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Abstract

Deep generative models of 3D shapes have received a
great deal of research interest. Yet, almost all of them gen-
erate discrete shape representations, such as voxels, point
clouds, and polygon meshes. We present the first 3D genera-
tive model for a drastically different shape representation—
describing a shape as a sequence of computer-aided de-
sign (CAD) operations. Unlike meshes and point clouds,
CAD models encode the user creation process of 3D shapes,
widely used in numerous industrial and engineering design
tasks. However, the sequential and irregular structure of
CAD operations poses significant challenges for existing
3D generative models. Drawing an analogy between CAD
operations and natural language, we propose a CAD gener-
ative network based on the Transformer. We demonstrate the
performance of our model for both shape autoencoding and
random shape generation. To train our network, we create
a new CAD dataset consisting of 178,238 models and their
CAD construction sequences. We have made this dataset
publicly available to promote future research on this topic.

1. Introduction

It is our human nature to imagine and invent, and to ex-
press our invention in 3D shapes. This is what the paper and
pencil were used for when Leonardo da Vinci sketched his
mechanisms; this is why such drawing tools as the parallel
bar, the French curve, and the divider were devised; and this
is wherefore, in today’s digital era, the computer aided de-
sign (CAD) software have been used for 3D shape creation
in a myriad of industrial sectors, ranging from automotive
and aerospace to manufacturing and architectural design.

Can the machine also invent 3D shapes? Leveraging the
striking advance in generative models of deep learning, lots
of recent research efforts have been directed to the generation
of 3D models. However, existing 3D generative models
merely create computer discretization of 3D shapes: 3D
point clouds [6, 52, 53, 8, 30], polygon meshes [17, 42, 31],
and levelset fields [12, 33, 29, 50, 11]. Still missing is the
ability to generate the very nature of 3D shape design—the
drawing process.

Figure 1. A gallery of generated CAD designs. Our generative
network is able to produce a diverse range of CAD designs. Each
CAD model consists of a sequence of CAD operations with spe-
cific parameters. The resulting 3D shapes are clean, have sharp
geometric features, and can be readily user-edited.

We propose a deep generative network that outputs a se-
quence of operations used in CAD tools (such as SolidWorks
and AutoCAD) to construct a 3D shape. Generally referred
as a CAD model, such an operational sequence represents the
“drawing” process of shape creation. Today, almost all the in-
dustrial 3D designs start with CAD models. Only until later
in the production pipeline, if needed, they are discretized
into polygon meshes or point clouds.

To our knowledge, this is the first work toward a gen-
erative model of CAD designs. The challenge lies in the
CAD design’s sequential and parametric nature. A CAD
model consists of a series of geometric operations (e.g.,
curve sketch, extrusion, fillet, boolean, chamfer), each con-
trolled by certain parameters. Some of the parameters are
discrete options; others have continuous values (more dis-
cussion in Sec. 3.1). These irregularities emerge from the
user creation process of 3D shapes, and thus contrast starkly
to the discrete 3D representations (i.e., voxels, point clouds,
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and meshes) used in existing generative models. In con-
sequence, previously developed 3D generative models are
unsuited for CAD model generation.
Technical contributions. To overcome these challenges,
we seek a representation that reconciles the irregularities in
CAD models. We consider the most frequently used CAD
operations (or commands), and unify them in a common
structure that encodes their command types, parameters, and
sequential orders. Next, drawing an analogy between CAD
command sequences and natural languages, we propose an
autoencoder based on the Transformer network [40]. It em-
beds CAD models into a latent space, and later decode a
latent vector into a CAD command sequence. To train our
autoencoder, we further create a new dataset of CAD com-
mand sequences, one that is orders of magnitude larger than
the existing dataset of the same type. We have also made
this dataset publicly available1 to promote future research
on learning-based CAD designs.

Our method is able to generate plausible and diverse CAD
designs (see Fig. 1). We carefully evaluate its generation
quality through a series of ablation studies. Lastly, we end
our presentation with an outlook on useful applications en-
abled by our CAD autoencoder.

2. Related work

Parametric shape inference. Advance in deep learning
has enabled neural network models that analyze geometric
data and infer parametric shapes. ParSeNet [38] decomposes
a 3D point cloud into a set of parametric surface patches.
PIE-NET [43] extracts parametric boundary curves from
3D point clouds. UV-Net [19] and BrepNet [24] focus on
encoding a parametric model’s boundary curves and surfaces.
Li et al. [25] trained a neural network on synthetic data to
convert 2D user sketches into CAD operations. Recently,
Xu et al. [51] applied neural-guided search to infer CAD
modeling sequence from parametric solid shapes.
Generative models of 3D shapes. Recent years have also
witnessed increasing research interests on deep generative
models for 3D shapes. Most existing methods generate 3D
shapes in discrete forms, such as voxelized shapes [49, 16,
27, 26], point clouds [6, 52, 53, 8, 30], polygon meshes [17,
42, 31], and implicit signed distance fields [12, 33, 29, 50,
11]. The resulting shapes may still suffer from noise, lack
sharp geometric features, and are not directly user editable.

Therefore, more recent works have sought neural net-
work models that generate 3D shape as a series of geometric
operations. CSGNet [37] infers a sequence of Construc-
tive Solid Geometry (CSG) operations based on voxelized
shape input; and UCSG-Net [21] further advances the in-
ference with no supervision from ground truth CSG trees.
Other than using CSG operations, several works synthesize

1Code and data are available here.

3D shapes using their proposed domain specific languages
(DSLs) [39, 41, 30, 20]. For example, Jones et al. [20] pro-
posed ShapeAssembly, a DSL that constructs 3D shapes by
structuring cuboid proxies in a hierarchical and symmetri-
cal fashion, and this structure can be generated through a
variational autoencoder.

In contrast to all these works, our autoencoder network
outputs CAD models specified as a sequence of CAD oper-
ations. CAD models have become the standard shape rep-
resentation in almost every sectors of industrial production.
Thus, the output from our network can be readily imported
into any CAD tools [1, 2, 3] for user editing. It can also
be directly converted into other shape formats such as point
clouds and polygon meshes. To our knowledge, this is the
first generative model directly producing CAD designs.
Transformer-based models. Technically, our work is re-
lated to the Transformer network [40], which was intro-
duced as an attention-based building block for many natural
language processing tasks [13]. The success of the Trans-
former network has also inspired its use in image processing
tasks [34, 9, 14] and for other types of data [31, 10, 44].
Concurrent works [47, 32, 15] on constrained CAD sketches
generation also rely on Transformer network.

Also related to our work is DeepSVG [10], a Transformer-
based network for the generation of Scalable Vector Graphic
(SVG) images. SVG images are described by a collection
of parametric primitives (such as lines and curves). Apart
from limited in 2D, those primitives are grouped with no spe-
cific order or dependence. In contrast, CAD commands are
described in 3D; they can be interdependent (e.g., through
CSG boolean operations) and must follow a specific order.
We therefore seek a new way to encode CAD commands and
their sequential order in a Transformer-based autoencoder.

3. Method

We now present our DeepCAD model, which revolves
around a new representation of CAD command sequences
(Sec. 3.1.2). Our CAD representation is specifically tai-
lored, for feeding into neural networks such as the proposed
Transformer-based autoencoder (Sec. 3.2). It also leads to a
natural objective function for training (Sec. 3.4). To train our
network, we create a new dataset, one that is significantly
larger than existing datasets of the same type (Sec. 3.3), and
one that itself can serve beyond this work for future research.

3.1. CAD Representation for Neural Networks

The CAD model offers two levels of representation. At
the user-interaction level, a CAD model is described as a
sequence of operations that the user performs (in CAD soft-
ware) to create a solid shape—for example, a user may
sketch a closed curve profile on a 2D plane, and then
extrude it into a 3D solid shape, which is further processed
by other operations such as a boolean union with another
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CAD construction process:

Parametrized command sequence:

Figure 2. A CAD model example specified by the commands in
Table 1. (Top) the CAD model’s construction sequence, annotated
with the command types. (Bottom) the command sequence descrip-
tion of the model. Parameter normalization and quantization are
not shown in this case. In “Sketch 1”, L2-A3-L4-L5 forms a loop
(in blue) and C7 forms another loop (in green), and the two loops
bounds a sketch profile (in gray).

already created solid shape (see Fig. 2). We refer to such a
specification as a CAD command sequence.

Behind the command sequence is the CAD model’s kernel
representation, widely known as the boundary representa-
tion (or B-rep) [45, 46]. Provided a command sequence, its
B-rep is automatically computed (often through the industry
standard library Parasolid). It consists of topological com-
ponents (i.e., vertices, parametric edges and faces) and the
connections between them to form a solid shape.

In this work, we aim for a generative model of CAD com-
mand sequences, not B-reps. This is because the B-rep is
an abstraction from the command sequence: a command
sequence can be easily converted into a B-rep, but the con-
verse is hard, as different command sequences may result in
the same B-rep. Moreover, a command sequence is human-
interpretable; it can be readily edited (e.g., by importing
them into CAD tools such as AutoCAD and Onshape), al-
lowing them to be used in various downstream applications.

3.1.1 Specification of CAD Commands

Full-fledged CAD tools support a rich set of commands,
although in practice only a small fraction of them are com-
monly used. Here, we consider a subset of the commands
that are of frequent use (see Table 1). These commands fall
into two categories, namely sketch and extrusion. While con-
ceptually simple, they are sufficiently expressive to generate
a wide variety of shapes, as has been demonstrated in [48].

Sketch. Sketch commands are used to specify closed
curves on a 2D plane in 3D space. In CAD terminology,
each closed curve is referred as a loop, and one or more
loops form a closed region called a profile (see “Sketch 1”
in Fig. 2). In our representation, a profile is described by

Commands Parameters

hSOLi ;
L

(Line) x, y : line end-point

A

(Arc)

x, y : arc end-point
↵ : sweep angle
f : counter-clockwise flag

R

(Circle)
x, y : center

r : radius

E

(Extrude)

✓,�, � : sketch plane orientation
px, py, pz : sketch plane origin

s : scale of associated sketch profile
e1, e2 : extrude distances toward both sides

b : boolean type, u : extrude type
hEOSi ;

Table 1. CAD commands and their parameters. hSOLi indicates
the start of a loop; hEOSi indicates the end of the whole sequence.

a list of loops on its boundary; a loop always starts with
an indicator command hSOLi followed by a series of curve
commands Ci. We list all the curves on the loop in counter-
clockwise order, beginning with the curve whose starting
point is at the most bottom-left; and the loops in a profile are
sorted according to the bottom-left corners of their bounding
boxes. Figure 2 illustrates two sketch profiles.

In practice, we consider three kinds of curve commands
that are the most widely used: draw a line, an arc, and a
circle. While other curve commands can be easily added
(see Sec. 5), statistics from our large-scale real-world dataset
(described in Sec. 3.3) show that these three types of com-
mands constitute 92% of the cases.

Each curve command Ci is described by its curve type
ti 2 {hSOLi, L, A, R} and its parameters listed in Table 1.
Curve parameters specify the curve’s 2D location in the
sketch plane’s local frame of reference, whose own position
and orientation in 3D will be described shortly in the associ-
ated extrusion command. Since the curves in each loop are
concatenated one after another, for the sake of compactness
we exclude the curve’s starting position from its parameter
list; each curve always starts from the ending point of its pre-
decessor in the loop. The first curve always starts from the
origin of the sketch plane, and the world-space coordinate
of the origin is specified in the extrusion command.

In short, a sketch profile S is described by a list of loops
S = [Q1, . . . , QN ], where each loop Qi consists of a se-
ries of curves starting from the indicator command hSOLi
(i.e., Qi = [hSOLi, C1, . . . , Cni ]), and each curve command
Cj = (tj ,pj) specifies the curve type ti and its shape pa-
rameters pj (see Fig. 2).

Extrusion. The extrusion command serves two purposes.
1) It extrudes a sketch profile from a 2D plane into a 3D body,
and the extrusion type can be either one-sided, symmetric, or
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two-sided with respect to the profile’s sketch plane. 2) The
command also specifies (through the parameter b in Table 1)
how to merge the newly extruded 3D body with the previ-
ously created shape by one of the boolean operations: either
creating a new body, or joining, cutting or intersecting with
the existing body.

The extruded profile—which consists of one or more
curve commands—is always referred to the one described
immediately before the extrusion command. The extrusion
command therefore needs to define the 3D orientation of that
profile’s sketch plane and its 2D local frame of reference.
This is defined by a rotational matrix, determined by (✓, �,�)
parameters in Table 1. This matrix is to align the world frame
of reference to the plane’s local frame of reference, and to
align z-axis to the plane’s normal direction. In addition,
the command parameters include a scale factor s of the
extruded profile; the rationale behind this scale factor will
be discussed in Sec. 3.1.2.

With these commands, we describe a CAD model M as
a sequence of curve commands interleaved with extrusion
commands (see Fig. 2). In other words, M is a command
sequence M = [C1, . . . , CNc ], where each Ci has the form
(ti,pi) specifying the command type ti and parameters pi.

3.1.2 Network-friendly Representation

Our specification of a CAD model M is akin to natural
language. The vocabulary consists of individual CAD com-
mands expressed sequentially to form sentences. The subject
of a sentence is the sketch profile; the predicate is the ex-
trusion. This analogy suggests that we may leverage the
network structures, such as the Transformer network [40],
succeeded in natural language processing to fulfill our goal.

However, the CAD commands also differ from natural
language in several aspects. Each command has a different
number of parameters. In some commands (e.g., the extru-
sion), the parameters are a mixture of both continuous and
discrete values, and the parameter values span over different
ranges (recall Table 1). These traits render the command
sequences ill-posed for direct use in neural networks.

To overcome this challenge, we regularize the dimensions
of command sequences. First, for each command, its param-
eters are stacked into a 16⇥1 vector, whose elements corre-
spond to the collective parameters of all commands in Table 1
(i.e., pi = [x, y,↵, f, r, ✓,�, �, px, py, pz, s, e1, e2, b, u]).
Unused parameters for each command are simply set to
be �1. Next, we fix the total number Nc of commands in
every CAD model M . This is done by padding the CAD
model’s command sequence with the empty command hEOSi
until the sequence length reaches Nc. In practice, we choose
Nc = 60, the maximal command sequence length appeared
in our training dataset.

Furthermore, we unify continuous and discrete parame-
ters by quantizing the continuous parameters. To this end,

C1 CNC

Embedding

Average Pooling z

Transformer  
Encoder E

Linear

�C1 �CNC

Transformer  
Decoder D

Learned Constant Embeddings

Figure 3. Our network architecture. The input CAD model, rep-
resented as a command sequence M = {Ci}Nc

i=1 is first projected
to an embedding space and then fed to the encoder E resulting in a
latent vector z. The decoder D takes learned constant embeddings
as input, and also attends to the latent vector z. It then outputs the
predicted command sequence M̂ = {Ĉi}Nc

i=1..

we normalize every CAD model within a 2 ⇥ 2 ⇥ 2 cube;
we also normalize every sketch profile within its bounding
box, and include a scale factor s (in extrusion command)
to restore the normalized profile into its original size. The
normalization restricts the ranges of continuous parameters,
allowing us to quantize their values into 256 levels and ex-
press them using 8-bit integers. As a result, all the command
parameters possess only discrete sets of values.

Not simply is the parameter quantization a follow-up of
the common practice for training Transformer-based net-
works [36, 31, 44]. Particularly for CAD models, it is cru-
cial for improving the generation quality (as we empirically
confirm in Sec. 4.1). In CAD designs, certain geometric rela-
tions—such as parallel and perpendicular sketch lines—must
be respected. However, if a generative model directly gener-
ates continuous parameters, their values, obtained through
parameter regression, are prone to errors that will break these
strict relations. Instead, parameter quantization allows the
network to “classify” parameters into specific levels, and
thereby better respect learned geometric relations.

In Sec. 4.1, we will present ablation studies that empiri-
cally justify our choices of CAD command representation.

3.2. Autoencoder for CAD Models

We now introduce an autoencoder network that leverages
our representation of CAD commands. Figure 3 illustrates
its structure, and more details are provided in Sec. C of
supplementary document. Once trained, the decoder part of
the network will serve naturally as a CAD generative model.

Our autoencoder is based on the Transformer network,
inspired by its success for processing sequential data [40,
13, 28]. Our autoencoder takes as input a CAD command
sequence M = [C1, · · · , CNc ], where Nc is a fixed number
(recall Sec. 3.1.2). First, each command Ci is projected
separately onto a continuous embedding space of dimension
dE = 256. Then, all the embeddings are put together to
feed into an encoder E, which in turn outputs a latent vector
z 2 R256. The decoder takes the latent vector z as input,
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and outputs a generated CAD command sequence M̂ .
Embedding. Similar in spirit to the approach in natural
language processing [40], we first project every command
Ci onto a common embedding space. Yet, different from
words in natural languages, a CAD command Ci = (ti,pi)
has two distinct parts: its command type ti and parameters
pi. We therefore formulate a different way of computing the
embedding of Ci: take it as a sum of three embeddings, that
is, e(Ci) = ecmd

i + eparam
i + epos

i 2 RdE .
The first embedding ecmd

i accounts for the command type
ti, given by ecmd

i = Wcmd�c
i . Here Wcmd 2 RdE⇥6 is a

learnable matrix and �c
i 2 R6 is a one-hot vector indicating

the command type ti among the six command types.
The second embedding eparam

i considers the command
parameters. As introduced in Sec. 3.1.2, every command
has 16 parameters, each of which is quantized into an 8-bit
integer. We convert each of these integers into a one-hot
vector �p

i,j (j = 1..16) of dimension 28 + 1 = 257; the
additional dimension is to indicate that the parameter is
unused in that command. Stacking all the one-hot vectors
into a matrix �p

i 2 R257⇥16, we embed each parameter
separately using another learnable matrix Wb

param 2 RdE⇥257,
and then combine the individual embeddings through a linear
layer Wa

param 2 RdE⇥16dE , namely,

eparam
i = Wa

paramflat(Wb
param�

p
i ), (1)

where flat(·) flattens the input matrix to a vector.
Lastly, similar to [40], the positional embedding epos

i is to
indicate the index of the command Ci in the whole command
sequence, defined as epos

i = Wpos�i, where Wpos 2 RdE⇥Nc

is a learnable matrix and �i 2 RNc is the one-hot vector
filled with 1 at index i and 0 otherwise.
Encoder. Our encoder E is composed of four layers of
Transformer blocks, each with eight attention heads and
feed-forward dimension of 512. The encoder takes the em-
bedding sequence [e1, .., eNc ] as input, and outputs vectors
[e01, .., e

0
Nc

]; each has the same dimension dE = 256. The
output vectors are finally averaged to produce a single dE-
dimensional latent vector z.
Decoder. Also built on Transformer blocks, our decoder D
has the same hyper-parameter settings as the encoder. It takes
as input learned constant embeddings while also attending
to the latent vector z—similar input structure has been used
in [9, 10]. Output from the last Transformer block is fed
into a linear layer to predict a CAD command sequence
M̂ = [Ĉ1, .., ĈNc ], including both the command type t̂i
and parameters p̂i for each command. As opposed to the
autoregressive strategy commonly used in natural language
processing [40], we adopt the feed-forward strategy [9, 10],
and the prediction of our model can be factorized as

p(M̂ |z,⇥) =
NcY

i=1

p(t̂i, p̂i|z,⇥), (2)

where ⇥ denotes network parameters of the decoder.

3.3. Creation of CAD Dataset

Several datasets of CAD designs exist, but none of them
suffice for our training. In particular, the ABC dataset [23]
collects about 1 million CAD designs from Onshape, a web-
based CAD tool and repository [3]. Although this is a large-
scale dataset, its CAD designs are provided in B-rep format,
with no sufficient information to recover how the designs
are constructed by CAD operations. The recent Fusion 360
Gallery dataset [48] offers CAD designs constructed by pro-
file sketches and extrusions, and it provides the CAD com-
mand sequence for each design. However, this dataset has
only ⇠ 8000 CAD designs, not enough for training a well
generalized generative model.

We therefore create a new dataset that is large-scale and
provides CAD command sequences. Apart from using it to
train our autoencoder network, this dataset may also serve
for future research. We have made it publicly available.

To create the dataset, we also leverage Onshape’s CAD
repository and its developer API [4] to parse the CAD de-
signs. We start from the ABC dataset. For each CAD model,
the dataset provides a link to Onshape’s original CAD design.
We then use Onshape’s domain specific language (called Fea-
tureScript [5]) to parse CAD operations and parameters used
in that design. For CAD models that use the operations be-
yond sketch and extrusion, we simply discard them. For the
rest of the models, we use a FeatureScript program to extract
the sketch profiles and extrusions, and express them using
the commands listed in Table 1.

In the end, we collect a dataset with 178,238 CAD designs
all described as CAD command sequences. This is orders
of magnitude larger than the existing dataset of the same
type [48]. The dataset is further split into training, validation
and test sets by 90%-5%-5% in a random fashion, ready to
use in training and testing. Figure 9 in the supplementary
document samples some CAD models from our dataset.

3.4. Training and Runtime Generation

Training. Leveraging the dataset, we train our autoencoder
network using the standard Cross-Entropy loss. Formally,
we define the loss between the predicted CAD model M̂ and
the ground truth model M as

L =
NcX

i=1

`(t̂i, ti) + �
NcX

i=1

NPX

j=1

`(p̂i,j ,pi,j), (3)

where `(·, ·) denotes the standard Cross-Entropy, Np is the
number of parameters (Np = 16 in our examples), and �
is a weight to balance both terms (� = 2 in our examples).
Note that in the ground-truth command sequence, some
commands are empty (i.e., the padding command hEOSi)
and some command parameters are unused (i.e., labeled as
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Method ACCcmd " ACCparam " median
CD#

Invalid
Ratio#

Ours+Aug 99.50 97.98 0.752 2.72

Ours 99.36 97.47 0.787 3.30
Alt-ArcMid 99.34 97.31 0.790 3.26
Alt-Trans 99.33 97.56 0.792 3.30
Alt-Rel 99.33 97.66 0.863 3.51
Alt-Regr - - 2.142 4.32

Table 2. Quantitative evaluation of autoencoding. ACCcmd and
ACCparam are both multiplied by 100%, and CD is multiplied by
103. ": a higher metric value indicates better autoencoding quality.
#: a lower metric value is better. ACC values for Alt-Regr are not
available since Alt-Regr does not use quantized parameters.

�1). In those cases, their corresponding contributions to the
summation terms in (3) are simply ignored.

The training process uses the Adam optimizer [22] with
a learning rate 0.001 and a linear warm-up period of 2000
initial steps. We set a dropout rate of 0.1 for all Trans-
former blocks and apply gradient clipping of 1.0 in back-
propagation. We train the network for 1000 epochs with a
batch size of 512.

CAD generation. Once the autoencoder is well trained,
we can represent a CAD model using a 256-dimensional la-
tent vector z. For automatic generation of CAD models, we
employ the latent-GAN technique [6, 12, 50] on our learned
latent space. The generator and discriminator are both as
simple as a multilayer perceptron (MLP) network with four
hidden layers, and they are trained using Wasserstein-GAN
training strategy with gradient penalty [7, 18]. In the end,
to generate a CAD model, we sample a random vector from
a multivariate Gaussian distribution and feeding it into the
GAN’s generator. The output of the GAN is a latent vector
z input to our Transformer-based decoder.

4. Experiments

In this section, we evaluate our autoencoder network
from two perspectives: the autoencoding of CAD models
(Sec. 4.1) and latent-space shape generation (Sec. 4.2). We
also discuss possible applications that can benefit from our
CAD generative model (Sec. 4.3).

There exist no previous generative models for CAD de-
signs, and thus no methods for our model to direct compare
with. Our goal here is to understand the performance of our
model under different metrics, and justify the algorithmic
choices in our model through a series of ablation studies.

4.1. Autoencoding of CAD Models

The autoencoding performance has often been used to
indicate the extent to which the generative model can express
the target data distribution [6, 12, 17]. Here we use our
autoencoder network to encode a CAD model M absent

Alt- 
Trans

Alt- 
Rel

Alt- 
Regr

Ours

Ours+ 
Aug

Alt- 
ArcMid

GT

Figure 4. Comparison of autoencoding results. Hidden edges are
also rendered visible (white). Ground truth (GT) is shown in the
bottom row. Our best results are highlighted in the dash-line box.

from the training dataset; we then decode the resulting latent
vector into a CAD model M̂ . The autoencoder is evaluated
by the difference between M and M̂ .
Metrics. To thoroughly understand our autoencoder’s per-
formance, we measure the difference between M and M̂
in terms of both the CAD commands and the resulting 3D
geometry. We propose to evaluate command accuracy us-
ing two metrics, namely Command Accuracy (ACCcmd) and
Parameter Accuracy (ACCparam). The former measures the
correctness of the predicted CAD command type, defined as

ACCcmd =
1

Nc

NcX

i=1

I[ti = t̂i]. (4)

Here the notation follows those in Sec. 3. Nc denote the total
number of CAD commands, and ti and t̂i are the ground-
truth and recovered command types, respectively. I[·] is the
indicator function (0 or 1).

Once the command type is correctly recovered, we also
evaluate the correctness of the command parameters. This is
what Parameter Accuracy (ACCparam) is meant to measure:

ACCparam =
1

K

NcX

i=1

|p̂i|X

j=1

I[|pi,j � p̂i,j | < ⌘]I[ti = t̂i], (5)
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where K =
PNc

i=1 I[ti = t̂i]|pi| is the total number of pa-
rameters in all correctly recovered commands. Note that
pi,j and p̂i,j are both quantized into 8-bit integers. ⌘ is cho-
sen as a tolerance threshold accounting for the parameter
quantization. In practice, we use ⌘ = 3 (out of 256 levels).

To measure the quality of recovered 3D geometry, we
use Chamfer Distance (CD), the metric used in many previ-
ous generative models of discretized shapes (such as point
clouds) [6, 17, 12]. Here, we evaluate CD by uniformly
sampling 2000 points on the surfaces of reference shape and
recovered shape, respectively; and measure CD between the
two sets of points. Moreover, it is not guaranteed that the
output CAD command sequence always produces a valid 3D
shape. In rare cases, the output commands may lead to an
invalid topology, and thus no point cloud can be extracted
from that CAD model. We therefore also report the Invalid
Ratio, the percentage of the output CAD models that fail to
be converted to point clouds.
Comparison methods. Due to the lack of existing CAD
generative models, we compare our model with several vari-
ants in order to justify our data representation and training
strategy. In particular, we consider the following variants.

Alt-Rel represents curve positions relative to the position
of its predecessor curve in the loop. It contrasts to our model,
which uses absolute positions in curve specification.

Alt-Trans includes in the extrusion command the start-
ing point position of the loop (in addition to the origin of
the sketch plane). Here the starting point position and the
plane’s origin are in the world frame of reference of the
CAD model. In contrast, our proposed method includes only
the sketch plane’s origin, and the origin is translated to the
loop’s starting position—it is therefore more compact.

Alt-ArcMid specifies an arc using its ending and middle
point positions, but not the sweeping angle and the counter-
clockwise flag used in Table 1.

Alt-Regr regresses all parameters of the CAD com-
mands using the standard mean-squared error in the loss
function. Unlike the model we propose, there is no need to
quantize continuous parameters in this approach.

Ours+Aug uses the same data representation and training
objective as our proposed solution, but it augment the train-
ing dataset by including randomly composed CAD command
sequences (although the augmentation may be an invalid
CAD sequence in few cases).

More details about these variants are described in Sec. D
of the supplementary document.
Discussion of results. The quantitative results are report
in Table 2, and more detailed CD scores are given in Table 4
of the supplementary document. In general, Ours+Aug (i.e.,
training with synthetic data augmentation) achieves the best
performance, suggesting that randomly composed data can
improve the network’s generalization ability. The perfor-
mance of Alt-ArcMid is similar to Ours. This means that

Ours

l-GAN

Figure 5. Randomly generated 3D shapes from our model (top)
and l-GAN (bottom).

Method COV" MMD# JSD#
Ours 78.13 1.45 3.76

l-GAN 77.73 1.27 5.02
Table 3. Shape generation measured under point-cloud metrics.

We use the metrics in l-GAN [6]. Both MMD and JSD are multi-
plied by 102. ": the higher the better, #: the lower the better.

middle-point representation is a viable alternative to repre-
sent arcs. Moreover, Alt-Trans performs slightly worse in
terms of CD than Ours (e.g., see the green model in Fig. 4).

Perhaps more interestingly, while Alt-Rel has high pa-
rameter accuracy (ACCparam), even higher than Ours, it has
a relatively large CD score and sometimes invalid topology:
for example, the yellow model in the second row of Fig. 4
has two triangle loops intersecting with each other, result-
ing in invalid topology. This is caused by the errors of the
predicted curve positions. In Alt-Rel , curve positions are
specified with respect to its predecessor curve, and thus the
error accumulates along the loop.

Lastly, Alt-Regr , not quantizing continuous parameters,
suffers from larger errors that may break curcial geometric
relations such as parallel and perpendicular edges (e.g., see
the orange model in Fig. 4).

Cross-dataset generalization. We also verify the general-
ization of our autoencoder: we take our autoencoder trained
on our created dataset and evaluate it on the smaller dataset
provided in [48]. These datasets are constructed from differ-
ent sources: ours is based on models from Onshape repos-
itory, while theirs is produced from designs in Autodesk
Fusion 360. Nonetheless, our network generalizes well on
their dataset, achieving comparable quantitative performance
(see Sec. E in supplementary document).

4.2. Shape Generation

Next, we evaluate CAD model generation from latent
vectors (described in Sec. 3.4). Some examples of our gener-
ated CAD models are shown in Fig. 1, and more results are
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Input

Output

Figure 6. CAD model reconstruction from point clouds. (Top)
input point clouds. (Bottom) reconstructed CAD models.

presented in Fig. 14 of the supplementary document.
Since there are no existing generative models for CAD

designs, we choose to compare our model with l-GAN [6],
a widely studied point-cloud 3D shape generative model.
We note that our goal is not to show the superiority one
over another, as the two generative models have different
application areas. Rather, we demonstrate our model’s ability
to generate comparable shape quality even under the metrics
for point-cloud generative models. Further, shapes from our
model, as shown in Fig. 5, have much sharper geometric
details, and they can be easily user edited (Fig. 7).
Metrics. For quantitative comparison with point-cloud
generative models, we follow the metrics used in l-GAN [6].
Those metrics measure the discrepancy between two sets
of 3D point-cloud shapes, the set S of ground-truth shapes
and the set G of generated shapes. In particular, Coverage
(COV) measures what percentage of shapes in S can be well
approximated by shapes in G. Minimum Matching Distance
(MMD) measures the fidelity of G through the minimum
matching distance between two point clouds from S and G.
Jensen-Shannon Divergence (JSD) is the standard statistical
distance, measuring the similarity between the point-cloud
distributions of S and G. Details of computing these metrics
are present in the supplement (Sec. G).
Discussion of results. Figure 5 illustrates some output ex-
amples from our CAD generative model and l-GAN. We
then convert ground-truth and generated CAD models into
point clouds, and evaluate the metrics. The results are re-
ported in Table 3, indicating that our method has compa-
rable performance as l-GAN in terms of the point-cloud
metrics. Nevertheless, CAD models, thanks to their paramet-
ric representation, have much smoother surfaces and sharper
geometric features than point clouds.

4.3. Future Applications

The CAD generative model can serve as a fundamental
algorithmic block in many applications. While our work
focuses on the generative model itself, not the downstream
applications, here we discuss its use in two scenarios.

With the CAD generative model, one can take a point
cloud (e.g., acquired through 3D scanning) and reconstruct
a CAD model. As a preliminary demonstration, we use our
autoencoder to encode a CAD model M into a latent vector
c. We then leverage the PointNet++ encoder [35], training it

pc2cad-editing

Move face FilletReconstruct

Figure 7. User Editing. Our reconstructed CAD model can be
easily edited in any CAD tools. Here, the regions that undergo
CAD operations are highlighted in orange color.

to encode the point-cloud representation of M into the same
latent vector c. At inference time, provided a point cloud,
we use PointNet++ encoder to map it into a latent vector,
followed by our auotoencocder to decode into a CAD model.
We show some visual examples in Fig. 6 and quan-titative
results in the supplementary document (Table 6).

Furthermore, the generated CAD model can be directly
imported into CAD tools for user editing (see Fig. 7). This
is a unique feature enabled by the CAD generative model, as
the user editing on point clouds or polygon meshes would
be much more troublesome.

5. Discussion and Conclusion

Toward the CAD generative model, there are several limi-
tations in our approach. At this point, we have considered
three most widely used types of curve commands (line, arc,
circle), but other curve commands can be easily added as
well. For example, a cubic Bézier curve can be specified by
three control points together with the starting point from the
ending position of its predecessor. These parameters can be
structured in the same way as described in Sec. 3.1. Other op-
erations, such as revolving a sketch, can be encoded in a way
similar to the extrusion command. However, certain CAD
operations such as fillet operate on parts of the shape bound-
ary, and thus they require a reference to the model’s B-rep,
not just other commands. To incorporate those commands in
the generative model is left for future research.

Not every CAD command sequence can produce topolog-
ically valid shape. Our generative network cannot guarantee
topological soundness of its output CAD sequences. In prac-
tice, the generated CAD command sequence rarely fails. The
failure becomes more likely as the command sequence be-
comes quite long. We present and analyze some failure cases
in Sec. F of the supplementary document, providing some
fodder for future research.

In summary, we have presented DeepCAD, a deep gen-
erative model for CAD designs. Almost all previous 3D
generative models produce discrete 3D shapes such as vox-
els, point clouds, and meshes. This work, to our knowledge,
is the first generative model for CAD designs. To this end,
we also introduce a large dataset of CAD models, each rep-
resented as a CAD command sequence.
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