross-video cycle consistency
learning target achieves the best performance.

Size of neighbor set U 128 256 512 16384
Acc Top-1 (%) 56.56 57.00 56.40 52.96
Acc Top-5 (%) 83.10 83.06 82.64 79.46

Table 5: Ablation study. Accuracy on ImageNet-100 under lin-
ear classification protocol varying the size of the neighbor set U .
Representations are pretrained using Lcycle only on R2V2-S with
ResNet-18. One view of the current query image is included in
the neighbor set.

makes the model explore cross-video relation, making fea-
tures of visually similar instances across frames and videos
closer.

Intra-image or Intra-video invariance are essential
for good representation. While exploring cross-image or
cross-video information are helping learning better repre-
sentation, it should be built on representation that is invari-
ant of instance or videos. We conduct experiments that use
Lcycle only to learn the representation. A random view (data
augmentation) k++ of the query qi in the neighbor set U .
The results are shown in Table 5. As we could see, when
the neighbor size is small (e.g. 256), usingLcycle alone could
learn representation that has better performance when trans-
ferring to linear classification on ImageNet-100, compared
to usingLintra-video. However, when the neighbor set is large,
the performance drops largely. On the other hand, if k++ is
not included in the neighbor set U , using a neighbor size
of 256, and Lcycle alone would lead to 45.78% Top-1 ac-
curacy on ImageNet-100, which is much worse. We safely
draw that when neighbor size is small and a random view
k++ of the query is included in the neighbor set, Lcycle de-
generates to Lintra-video by learning to make the similarity of
qi and k++ maximized. Thus, for making the model learn
truly cross-video relation, excluding k++ from the neigh-
bor set U is necessary. However, directly learning corre-
spondence cross videos would be hard and shows worse re-
sults of 45.78% Top-1 accuracy on ImageNet-100. It is es-
sential to add Lintra-video with Lcycle (i.e. using the full loss L
in Eq.), boosting to 58.50 % Top-1 accuracy on ImageNet-
100.

Size of neighbor set U 256 1024 4096 16384
Acc Top-1 (%) 56.68 57.36 56.82 58.48
Acc Top-5 (%) 84.04 83.78 83.52 83.50

Table 6: Ablation study. Accuracy on ImageNet-100 under lin-
ear classification protocol varying the size of the neighbor set U .
Representations are pretrained using full loss L on R2V2-S with
ResNet-18.

K 8 16 32 128 256
Acc Top-1 (%) 57.52 57.40 57.64 57.62 56.98
Acc Top-5 (%) 83.02 82.84 83.62 83.76 83.82

Table 7: Ablation study. Accuracy on ImageNet-100 under linear
classification protocol. Ablation on K when using top-K nearest
neighbors to perform cross video cycle consistency learning. Rep-
resentations are pretrained on R2V2-S with ResNet-18.

How to choose neighbors? We conduct experiments to
study how the size of neighbor set U is affecting the per-
formance. Full loss L is used to perform unsupervised rep-
resentation learning on R2V2-S dataset and the size of U
varies from 256 to 16384. Views of the current query are
not added to the neighbor set. Then we evaluate the learned
representation by conducting linear classification on froze
representation on ImageNet-100. The results are shown in
Table 6. As we could see, increasing the neighbor size give
us better representation on behalf of better ImageNet-100
Top-1 accuracy. This is expected as a large neighbor size of
U would gives higher probability that the query could find
correspondence across videos. The best Top-1 accuracy of
58.48% is achieved when using 16384 as neighbor size and
we use this as default setting hereafter.

We also study that if using top-K nearest neighbors to
perform the reconstruction in Eq. 3 would help represen-
tation learning. Top-K neighbors are selected by rank-
ing the similarity aqi,u in the initial neighbor set, and the
top K neighbors are chosen to construct the new neighbor
set. Then the cross-video cycle consistency learning is per-
form using the new neighbor set. Then we transfer the
learned representations to the task of linear classification
on ImageNet-100. The results are shown in Table 7. We
could see that the top-1 accuracy is robust of a wide range
of K, from 8 to 128. However, using top-K neighbors show
worse performance compared to randomly chosen a neigh-
bor set U of size 16384, which has 58.50% Top-1 accu-
racy on ImageNet-100. We conjure that a large and random
neighbor set could have higher probability of finding visual
similar images and could correct the model’s false belief at
early stage that misses useful neighbors in the top-K neigh-
bors. Thus we randomly choose the neighbors U and set the
size of U to 16384 as default.

Balance between intra-video invariance and cross-video
relation learning. We study the influence of the balanc-
ing factor λ in the loss term L. We conduct unsupervised
representation learning using different balancing factor λ in
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λ 0.05 0.1 0.3 0.5 0.7 1.0
Acc Top-1 (%) 57.16 58.48 57.04 57.90 57.48 57.84
Acc Top-5 (%) 83.08 83.50 83.80 83.50 83.18 83.70

Table 8: Ablation results on loss balancing factor λ in Eq. 6, Top-
1 and Top-5 accuracy results of ImageNet-100 linear classifica-
tion on frozen representations are shown. Representations are pre-
trained on R2V2-S with ResNet-18.

Eq. 6 on R2V2-S dataset, and evaluate the performance us-
ing the task of linear classification on frozen learned repre-
sentation on ImageNet-100 dataset. The results are shown
in Table 8. We could see that while adding Lcycle helps learn
better representation for the task of linear classification on
ImageNet-100, using a relative small (e.g. 0.1) is best. This
also coincides our previous finding that intra-video invari-
ance learningLintra-video is essential for the cross-video cycle
contrast loss Lcycle to build on. We set λ = 0.1 as default
hereafter.

4.4. Transfer to video action recognition

4.4.1 Comparison to state of the art

We evaluate the learned feature representation on the task of
video action recognition on UCF101 [54] dataset. UCF101
has 13320 videos from 101 action categories. We train
and test our model on split1 of UCF101. For simplicity,
we directly use ResNet other than 3D convolution based
methods. The video representation is obtained by averag-
ing the frame representation from the video, and one fully-
connected layer is used for predicting the action class on
this video representation. Following [43], multiple clips are
sampled from the video and the predictions of the clips are
averaged for the final results. The results are shown in Ta-
ble 9. As we could see, our method is able to achieve 76.8%
top-1 accuracy on UCF101 with ResNet-18 as backbone,
surpassing the previous best one of 68.2% (DPC [24], 3D-
ResNet18) with similar number of parameters.

We also list some results of methods with large 3D
ConvNets models in Table 9. Our method is not directly
comparable to these methods as we use 2D ConvNets,
which not only have less parameters but also much less
FLOPs compared to 3D ConvNets. We emphasize that our
representation is able to solve multiple downstream tasks
while the previous 3D ConvNets are designed only for ac-
tion recognition. Note that, while DPC with large 3D-
ResNet34 (32.6M) as backbone achieves 75.7%, our model
with fewer parameters (11.7M), is able to surpass DPC with
3D-ResNet18 (14.2M) as backbone. Notably, when us-
ing ResNet-50 as backbone, our method is able to achieve
82.1%, surpassing other methods with larger 3D ConvNets
models (e.g. MemDPC) as well. Additionally, we provide
the final model using our method to train with Kinetics-400
and ResNet-50 for reference. While the result is slightly
worse than training with R2V2, we have not customized

Method Backbone(#Param) Dataset UCF101
3D-RotNet [35] 3D-ResNet18-full (33.6M) K-400 62.9
3D-ST-Puzzle [37] 3D-ResNet18-full (33.6M) K-400 63.9
SpeedNet [5] I3D (12.1M) K-400 66.7
DPC [24] 3D-ResNet18 (14.2M) K-400 68.2
DPC [24] 3D-ResNet34 K-400 75.7
Video-Pace [59] R(2+1)D (33.3M) K-400 77.1
CBT [55] S3D K-400 79.5
MemDPC [25] R-2D3D (32.4M) K-400 78.1
Temporal-ssl [34] R(2+1)D (33.3M) K-400 81.6
VTHCL [70] 3D-ResNet50 (31.7M) K-400 82.1
Ours ResNet-18 (11.69M) R2V2 76.8

Ours ResNet-50 (25.56M) K-400 81.6

Ours ResNet-50 (25.56M) R2V2 82.1

XDC [2] R(2+1)D (33.3M) K-400 86.8
AVID+CMA [43] R(2+1)D ( 33.3M) K-400 87.5
CVRL [51] 3D-ResNet50 (31.7M) K-400 92.9
ρ BYOL [18] 3D-ResNet50 (31.8M) K-400 95.5

Table 9: Video action recognition accuracy comparison with other
unsupervised representation methods on UCF101. We compare
with methods using RGB modality. We mainly compare with
models that has similar parameters as ours and list some large
3D ConvNet models (in gray) for reference. K-400: Kinetics-400.

a new set of parameters for the Kinetics-400 dataset, but
rather just train with our method for one time. This re-
sult validates the effectiveness and transferability of our ap-
proach across datasets.

4.4.2 Nearest Neighbor evaluation

To further validate our representation could learn cross-
video information, we perform nearest neighbor retrieval
experiments on the learned representation on UCF101
dataset on both frame level and clip level.

For frame retrieval experiments, following [7], 10 frames
are sampled for each video. The representations of the
frames from test set are used to find the nearest neighbors on
the train set. For clip retrieval experiments, following [68],
10 clips per video are sampled. The clips extracted from the
test set are used to find nearest neighbors on the train set.
Cosine distance of representations is used as ranking crite-
rion. If the class of the query sample appears in the class
set of the k nearest neighbors, it is considered as a correct
retrieval.

The results are shown in Table 10. Our model is able
to surpass previous methods largely on both frame retrieval
and clip retrieval experiments. Notably, our method with
ResNet-18 as backbone has a superior accuracy when con-
sidering small k (e.g. k=1, 5, 10). For instance, our method
achieves a top-1 accuracy of 45.8% on frame retrieval ex-
periments, where previous best result from Buchler et al. [7]
is 25.7%, which is an absolute 20.1% improvement. For
clip retrieval, our method has a top-1 accuracy of 39.7%, an
absolute 25.6% improvement compared to previous best of
14.1%. This indicates that our method is able to make the
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Methods Training Data Top-1 Top-5 Top-10 Top-20 Top-50
Frame retrieval:

Jigsaw [44](CaffeNet) ImageNet 19.7 28.5 33.5 40.0 49.4
OPN [40](CaffeNet) UCF101 19.9 28.7 34.0 40.6 51.6
Buchler [7](CaffeNet) ImageNet+UCF101 25.7 36.2 42.2 49.2 59.5
Ours (ResNet-18) R2V2 45.8 56.2 61.4 67.0 75.2
Ours (ResNet-50) R2V2 52.6 63.3 68.1 73.3 80.6

Clip retrieval:

Order [68] (C3D) UCF101 12.5 29.0 39.0 50.6 66.9
Order [68] (R(2+1)D) UCF101 10.7 25.9 35.4 47.3 63.9
Order [68] (R3D) UCF101 14.1 30.3 40.0 51.1 66.5
SpeedNet [5] (S3D-G) Kinetics-400 13.0 28.1 37.5 49.5 65.0
Ours (ResNet-18) R2V2 39.7 50.3 55.9 62.0 70.7
Ours (ResNet-50) R2V2 46.8 56.7 62.1 67.6 75.1

Table 10: Frame retrieval and Clip retrieval results on UCF101 compared to other unsupervised representation learning methods. Results
of Jigsaw and OPN are from [7]. Our model largely surpasses previous methods and manages to do so without using UCF101 samples.

representations of similar frames/videos (short clips) closer,
as they have higher probability belonging to the same class.
Furthermore, our model is trained solely on R2V2 dataset
and has never seen samples from UCF101 dataset, while
other methods is trained on UCF101. The results indicate
the transferability of our method. Video representations are
obtained by averaging clip representations. We could see
that even though our model does not have ground truth class
to guide the representation learning, it manages to make
video representations from the same class or having simi-
lar visual structures close.

4.4.3 Ablation Study

We study the effect of different losses on the task of video
action recognition on UCF-100 dataset. The pre-trained
representations are fixed and a single fully-connected layer
is added to predict the action class upon the averaged frame
representations. The results are shown in Table 11. As we
could see, for video action recognition task, it is beneficial
to learn representations that are invariant within the same
video, compared to invariant to the same image, rises the
Top-1 accuracy from 45.1% to 48.4%, with ResNet-18 as
backbone. However, it is also beneficial to make represen-
tations of similar videos closer other than separating them,
as adding our cross-video cycle-contrastive learning loss
Lcycle further improves the Top-1 accuracy to 50.5%. Simi-
larly, when using ResNet-50 as backbone, adding our Lcycle
achieves the best results of 67.1%. The results validate that
our proposed cross-video cycle-contrastive learning target
can learn representations that transfer well to video recog-
nition tasks.

Overall, we design various ablation experiments to study
different components of the loss, including image recogni-
tion, video recognition, video retrieval, tracking. The re-
sults validate the effectiveness of our proposed cross-video
cycle-contrastive learning target loss Lcycle.

Invariance
intra

image
intra
video

cross
video Backbone UCF101

Top-1 (%)
✓ ResNet-18 45.1
✓ ✓ ResNet-18 48.4
✓ ✓ ✓ ResNet-18 50.5
✓ ResNet-50 62.2
✓ ✓ ResNet-50 66.2
✓ ✓ ✓ ResNet-50 67.1

Table 11: Ablation of different losses components UCF action
recognition learned on frozen features. Representations are pre-
trained on R2V2 with ResNet-18 and ResNet-50.

5. Conclusion

In this paper, we propose a cross-video cycle-consistent
contrastive learning objective to perform self-supervised
learning for image representations. The proposed method
could learn to explore cross-video relations to make not
only the representations of images within the same video
closer, but also representations from different videos with
similar visual structures close, without using ground truth
class labels or generating pseudo labels. We perform
self-supervised representation learning on unlabeled R2V2
video dataset, and show that the learned image representa-
tion transfer well to multiple downstream tasks including
visual tracking, image classification and action recognition.
Extensive ablation studies are conducted and validate the ef-
fectiveness of our proposed method. We hope our approach
can open up an opportunity to utilize cross-instance paired
data for learning general image representations.

Acknowledgements. This work was supported, in part, by grants from
DARPA LwLL, NSF 1730158 CI-New: Cognitive Hardware and Software
Ecosystem Community Infrastructure (CHASE-CI), NSF ACI-1541349
CC*DNI Pacific Research Platform, and gifts from Qualcomm, TuSimple
and Picsart.

10156



References
[1] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning

to see by moving. In ICCV, 2015. 2
[2] Humam Alwassel, Dhruv Mahajan, Bruno Korbar, Lorenzo

Torresani, Bernard Ghanem, and Du Tran. Self-supervised
learning by cross-modal audio-video clustering. arXiv
preprint arXiv:1911.12667, 2019. 7

[3] Philip Bachman, R Devon Hjelm, and William Buchwalter.
Learning representations by maximizing mutual information
across views. In Advances in Neural Information Processing
Systems, pages 15535–15545, 2019. 1, 2

[4] Aayush Bansal, Shugao Ma, Deva Ramanan, and Yaser
Sheikh. Recycle-gan: Unsupervised video retargeting. In
ECCV, 2018. 2

[5] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri,
William T Freeman, Michael Rubinstein, Michal Irani, and
Tali Dekel. Speednet: Learning the speediness in videos. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9922–9931, 2020. 2, 7,
8

[6] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea
Vedaldi, and Philip HS Torr. Fully-convolutional siamese
networks for object tracking. In European conference on
computer vision, pages 850–865. Springer, 2016. 5

[7] Uta Buchler, Biagio Brattoli, and Bjorn Ommer. Improving
spatiotemporal self-supervision by deep reinforcement learn-
ing. In Proceedings of the European conference on computer
vision (ECCV), pages 770–786, 2018. 2, 7, 8

[8] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
Advances in Neural Information Processing Systems, pages
9912–9924, 2020. 2

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 1, 2, 3

[10] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 2

[11] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. arXiv preprint arXiv:2011.10566,
2020. 4

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[13] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE international conference on com-
puter vision, pages 1422–1430, 2015. 2
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