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Abstract

Point cloud registration is the process of using the com-
mon structures in two point clouds to splice them together.
To find out these common structures and make these struc-
tures match more accurately, interacting information of the
source and target point clouds is essential. However, lim-
ited attention has been paid to explicitly model such fea-
ture interaction. To this end, we propose a Feature Inter-
active Representation learning Network (FIRE-Net), which
can explore feature interaction among the source and target
point clouds from different levels. Specifically, we first in-
troduce a Combined Feature Encoder (CFE) based on fea-
ture interaction intra point cloud. The CFE extracts inter-
active features intra each point cloud and combines them
to enhance the ability of the network to describe the local
geometric structure. Then, we propose a feature interaction
mechanism inter point clouds which includes a Local In-
teraction Unit (LIU) and a Global Interaction Unit (GIU).
The former is used to interact information between point
pairs across two point clouds, thus the point features in one
point cloud and its similar point features in another point
cloud can be aware of each other. The latter is applied to
change the per-point features depending on the global cross
information of two point clouds, thus one point cloud has
the global perception of another. Extensive experiments on
partially overlapping point cloud registration show that our
method achieves state-of-the-art performance.

1. Introduction
Geometric registration is a key task in 3D data analy-

sis, which aligns one point cloud (source) to another (tar-
get) by estimating the transformation between them. It has
a variety of applications in many computational fields, in-
cluding medical imaging, robotics, and autonomous driv-
ing. Iterative Closest Point (ICP) [3] is the most popular
and widely-used registration algorithm, however, it often

*Corresponding author: Jie Ma.

Figure 1: Comparison of prior work and the proposed FIRE-
Net. (a) The pipeline without feature interaction [23], which use
a feature extractor to extract features for source and target point
clouds independently. (b) In our work, the multi-level feature in-
teraction mechanism greatly improves the discriminative power of
features, which enables a more discriminative similarity matrix
and a more accurate registration result.

stalls in local minima and is only suitable for small trans-
formations. Other methods [12, 30, 49, 55], which can reg-
ister two point clouds with large rotation and translation, are
typically slower than the original ICP.

The past few years have seen a breakthrough in deep
learning, leading to remarkable advancements in most 3D
computer vision tasks, such as classification [28, 29, 40,
43, 47], segmentation [17, 44, 52, 53], and detection
[5, 18, 22, 35]. Recently, some learning-based methods
[19, 23, 41, 42, 50] for point cloud registration are pro-
posed. They solve the registration problem in three steps:
(1) extract features for the source and target point clouds
using networks such as PointNet [28]; (2) design a module,
such as pointer network [41], to find the correspondence; (3)
apply a differentiable singular value decomposition (SVD)
layer to find the least-squares rigid transformation. These
methods show excellent performance with faster speed than
traditional algorithms and have the ability to handle large
rotations, but there are still problems. Many methods only
focus on the matching stage and neglect the important cor-
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nerstone of registration–feature extraction. Those methods
simply use the existing feature extractors, such as Point-
Net [28] and DGCNN [43], which can’t provide the dis-
criminative feature for the subsequent matching process to
resolve the ambiguity. We argue that by interacting the in-
formation between source and target point clouds and mak-
ing the features of point clouds depend on each other, the
features can be more discriminative and task-relevant. In
this work, we formulate a novel feature interaction model,
named FIRE-Net, to fully leverage interaction among the
source and target point clouds from different levels. Specif-
ically, it sequentially explores feature interaction intra each
point cloud and feature interaction inter point clouds.

We first introduce a Combined Feature Encoder (CFE)
to obtain interactive features intra each point cloud by us-
ing the graph neural networks (GNN) [15]. For better de-
scription of the local geometry structure, the CFE combines
features from different propagation layers to capture com-
prehensive semantic and geometric information.

In addition to modeling feature interaction intra each
point cloud, we observe that GNN can be naturally extended
to feature interaction inter point clouds from the local per-
spective, namely Local Interaction Unit (LIU). Different
from the CFE, we construct a hybrid graph with both source
and target features and then update the node feature by ag-
gregating information from each other. The key to LIU is
making each point feature be adapted with respect to the
point features in another point cloud.

Furthermore, we propose a Global Interaction Unit
(GIU) to exploit feature interaction inter point clouds from
the global perspective. The GIU crosses the information be-
tween source and target global features and automatically
control the cross information transfer for both point clouds.
With this process, all features of the source and target can
complement each other, assisting registration in avoiding
matching confusion and improving robustness.

We observe that, through comprehensive information in-
teraction from different levels, the similarity matrix is more
discriminative than the one obtained without feature inter-
action, as shown in Fig. 1. Meanwhile, our experiment re-
sults verify that FIRE-Net not only achieves state-of-the-art
performance when the overlap rate of point clouds is high
but also offers the largest improvements in the case of low
overlap rates.

In summary, our main contributions are:
• We present a Combined Feature Encoder to extract inter-

active features in the local region and combine the fea-
tures of different layers, enhancing the ability of the net-
work to extract local geometric and semantic information.

• We design a novel feature interaction mechanism inter
point clouds which enables each point cloud to have con-
textual awareness of another point cloud, thus providing
more discriminative features for subsequent modules.

• Our end-to-end FIRE-Net model achieves state-of-the-art
performance on the ModelNet40 benchmark in several
settings, thus demonstrating its effectiveness and gener-
alization ability.

2. Related Work
2.1. Learning on graphs and point clouds

Graph neural network (GNN) is a useful tool on non-
Euclidean structures, which is first proposed in [15]. The
target of GNN [10, 38, 46, 54] is to learn a state embed-
ding that contains the information of neighborhood for each
node. This process is similar to acquiring local features
for each point in the point cloud. PointNet [28] is the pi-
oneer of applying deep learning on the raw point cloud. It
can be seen as applying GCN (Graph Convolutional Net-
work) on graphs without edges, mapping points into high-
dimensional space. As an alternative, DGCNN [43] can be
regarded as a graph neural network applied to point clouds
with dynamic edges. DensePoint [25] tries to use densely-
connected blocks to encourage feature reuse and enhance
feature propagation in 3D point clouds.

2.2. Traditional registration methods
Iterative Closest Point (ICP) [3] is a well-known rigid

registration algorithm, which estimates point correspon-
dence and performs a least-squares optimization iteratively.
For each point in the source, it finds the closest neighbor in
the target as the correspondence. Afterward, many variants
[4, 34, 49] have been proposed based on the basic concept
of ICP. Nevertheless, they may be stuck in multiple local
minimums triggered by the improper initialization and gen-
erate the wrong final transformation [27, 30]. Go-ICP [49]
uses a branch-and-bound approach to search for the globally
optimal registration at the cost of longer computing time.
Typical global registration methods are generally based on
local features and RANSAC [11] algorithm. The represen-
tative handcraft descriptors include PFH [32], FPFH [31],
and SHOT [33], etc [16, 48]. Recent studies use deep learn-
ing to learn these descriptors [1, 6, 8, 13, 20, 24, 36], such
as 3DMatch [51] and PPFNet [9]. However, these methods
are not end-to-end registration pipelines.

2.3. Learned registration methods
In recent years, many end-to-end learning-based point

cloud registration frameworks are proposed. The pioneer
is PointNetLK [19], which unrolls PointNet and the LK
(Lucas & Kanade) algorithm [2, 26] into a single trainable
recurrent deep neural network. Deep Closest Point (DCP)
[41] incorporates DGCNN [43] and an attention module to
extract features, following a pointer network [37, 39] pre-
dicts soft matching between the point clouds. PRNet [42]
incorporates keypoint detection to handle partial visibility
and leverages self-supervised learning to learn geometric
priors directly from data. RPM-Net [50] extracts PPF [9]
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Figure 2: (a) Overview of our FIRE-Net, (b) Local Interaction Unit, and (c) Global Interaction Unit. Our LIU and GIU are designed as
residual terms.

features as the initial input of the feature extraction network
and implement RPM [14] algorithm using deep learning.
IDAM [23] uses a distance-aware similarity matrix convo-
lution module to incorporate information from both the fea-
ture and Euclidean space into the pairwise point matching
process and includes a two-stage learnable point elimina-
tion technique to reduce computational complexity. Previ-
ous methods focus more on the matching stage, while our
work focuses on the feature interaction and making two in-
put point clouds be aware of each other.

3. Method
Given point clouds X = {xi ∈ R3|i = 1, . . . ,M} and

Y = {yi ∈ R3|i = 1, . . . , N}, our objective is to find the
rigid transformation {R, t} which can align two input point
clouds. R ∈ SO(3) is a rotation matrix and t ∈ R3 is a
translation vector. The two point clouds can have a different
number of points, i.e. M 6= N , or cover different extents.

Figure 2 shows an illustration of our FIRE-Net. Briefly,
the input of our network includes source and target raw
point clouds. The Combined Feature Encoder (CFE) (§3.1)
first extracts initial features for the source and target, em-
bedding all points into a common feature space. Then, a lo-
cal interaction unit (LIU) and a global interaction unit (GIU)
(§3.2) are designed serially for modeling the feature inter-
action inter point clouds. The final interacted features are
fed to the keypoint layer to select the common structures in
two point clouds (§3.3). Finally, we use a transformation
computation module [23] to obtain reliable correspondence
and compute the rigid transformation (§3.4) in an iterative
way. The details of each module will be explained in the
following sections.

Figure 3: Combined Feature Encoder.

3.1. Combined Feature Encoder
The main objective of the CFE is to describe the local

structures of the source and target point clouds. Mean-
while, as the first level of our feature interaction model,
the CFE implements feature interaction intra point cloud.
Altogether, our CFE is a GNN-based network that can hier-
archically extract multi-order interactive features for points
by constructing a fixed graph in 3D coordinate space and
applying several propagation layers connected serially, as is
illustrated in Fig. 3.
Local Graph in Coordinate Space. To represent the local
geometry structure of the given point clouds X = {xi ∈
R3|i = 1, . . . ,M} and Y = {yi ∈ R3|i = 1, . . . , N}, we
treat each point as a central node and construct a kNN graph
respectively.
Propagation Layer. Assume xi is a point in point cloud X,
N(xi) is the set of k nearest neighbors in its local graph.
Let f (`)xi be the feature for point xi at the (`)th propagation
layer. Then the output of the (`+1)th propagation layer can
be expressed as Eq. 1. In particular, f (0)xi is the coordinate
of xi.

f (`+1)
xi

= σ( A
xj∈N(xi)

(g1(f (`)xi
− f (`)xj

))), (1)

where g1 is a shared MLP applied on the relative features of
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the center and its neighbors. A is max pooling. σ is a linear
layer.
Initial Embedding To augment the module’s ability to cap-
ture geometric and semantic information, we merge the
low-order and high-order interactive features by concatenat-
ing the output vector of each propagation layer , as shown
on the right of Fig. 3. Finally, we apply a shared MLP on
the concatenated vectors to get initial features FX and FY .
This process can be formulated as:

FX = g2(concat(F 1
X , F

2
X , ..., F

L
X)) ∈ RM×d,

FY = g2(concat(F 1
Y , F

2
Y , ..., F

L
Y )) ∈ RN×d,

(2)

where g2 is a shared MLP. F l
Y denotes the feature in lth

layer and L denotes the number of propagation layers.

3.2. Feature Interaction inter point clouds
This module aims to model the interaction inter point

clouds, which consists of two serial units: The LIU learns a
local interaction function θ to obtain Local Interacted Em-
bedding Θ: θ(FX , FY ) → ΘX ,ΘY . Then, the GIU learns
a global interaction function φ to obtain Global Interacted
Embedding Φ: φ(F l

X , F
l
Y ) → ΦX ,ΦY . Note that we treat

Θ and Φ as residual terms , providing an additive change to
the original features with learnable scale parameter α and
β, that is,

F l
X = FX + α×ΘX F l

Y = FY + α×ΘY , (3)

F g
X = F l

X + β × ΦX F g
Y = F l

Y + β × ΦY , (4)

where F l
X and F l

Y is the updated features after LIU, F g
X and

F g
Y is the updated features after GIU.

3.2.1 Local Interaction Unit
With the premise that the CFE in §3.1 embeds the input
point clouds into a common feature space, local interaction
inter point clouds can be implemented by applying a well-
designed GNN on feature space. See Fig. 2(b), we construct
a hybrid graph with both source and target features and then
update the node feature by aggregating information from
neighboring node.
Local Graph in Feature Space. In the common feature
space, we have M features for source point cloud (FX ) and
N features for target point cloud (FY ). We first construct
a mixed feature set F = {FX , FY }, then treat each feature
fi in F as a central node and apply kNN to construct a lo-
cal graph Gi, thus obtaining a hybrid graph G = {Gi ∈
Rk×d, i = 1, 2, ..., (M + N). There are two strategies to
construct the local graph Gi: (1) As shown on the left of
Fig. 4, we connect all edges between the central node and
its neighbors whether the neighbor feature belongs to FX

or FY . (2) As shown on the right of Fig. 4, the edge is
only constructed between the nodes that belong to different

Figure 4: Local graph in feature space.

point clouds. As a result, we have a sparse edge connection
across source and target point clouds.

In the local graph, we treat the edges as the relation be-
tween two nodes, such as eji = (fj , fi) indicates the rela-
tion from fj to fi. Thus in Fig. 4, type 1 models relation
in feature space more comprehensively, yet type 2 is more
clear than type 1 for passing the message from another point
cloud to central node fi. We will evaluate two graph con-
struction types in the experiment(§4.2).
Nodes Association Mining. With the local graph defined
above, the nodes association can be mined through the edge
of the center node and its neighbors in node embedding
space, e.g., use eji to obtain association vector rji. To find
a more effective association function, we study three differ-
ent forms of association mining and analyze how they affect
the performance of registration.

(Form 1) rji = σ1(fj − fi),
(Form 2) rji = σ1(concat(fi, fj − fi)),
(Form 3) rji = σ1(fi) + σ2(fj − fi),

(5)

where fi denote the central feature and fj is one of its
neighbor feature. σ1, σ2 are linear layers.

We update the center’s feature through aggregating asso-
ciation vector, that is:

f ′i = A
fj∈G(i)

(rji), (6)

where A is an aggregation function, such as max pooling.
Combined with the node updating formula, we can see

that in form 1 of Eq. 5, the new node feature is entirely ob-
tained from the difference of the features between node j
and node i, which is limited because the feature of the node
i itself is ignored. In form 2, we compensate for this lim-
itation by concatenating the feature of the node itself with
the difference of the features. While in form 3, we use two
different linear layers for the feature of the node itself and
the difference of the features. We will evaluate three nodes
association mining forms in the experiment(§4.2).
Local Interacted Embedding. More generally, we repeat
the above operations several times and get a high-level as-
sociation representation R ∈ R(M+N)×k×d and its corre-
sponding aggregated output feature F ′ ∈ R(M+N)×d. Note
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Figure 5: Detailed illustration of Local Interaction Unit.

that the local graph will be recomputed dynamically as the
node feature updates, as shown in Fig. 5. This is a crucial
distinction from CFE (§3.1) which works on a fixed input
graph. Finally, we apply a linear layer σ3 on the aggregated
output feature F ′ to get the refined feature Θ, called Local
Interacted Embedding. This process can be described as:

Θ = σ3(F ′) ∈ R(M+N)×d. (7)

Through the LIU, the feature of each point is informed
with the feature of its local neighborhood. As a result, the
point feature can lean towards the point with a similar fea-
ture (i.e., the matching point) and deviate from points with
dissimilar features (i.e., the mismatched points). After the
LIU, features of the source and the target are updated to F l

X

and F l
Y as shown in Eq. 3, which are then bridged by the

GIU.

3.2.2 Global Interaction Unit
To automatically share the global information and learn in-
teractions between the source and the target comprehen-
sively, we design a GIU as shown in Fig. 2(c). The proposed
GIU obtains cross matrix of the source and target global fea-
tures, and then updates point features by projecting the cross
matrix into their latent representation spaces.

Global Information Gather. We first apply gather opera-
tion on F l

X and F l
Y to get the global features fxglobal

and
fyglobal

. The gather operation concatenates the pooled fea-
tures and then refine them using a shared MLP, which can
be expressed as follows:

fxglobal
= g3(concat(maxpool(F l

X), avgpool(F l
X)))

fyglobal
= g3(concat(maxpool(F l

Y ), avgpool(F l
Y ))),

(8)
where g3 is a shared MLP.

Global Information Cross. For source global feature
fxglobal

∈ R1×d and target global feature fxglobal
∈ R1×d,

we then construct d× d pairwise interaction:

C = fTxglobal
fyglobal

=

f (1)xglobalf
(1)
yglobal . . . f

(1)
xglobalf

(d)
yglobal

. . . . . .

f
(d)
xglobalf

(1)
yglobal . . . f

(d)
xglobalf

(d)
yglobal

 (9)

where C ∈ Rd×d is the cross feature matrix and
d is the dimension of embedding features. Through
the cross operation, each possible feature interaction
f
(i)
xglobalf

(j)
yglobal ,∀(i, j) ∈ {1, . . . , d}2 between source

global feature fxglobal
and target global feature fyglobal

is
modeled explicitly in the cross feature matrix.

Global Interacted Embedding. To project the informa-
tion contained in the cross matrix into the per-point fea-
ture, we multiply the source feature F l

X ∈ RM×d by the
cross matrix C ∈ Rd×d , while multiply the target feature
F l
Y ∈ RN×d by the transposed cross matrix CT ∈ Rd×d.

This process can be expressed as Eq. 10, which provides the
source Global Interacted Embedding ΦX and target Global
Interacted Embedding ΦY .

ΦX = F l
X × C ∈ RM×d,

ΦY = F l
Y × CT ∈ RN×d.

(10)

Through the GIU, source and target point clouds can ex-
change global contextual information with each other. Si-
multaneously, the features in the source not only integrate
the source global information but also the target global in-
formation and vice versa. After the GIU, features of the
source and the target are updated to F g

X and F g
Y as shown

in Eq. 4,

3.3. Keypoint Layer
Given the final interacted feature F g

X and F g
Y , we de-

sign a simple and efficient Keypoint Layer to select inter-
est points that are shared in the partial common region of
the source and target point clouds (Verified in Experiment
§4.4). Our Keypoint Layer can be expressed as follows:

S = X(topK(h(F g
X))) F g

S = F g
X(topK(h(F g

X))),

T = Y (topK(h(F g
Y ))) F g

T = F g
Y (topK(h(F g

Y ))),
(11)

where h is a shared MLP, and h(F g) output the significant
score for each point. Here, topK() extracts the indices of
the K largest elements of the given input. S, T are key-
point sets selected from the original point cloud. F g

S and
F g
T denote the corresponding keypoint-feature sets.

3.4. Transformation Computation
Given the coordinates and features of point pairs, the

transformation computation module employs a similarity
matrix convolution (SMC) from IDAM [23] for regressing
the similarity score of each point pair. The difference is that
IDAM concatenates the features of point pairs as a part of
the input to SMC, while our model uses the feature dispar-
ities of point pairs. The correspondences obtained by SMC
are passed to the SVD layer to compute the transformation.
Overall, the transformation computation process iterates T
times.
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4. Experiments
Dataset. We evaluate our model on the ModelNet40 dataset
[45] which is composed of 12,311 CAD models from 40
object categories. In keeping with previous work, we use
the pre-processed data from [28]. Only the (x, y, z) co-
ordinates of the sampled points are used. Following [42],
we randomly sample 1,024 points from each model’s outer
surface and sample rotations by sampling three Euler angle
rotations in the range [0, 45◦] and translations in the range
[−0.5, 0.5] on each axis during training and testing. We
transform the source point cloud X using the sampled rigid
transform and the task is to register it to the unperturbed
reference point cloud Y .

For partial-to-partial registration, we follow the same
method as PRNet [42], which fixes a random point far away
from the two point cloudsX and Y , and preserve 768 points
closest to the far point for each point cloud. It gives point
clouds with a mean overlap rate (MOR) of 96%.

For getting point cloud pairs with lower mean overlap
rate, we place the far point for X and Y independently,
which provides point clouds with MOR of 82%.

Evaluation Metric. We measure root mean squared error
(RMSE), and mean absolute error (MAE) between ground
truth values and predicted values. Ideally, all of these error
metrics should be zero if the rigid alignment is perfect. All
angular measurements in our results are in units of degrees.

Network. We use 4 propagation layers in the CFE and the
local graph is constructed using k = 12 nearest neighbors.
In the LIU, we iterate the interaction process for 2 times
and the dimensions of node embedding in each iteration are
[128, 256], the kNN graph of type 1 uses k = 10 and the
graph of type 2 uses k = 5. In the Global Information
Gather process of the GIU, we use a 3-layer MLP with out-
put dimensions [128, 64, 64]. Both CFE, LIU, and GIU out-
put features of dimension d = 64. In the Keypoint Layer,
we use a 3-layer MLP with output dimensions [64, 32, 1]
and the number of keypoints preserved is 128. The trans-
formation computation process iterates with T = 3.

Training Protocol. FIRE-Net is trained on one GTX 2080
Ti GPU with the batch size 16. Adam [21] is used to op-
timize the network parameters, with an initial learning rate
of 0.0001. We divide the learning rate by 10 at epoch 30,
training for a total of 40 epochs.

4.1. Partial Registration
We compare our method to ICP, Go-ICP [49], FGR [55],

FPFH+RANSAC, PointNetLK [19], DCP [41], PRNet [42]
and IDAM [23]. All the data-driven methods are trained
on the same training set. We use the metrics mentioned
above to evaluate all these methods. For demonstrating the
robustness to the lower overlap rate of our model, we also
experiment on inputs with a lower mean overlap rate. Note

Model MOR RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP 96% 33.68 25.05 0.293 0.250
Go-ICP [49] 96% 14.00 3.17 0.033 0.012
FGR [55] 96% 11.24 2.83 0.030 0.008
FPFH+RANSAC 96% 2.33 1.96 0.015 0.008
PointNetLK [19] 96% 16.74 7.55 0.045 0.025
DCP-v2 [41] 96% 6.71 4.45 0.027 0.020
PRNet [42] 96% 3.20 1.45 0.016 0.003
IDAM [23] 96% 2.95 0.76 0.021 0.005
FIRE-Net (ours) 96% 0.95 0.27 0.006 0.001

PointNetLK [19] 82% 27.62 14.37 0.186 0.101
DCP-v2 [41] 82% 8.87 6.44 0.085 0.061
IDAM [23] 82% 14.28 4.90 0.031 0.013
FIRE-Net (ours) 82% 2.21 0.74 0.007 0.002

Table 1: Test on unseen objects in ModelNet40.

Model MOR RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP 96% 33.68 25.56 0.293 0.250
Go-ICP [49] 96% 12.53 2.94 0.031 0.010
FGR [55] 96% 9.93 1.95 0.038 0.007
FPFH+RANSAC 96% 2.11 1.82 0.015 0.013
PointNetLK [19] 96% 22.94 9.66 0.061 0.033
DCP-v2 96% 9.77 6.95 0.034 0.025
PRNet 96% 4.99 2.33 0.021 0.015
IDAM 96% 3.42 0.93 0.022 0.005
FIRE-Net (ours) 96% 0.82 0.24 0.006 0.001

PointNetLK [19] 82% 30.60 15.93 0.191 0.105
DCP-v2 [41] 82% 10.83 8.23 0.117 0.090
IDAM [23] 82% 15.87 9.57 0.133 0.085
FIRE-Net (ours) 82% 2.12 0.69 0.009 0.002

Table 2: Test on unseen categories in ModelNet40.

that for lower overlap rate registration experiments, we only
focus on comparing learning-based algorithms.

Unseen Objects. We first experiment on the ModelNet40
train/test split, which has 9843 training objects and 2468
testing objects from all the 40 categories. Table 1 shows
that our method outperformed all the counterparts. When
MOR=82%, our network performs better consistently and
leads by a large margin, e.g. FIRE-Net is 6× better than the
second place.

Unseen Categories. We then evaluate the generaliza-
tion ability to unseen categories. Data-driven methods are
trained on the first 20 categories and then all algorithms
are tested on the held-out categories. This experiment tests
the capability to generalize to point clouds of unseen cate-
gories. Table 2 shows FIRE-Net behaves more robust than
other models in both MOR=96% and MOR=82% cases, as
all others tend to perform much worse than experiment on
unseen objects.

Unseen Objects with Gaussian Noise. Further, we eval-
uate the performance in the presence of noise, which is
present in real-world point clouds. The same preprocessing
is done as in the first experiment (Unseen Objects), except
that we randomly jitter the points in both point clouds by
gaussian noises sampled from N(0, 0.01) and clipped to [-
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Model MOR RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP 96% 35.07 25.56 0.294 0.250
Go-ICP [49] 96% 12.26 2.85 0.028 0.029
FGR [55] 96% 27.67 13.79 0.070 0.039
FPFH+RANSAC 96% 5.06 4.19 0.021 0.018
PointNetLK [19] 96% 19.94 9.08 0.057 0.032
DCP-v2 96% 6.88 4.53 0.028 0.021
PRNet 96% 4.32 2.05 0.017 0.012
IDAM 96% 3.72 1.85 0.023 0.011
FIRE-Net (ours) 96% 4.11 1.71 0.024 0.009

PointNetLK [19] 82% 38.99 21.26 0.245 0.142
DCP-v2 [41] 82% 9.28 6.56 0.092 0.068
IDAM [23] 82% 9.60 5.29 0.100 0.054
FIRE-Net (ours) 82% 5.76 2.87 0.026 0.013

Table 3: Test on unseen objects with Gaussian noise in Model-
Net40.

0.05, 0.05]. The results of this experiment are summarized
in Table 3. We can see that FIRE-Net generally performs
better than traditional methods and learning-based methods.
When MOR=96%, our model achieves comparable results
with the IDAM [23], but our model outperforms it in the
case of MOR=82%.

Performance under different Overlap Rates Lastly, we
explore the performance of the registration model under dif-
ferent overlap rates. We divide the test set into different in-
tervals according to the overlap rate and then calculate the
success rate of registration in each interval. As mentioned
in the introduction, IDAM is sensitive to overlap rate, and
our FIRE-Net is more robust with the use of feature inter-
action which is confirmed in Fig. 6. Note that the intervals
may be of unequal length as we try to make every interval
have a similar number of samples.

4.2. Ablation Study
In this section, we conduct several ablation experiments

to investigate the effect of each essential component of
FIRE-Net. All experiments are done under the settings of
“unseen objects with Gaussian noise” with MOR=82% as
described in §4.1.

Effectiveness of our FIRE-Net. We examine three key
components of our FIRE-Net: Combined Feature Encoder
(CFE), Local Interaction Unit (LIU), and Global Interac-
tion Unit (GIU). We use BS to denote the model that does
not contain any of the three components. As shown in Ta-
ble 4, all components indeed bring significant performance
improvements, especially the combination of LIU and GIU.

Local Graph Constructing Strategy in the LIU. In Table
5, we show that using type 2 is better than type 1 for local
graph construction as type 2 is more clear for interaction
between source and target nodes.

Nodes Association Mining Forms in the LIU. As shown
in the middle column of Table. 5 , form 1 gets the worst re-
sult as the feature of the center node itself is ignored after

Figure 6: Performance under different Overlap Rate. A regis-
tration is counted as successful if the final alignment rotation error
is less than 5 degrees and translation error is less than 0.01. Com-
paring with IDAM, FIRE-Net can still achieve a high success ratio
when the overlap rate is reduced. Moreover, the figure also shows
that FIRE-Net has stronger generalization ability to unseen cate-
gories.

Model RMSE(R) MAE(R) RMSE(t) MAE(t)

BS 14.30 8.14 0.118 0.073
BS + CFE 12.67 7.24 0.118 0.071
BS + CFE + LIU 11.48 4.13 0.032 0.016
BS + CFE + GIU 11.74 5.26 0.064 0.032
BS + CFE + LIU + GIU 5.76 2.87 0.026 0.013

Table 4: Effectiveness of our FIRE-Net (§4.2)

Component method RMSE(R) MAE(R) RMSE(t) MAE(t)

Local Graph
in the LIU

type 1 10.03 4.29 0.057 0.027
type 2 5.76 2.87 0.026 0.013

Association
Mining

in the LIU

form 1 7.30 3.71 0.030 0.016
form 2 6.57 3.37 0.028 0.014
form 3 5.76 2.87 0.026 0.013

Global Feature
Obtaining
in the GIU

maxpool 6.69 3.32 0.027 0.014
meanpool 6.04 3.01 0.028 0.014

{maxpool,meanpool} 5.76 2.87 0.026 0.013

Table 5: Comparison of different choices of each component )

aggregation. Form 3 is better than form 2, because the for-
mer treats the feature of the node itself and the difference of
the features respectively, avoiding the feature of the central
node dominates the association learning.

Global Feature Obtaining Method in the GIU. We ob-
serve that combining maxpooled feature and averagepooled
feature together has the best performance because it helps
our model capture important information and keep complete
information in global features.

5536



Figure 7: Qualitative results on modelnet40. (a) unseen objects. (b) unseen categories. (c) unseen objects with gaussian noise. (top: initial
positions, bottom: registration results )

Model size(MB) Infer(s) MAE(R) MAE(t)

PointNetLK 0.594 0.079 15.93 0.105
DCP-v2 21.40 0.021 8.23 0.090
IDAM 0.38 0.017 9.57 0.085

FIRE-Net(ours) 1.02 0.014 0.69 0.002

Table 6: Space and time complexity results on ModelNet40.

Figure 8: Visualization of the keypoints In each cell separated
by the vertical line, the top row shows the keypoints detected by
the model without LIU and GIU, and the bottom row shows the
keypoints of our FIRE-Net.(red: source point cloud, green: target
point cloud, blue: keypoints)

4.3. Space and Time Complexity Analysis

We test the space and time complexity of our model on
point clouds with 1024 points and compare to PointNetLK
[19], DCP [41], IDAM [23]. We use the official implemen-
tation of PointNetLK, DCP, and IDAM released by the au-
thors.The experiments are done on a machine with an Intel
Core i9-9900K CPU, a single Nvidia GeForce RTX 2080
Ti GPU, and 64G memory. We use a batch size of 1 for all
the models. The speed is measured in seconds per frame
and is computed by averaging 1266 results (the test set in
the experiment of Unseen Categories). Table 6 summarizes
the results (we relist the registration results for easy com-
parison). Obviously, our method achieves state-of-the-art
performance with minuscule model size and faster inference
speed. Note that our model performs 10× better than IDAM
while space and time complexity is at the same level.

Figure 9: Qualitative results on Stanford 3D Scan dataset. (top:
initial positions, bottom: registration results )

4.4. Visualization
In this section, we show some visualization results reg-

istering two partially overlapping point clouds in Model-
Net40. This corresponds to the “Partial Registration” ex-
periment (§4.1)) in the paper, as shown in Fig. 7. More-
over, we visualize keypoints on several objects in Fig. 8.
With the interaction-based feature extraction module, most
of the keypoints detected by FIRE-Net are located in the
overlapped area of the source and target point clouds, yet
the keypoints detected by the model without LIU and GIU
are very scattered. We also test the same model (§4.1 Un-
seen Objects) on the Stanford 3D Scan dataset [7]. We use
the same method described in the paper to generate partially
overlapping point clouds with a lower overlap rate. Note
that we only train on the ModelNet40 dataset and no fine-
tuning. The results in Fig. 9 show the generalization ability
of our model.

5. Conclusion
In this paper, we propose a point cloud registration

method named FIRE-Net for partially overlapping point
cloud registration. FIRE-Net dynamically enhances the fea-
ture’s discriminative power by exploiting the interaction of
different levels. Extensive experiments on partially overlap-
ping point cloud registration demonstrate the effectiveness
of each component in our proposed network and show our
method yields state-of-the-art 3D registration performance.
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