
How to Train Neural Networks for Flare Removal

Yicheng Wu1 † Qiurui He2 Tianfan Xue2 Rahul Garg2 Jiawen Chen3

Ashok Veeraraghavan1 Jonathan T. Barron2

1Rice University 2Google Research 3Adobe Inc.
wuyichengg@gmail.com jiawen@adobe.com vashok@rice.edu

{qiurui, tianfan, rahulgarg, barron}@google.com

Abstract

When a camera is pointed at a strong light source, the re-
sulting photograph may contain lens flare artifacts. Flares
appear in a wide variety of patterns (halos, streaks, color
bleeding, haze, etc.) and this diversity in appearance makes
flare removal challenging. Existing analytical solutions
make strong assumptions about the artifact’s geometry or
brightness, and therefore only work well on a small sub-
set of flares. Machine learning techniques have shown suc-
cess in removing other types of artifacts, like reflections, but
have not been widely applied to flare removal due to the lack
of training data. To solve this problem, we explicitly model
the optical causes of flare either empirically or using wave
optics, and generate semi-synthetic pairs of flare-corrupted
and clean images. This enables us to train neural networks
to remove lens flare for the first time. Experiments show
our data synthesis approach is critical for accurate flare
removal, and that models trained with our technique gener-
alize well to real lens flares across different scenes, lighting
conditions, and cameras.

1. Introduction

Photographs of scenes with a strong light source often
exhibit lens flare—a salient visual artifact caused by unin-
tended reflections and scattering within the camera. Flare
artifacts can be distracting, reduce detail, and occlude image
content. Despite significant efforts in optical design to min-
imize lens flare, even small light sources can still produce
substantial artifacts when imaged by consumer cameras.

Flare patterns depend on the optics of the lens, the loca-
tion of the light source, manufacturing imperfections, and
scratches and dust accumulated through everyday use. The
diversity in the underlying cause of lens flare leads to the di-
versity in its presentation. As Fig. 1 shows, typical artifacts

†This work was done while Yicheng Wu was an intern at Google Re-
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Figure 1. Lens flare artifacts frequently occur in photographs with
strong light sources. They exhibit a wide range of shapes and col-
ors, which makes them difficult to remove with existing methods.

include halos, streaks, bright lines, saturated blobs, color
bleeding, haze, and many others. This diversity makes the
problem of flare removal exceedingly challenging.

Most existing methods for lens flare removal [1, 3, 21]
do not account for the physics of flare formation, but rather
naı̈vely rely on template matching or intensity thresholding
to identify and localize the artifact. As such, they can only
detect and potentially remove limited types of flares, such
as saturated blobs, and do not work well in more complex
real-world scenarios.

Despite the proliferation of deep neural networks, there
seems to be no successful attempt at learning-based flare
removal. What is it that makes this problem so hard?

The main challenge is the lack of training data. Collect-
ing a large number of perfectly-aligned image pairs with
and without lens flare would be tedious at best and impos-
sible at worst: the camera and the scene would need to be
static (a particularly difficult requirement given most lens
flare occurs outdoors and involves the sun), and one would
need some mechanism to “switch” the artifacts on and off
without also changing the illumination of the scene. With
significant effort this can be accomplished by collecting
pairs of images taken on a tripod where the photographer
manually places an occluder between the illuminant and
the camera in one image. But this approach is too labor-
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intensive to produce the thousands or millions of image
pairs usually required to train a neural network. Further-
more, this approach only works when the flare-causing illu-
minant lies outside of the camera’s field of view (e.g., real
scenes in Fig. 7), which limits its utility.

To overcome this challenge, we propose to generate
semi-synthetic data grounded on the principles of physics.
We make the key observation that lens flare is an additive
layer on top of the underlying image, and that it is induced
by either scattering or internal reflection. For the scatter-
ing case (e.g., scratches, dust, other defects), we construct
a wave optics model that we demonstrate closely approxi-
mates reality. For the unintended reflections between lens
elements, we adopt a rigorous data-driven approach, as an
accurate optical model for a commercial camera is often un-
available. With this formulation, we are able to generate a
large and diverse dataset of semi-synthetic flare-corrupted
images, paired with ground-truth flare-free images.

Another challenge is removing flare while keeping the
visible light source intact. This is hard even with our semi-
synthetic data, as we cannot separate the light source from
the flare-only layer without affecting the flare it induces.
Hence, if trained naı̈vely, the network will try to remove the
light source along with the flare, leading to unrealistic out-
puts. To this end, we propose a loss function that ignores the
light source region, and a post-processing step to preserve
the light source in the output.

To show the effectiveness of our dataset and procedures,
we train two distinct convolutional neural networks origi-
nally designed for other tasks. During training, we mini-
mize a loss function on both the predicted flare-free image
and the residual (i.e., inferred flare). At test time, the net-
works require only a single RGB image taken with a stan-
dard camera and are able to remove different types of flare
across a variety of scenes. Although trained exclusively on
semi-synthetic data, both models generalize well to real-
world images. To the best of our knowledge, this is the
first general-purpose method for removing lens flare from a
single image.

Our code and datasets are publicly available at
https://yichengwu.github.io/flare-removal/.

2. Related work
Existing solutions for flare removal fall into three cat-

egories: (a) optical design intended to mitigate the pres-
ence of flare, (b) software-only methods that attempt post-
capture enhancement, and (c) hardware–software solutions
that capture additional information.

Hardware solutions The lenses of high-end cameras of-
ten employ sophisticated optical designs and materials to
reduce flare. As each glass element is added to a compound
lens to improve image quality, there is also an increased

probability that light is reflected from its surface to create
flare. One widely used technique is to apply anti-reflective
(AR) coating to lens elements, which reduces internal re-
flection by destructive interference. However, the thickness
of this coating can only be optimized for particular wave-
lengths and angles of incidence and therefore cannot be per-
fect. Additionally, adding an AR coating to all optical sur-
faces is expensive, and may preclude or interfere with other
coatings (e.g., anti-scratch and anti-fingerprint).

Computational methods Many post-processing tech-
niques have been proposed to remove flare. Deconvolution
has been used to remove flare in X-ray imaging [6, 18] or
HDR photography [16]. These approaches depend critically
on the assumption that the point spread function of the flare
does not vary spatially, which is generally not true. Other
solutions [1, 3, 21] adopt a two-stage process: detecting
lens flare based on their unique shape, location, or intensity
(i.e., by identifying a saturated region), and then recover-
ing the scene behind the flare region using inpainting [4].
These solutions only work on limited types of flare (e.g.,
bright spots), and are vulnerable to the misclassification of
all bright regions as flare. Additionally, these techniques
classify each pixel as either “flare” or “not flare”, ignoring
the fact that most lens flares are better modeled as a semi-
transparent layer on top of the underlying scene.

Hardware–software co-design Researchers have used
computational imaging for flare removal, where the cam-
era hardware and post-processing algorithms are designed
in conjunction. Talvala et al. [20] and Raskar et al. [15]
attempt to selectively block flare-causing light using struc-
tured occlusion masks and recover the flare-free scene using
either direct–indirect separation or a light field-based algo-
rithm. Though elegant, they require special hardware and
are therefore limited in their practicality.

Learning-based image decomposition While no
learning-based flare removal techniques exist, a number of
recent works apply learning to similar applications such as
reflection removal [5, 12, 23], rain removal [14, 22], and
denoising [2]. These methods attempt to decompose an
image into “clean” and “corrupt” components by training a
neural network. Their success relies heavily on high-quality
domain-specific training datasets, which this work tries to
address for the first time.

3. Physics of lens flare
An ideal camera, when in focus, is supposed to refract

and converge all rays from a point light source to a sin-
gle point on the sensor. In practice, real lenses scatter and
reflect light along unintended paths, resulting in flare arti-
facts [10], as shown in Fig. 2(a). The scattered and reflected
parts only constitute a small fraction of each incident light
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Figure 2. Cameras are intended to focus light from a point source
at exactly one point on the sensor (gray rays). However, dust and
scratches may cause scattering (blue rays), leading to haze and
bright streaks “emitting” radially. Additionally, internal reflections
(orange rays) can occur between the optical surfaces of lens ele-
ments (only one element is shown), resulting in disk- or arc-shaped
bright spots. This reflective flare may also have a color tint, as the
anti-reflective coating only blocks certain wavelengths.

ray. So although flare is omnipresent, it is imperceptible in
most photographs. But, when a strong light source is many
orders of magnitude brighter than the rest of the scene (e.g.,
the sun), the small fraction of scattered and reflected rays
from this bright light will lead to visible artifacts at other
pixels on the image. The geometry of the scattering from
dust and scratches, and that of the multiple reflections, re-
sult in characteristic visual patterns. At a high level, flare
can be classified into two principal categories: scattering-
induced and reflection-induced.

Scattering flare While an ideal lens is 100% refractive,
real lenses have many imperfections that cause light to scat-
ter. The scattering (or diffraction) could be due to manufac-
turing defects (e.g., dents), or normal wear (e.g., dust and
scratches). As a consequence, apart from the primary rays
that are refracted, a secondary set of rays are scattered or
diffracted instead of following their intended paths. While
dust adds a rainbow-like effect, scratches introduce streaks
that appear to “emit” radially from the light source. Scatter-
ing may also reduce contrast in the region around the light
source, leading to a hazy appearance.

Reflective flare In a practical lens system, each air–glass
interface poses an opportunity for a small amount of reflec-
tion (typically about 4%). After an even number of reflec-
tions, the rays may hit the sensor at an unintended location,
forming a reflection pattern. Even if we assume the light is
reflected exactly twice, for a lens module containing n op-
tical elements (n ≈ 5 for a modern camera), there are 2n
optical surfaces, and thus n(2n− 1) potential flare-causing
combinations. On the image, these reflective flares typically
lie on the straight line joining the light source and the prin-
cipal point. They are sensitive to the light source’s angle
of incidence, as demonstrated by Fig. 4(b), but not to rota-
tion about the optical axis. The flare’s shape depends on the
geometry, size, and location of the aperture, which may par-

tially block the reflection more than once, resulting in arc-
shaped artifacts. As mentioned in Sec. 2, AR coating may
be used to reduce reflection—typically reducing reflections
at the air–glass interface to below 1%. However, the effec-
tiveness of this coating also depends on wavelength, so lens
flare may exhibit a variety of color tints (often blue, pur-
ple, or pink). It is important to note that reflective flare de-
pends on lens design, and therefore cameras with the same
design (e.g., all iPhone 12 main camera modules) are ex-
pected to produce similar reflective flares when imaging the
same scene.

Challenges in flare removal The different types of flare
are often difficult to visibly distinguish or separate. The ap-
pearance of the observed flare may vary significantly based
on the properties of the light source (e.g., location, size,
intensity, and spectrum), and of the lens (e.g., design and
defects). For these reasons, it is impractical to build a com-
pletely physics-based algorithm to analytically identify and
remove each type of flare, especially when multiple arti-
facts are present in the same image. Therefore, we propose
a data-driven approach.

4. Physics-based data generation
Unlike many vision problems in a supervised setting, it

is hard to obtain a dataset of flare-corrupted and flare-free
image pairs. As a result, we build a physically-realistic,
semi-synthetic pipeline.

The additive nature of light implies we can model flare
as an additive artifact on top of the “ideal” image—the re-
duction in the intensity of the “ideal” rays is negligible. We
will first explain how the scattering and reflective flares can
be modeled and generated, and then use them to synthesize
flare-corrupted and flare-free image pairs.

4.1. Scattering flare

Formulation Under the thin-lens approximation, an op-
tical imaging system can be characterized by the complex-
valued pupil function P (u, v): a 2D field describing, for
each point (u, v) on the aperture plane, the lens’s effect on
the amplitude and phase of an incident wave with wave-
length λ:

Pλ(u, v) = A(u, v) · exp (iϕλ(u, v)) . (1)

Here, A is an aperture function, a property of the optics
that represents its attenuation of the incident wave’s ampli-
tude.1 In its simplest form, a camera with an aperture of a
finite radius r has an aperture function of

A(u, v) =

{
1 if u2 + v2 < r2

0 otherwise
. (2)

1Strictly speaking, lens optics can also introduce a phase shift, in which
case A becomes a complex-valued function. However, this has shown little
difference in our simulation results, so we assume A is real-valued.
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(a) Aperture of a dirty lens (b) Simulated flare

Figure 3. To simulate a scattering flare component, we generate a
number of apertures (a) with random dots and lines that resemble
defects. Wave optics then allows us to compute the image (b) of
any light source imaged by that synthetic aperture.

ϕλ in Eq. 1 describes the phase shift, which depends on
the wavelength as well as the 3D location of the light source
(x, y, z). Omitting the aperture coordinates (u, v), ϕλ can
be written as:

ϕλ(x, y, z) = ϕS
λ(x/z, y/z) + ϕDF

λ (z) (3)

where the linear term ϕS is determined by the angle of in-
cidence, and the defocus term ϕDF depends on the depth
z of the point light source. Once fully specified, the pupil
function P in Eq. 1 can be used to calculate the point spread
function (PSF) by a Fourier transform [7]:

PSFλ = |F{Pλ}|2 (4)

which, by definition, is the image of a point light source at
(x, y, z) formed by a camera with aperture function A. This
is the flare image that we desire.

Sampling PSFs To mimic dust and scratches on the lens,
we add dots and streaks of random size and transparency
to the simple aperture function A in Eq. 2. An example
synthetic aperture produced by our procedure is shown in
Fig. 3(a), and details are included in the supplement. We
generate a total of 125 different apertures.

For a given point light source at location (x, y, z) with
a single wavelength λ, the two phase shift terms in Eq. 3
can be computed deterministically. The PSF for this light
source, PSFλ, can thus be determined by substituting A
and ϕλ into Eq. 4.

To simulate a light source across the full visible spec-
trum, we sample PSFλ for all wavelengths λ from 380nm
to 740nm with a spacing of 5nm, resulting in a 73-vector at
each pixel of the PSF. The full-spectrum PSF is then left-
multiplied by a spectral response function SRF (a 3 × 73
matrix) to derive the PSF measured by the RGB sensor:PSFR(s, t)

PSFG(s, t)
PSFB(s, t)

 = SRF

PSFλ=380nm(s, t)
...

PSFλ=740nm(s, t)

 (5)

Light 
source Camera

Rotation 
stage

Motor

(a) Capture setup

5°

10°

(b) Real flare

Figure 4. We capture images of real lens flare using a strong
light source in a dark room. The camera is mounted on a motor-
ized rotation stage that reproduces a wide range of incident angles.
Sample images captured at different angles are shown in 4(b).

where (s, t) are the image coordinates. This produces a flare
image for a light source located at (x, y, z).

To construct our dataset of scattering flares, we randomly
sample the aperture function A, the light source’s 3D loca-
tion (x, y, z), and the spectral response function SRF (de-
tails can be found in the supplement). We further apply
optical distortion (e.g., barrel and pincushion) to augment
the PSFRGB images. One example of final output is shown
in Fig. 3(b). We generate a total of 2,000 such images.

4.2. Reflective flare

The reflective flare component is difficult to simulate via
rendering techniques [9, 11], as they require an accurate
characterization of the optics, which is often unavailable.
However, lenses of similar design share similar internal re-
flection paths, so data collected from one instance of the
camera often generalizes well to other similar instances.

We capture images of reflective flare in a laboratory set-
ting consisting of a bright light source, a programmable ro-
tation stage, and a fixed-aperture smartphone camera with a
f = 13mm lens (35mm equivalent), as shown in Fig. 4(a).
The setup is insulated from ambient light during capture.

The camera is rotated programmatically so that the light
source traces (and extends beyond) the diagonal field of
view, from −75◦ to 75◦. We capture one HDR image ev-
ery 0.15◦, resulting in 1,000 samples. Adjacent captures are
then interpolated by 2x using the frame interpolation algo-
rithm of [13], giving us 2,000 images. During training, im-
ages are further augmented by random rotation, as reflective
flare is rotationally symmetric about the optical axis.

4.3. Synthesizing flare-corrupted images

A flare-corrupted image IF is generated by adding a
flare-only image F to a flare-free natural image I0 in linear
space (pre-tonemapping raw space where pixel intensities
are additive), as illustrated in Fig. 5. We also add random
Gaussian noise whose variance is sampled once per image
from a scaled chi-square distribution σ2 ∼ 0.01χ2, to cover

2242



Clean image Flare Flare-corrupted image Prediction

Network
+ =

Loss

Blend

Prediction + source

Figure 5. Our approach consists of three steps: 1) We generate training input by randomly compositing a flare-free natural image and
a flare image. 2) A convolutional neural network is trained to recover the flare-free scene (in which the light source may also have been
removed, which is undesirable). 3) After prediction, we blend the input light source back into the output image.

the large range of noise levels we expect to see:

IF = I0 + F +N(0, σ2) . (6)

The flare-free image I0 is sampled from the 24k Flickr
images in [23], and is augmented by random flips and
brightness adjustments. Since the Flickr images are already
gamma-encoded, we approximately linearize them by ap-
plying an inverse gamma curve where γ is sampled uni-
formly from [1.8, 2.2] to account for the fact that its exact
value is unknown.

The flare-only image F is sampled from both captured
and simulated datasets. In Sec. 6.2, we show that both are
necessary. Random affine transformations (e.g., scaling,
translation, rotation, and shear) and white balance are ap-
plied as additional augmentations. Randomization details
are in the supplement.

5. Reconstruction algorithm
Given a flare-corrupted image IF ∈ [0, 1]512×512×3, our

goal is to train a neural network f(IF ,Θ) to predict a flare-
free image I0, where Θ is the trainable network weights.
Many network architectures may be suitable for our task
and we evaluate two popular ones. Refer to the supplement
for additional details about the network architectures and
our training procedure.

5.1. Losses

We want to remove only the flare caused by a bright light
source. But the flare-only images F in our datasets contain
both the flare and the light source, as it is impractical to
physically separate the two during capture or simulation. If
we trained the network naı̈vely, it would attempt to halluci-
nate an image with the light source removed, which is not
the intended use of this model and a waste of model capac-
ity. To prevent the model from inpainting the scene behind
the light source, we ignore the saturated pixels when com-
puting the loss and assume they are due to the light source.
In general, saturated pixels are unrecoverable and contain
little information about the scene.

Specifically, we modify the raw network output
f(IF ,Θ) with a binary saturation mask M before comput-
ing losses. The mask M corresponds to pixels where the
luminance of input IF is greater than a threshold (0.99 in
our experiments). We then apply morphological operations
so that small saturated regions are excluded from M , as they
are likely part of the scene or the flare. For pixels inside M ,
we replace it with the ground truth I0 so that the loss is zero
for such regions2:

Î0 = I0 ⊙M + f(IF ,Θ)⊙ (1−M) , (7)

where ⊙ denotes element-wise multiplication.
During training, we minimize the sum of two losses: an

image loss and a flare loss:

L = LI + LF . (8)

The image loss LI encourages the predicted flare-free
image Î0 to be close to the ground truth I0 both photomet-
rically and perceptually. The data term is an L1 loss on the
RGB values between Î0 and I0. The perceptual term is com-
puted by feeding Î0 and I0 through a pre-trained VGG-19
network [19]. Like [23], we penalize the absolute differ-
ence between Φℓ(Î0) and Φℓ(I0) at selected feature layers
conv1 2, conv2 2, conv3 2, conv4 2, and conv5 2.
In summary, the image loss can be expressed as:

LI =
∥∥∥Î0 − I0

∥∥∥
1
+

∑
ℓ

λℓ

∥∥∥Φℓ(Î0)− Φℓ (I0)
∥∥∥
1
. (9)

The flare loss LF encourages the predicted flare to be
similar to the ground-truth flare F , and serves to reduce ar-
tifacts in the predicted flare-free image (Sec. 6.2). The ex-
pression for LF is the same as Eq. 9, but with Î0 and I0
replaced by F̂ and F , respectively. Here, the predicted flare
F̂ is calculated as the difference between the network input
and the masked network output:

F̂ = IF − f(IF ,Θ)⊙ (1−M) . (10)

2We replace rather than exclude masked pixels because the perceptual
loss in Eq. 9 requires a complete image.
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(a) Input (b) CNN output (c) Mask Mf (d) Blended

Figure 6. We deliberately prevent the network from learning to
inpaint the saturated regions (illuminants), so its output (b) is un-
defined in these regions. To preserve highlights, we compute a
mask (c) for the saturated regions of the input. The masked area in
the network output is then replaced by the input pixels, producing
a more realistic final result (d) in which the flare is removed, but
not the illuminant that produced it.

5.2. Post-processing for light source blending

Our losses explicitly prevent the network from “learning
to inpaint” anything in the saturated regions, so its output
there can be arbitrary. In practice, it tends to remove the
light source so that it is more similar to the surrounding
pixels, as shown in Fig. 6(b). Since the goal of this work
is to remove the flare, and not the light source, we post-
process the network output to add back the light source.

A key observation is that the flare-causing light source is
likely saturated in the input image (otherwise it would not
result in a visible flare). Hence, it can be identified easily
based on intensity. To create a gradual transition, we feather
the mask M defined in Sec. 5.1 at its boundary to con-
struct Mf (details and parameters are in the supplement).
We blend the input and output images using the feathered
mask in linear space (e.g., Fig. 6(d)):

IB = IF ⊙Mf + f(IF ,Θ)⊙ (1−Mf ) . (11)

6. Results
To evaluate how the models trained on semi-synthetic

data generalizes, we use three types of test data: (a) syn-
thetic images with ground truth (Sec. 4), (b) real images
without ground truth, and (c) real images with ground truth.
To obtain (c), we capture a pair of images on a tripod with
a bright illuminant just outside the field of view. In one im-
age, bright flare-causing rays can enter the lens, producing
artifacts. In the other image, we carefully place an occluder,
also out of the field of view (e.g., a lens hood), between the
illuminant and the camera, blocking the same rays.

6.1. Comparison with prior work

We provide quantitative and visual comparisons in Ta-
ble 1 and Fig. 7. To eliminate the influence of the light
source when computing metrics, the masked region is re-
placed by ground truth pixels following Eq. 7.

We evaluate all recent work in flare removal [1, 3, 21].
Notably, none of them attempt the general flare removal

task. Instead, they use hand-crafted heuristics to remove
one particular subset of flare (e.g., glare spots). As such,
they have little effect on other artifacts such as reflections
and streaks and cause the PSNR and SSIM to be close to or
even identical to the input. Since haze and reflections are
two common flare artifacts, we also compare with dehaz-
ing [8] and dereflection [23] algorithms on our data.

For our method, we trained two variants, one using the
architecture from [23], and the other using the popular U-
Net [17]. Our method significantly outperforms existing
methods and demonstrates the importance of our pipeline
and dataset. We use the U-Net variant for the rest of the
paper since it performs better.

Finally we also conducted a user study with 20 partici-
pants where each user is presented with a real image with
lens flare alongside two predicted flare-free images: one
from the U-Net and the other from one of the 5 baselines.
We then ask the user to identify which of the two did better
at removing lens flare. We use 52 images from 3 differ-
ent sets: images captured by the same type of lens as in
Sec. 4.2, images captured using five other lenses with dif-
ferent focal lengths, and images taken from [3]. To avoid
bias, we shuffle the images in each instance of the study.
As Table 2 shows, our method outperforms all others by a
significant margin on all 3 datasets. Even on the dataset by
Chabert [3], users strongly preferred our method to theirs
(85% vs. 15%). Unsurprisingly, it performs slightly worse
when tested on lenses not present in our training set.

Synthetic Real
Method PSNR SSIM PSNR SSIM

Input image 21.13 0.843 18.57 0.787
Flare spot removal [3] 21.01 0.840 18.53 0.782
Flare spot removal [21] 21.13 0.843 18.57 0.787
Flare spot removal [1] 21.13 0.843 18.57 0.787
Dehaze [8] 18.32 0.829 17.47 0.745
Dereflection [23] 20.71 0.767 22.28 0.822
Ours + network [23] 28.49 0.920 24.21 0.834
Ours + U-Net [17] 30.37 0.944 25.55 0.850

Table 1. Quantitative comparison with related methods on syn-
thetic and real data.

Comparison Dataset 1 Dataset 2 Dataset 3
Ours: Flare spot removal [3] 98%: 2% 97%: 3% 85%:15%
Ours: Flare spot removal [21] 98%: 2% 93%: 7% 89%:11%
Ours: Flare spot removal [1] 100%: 0% 99%: 1% 88%:12%
Ours: Dehaze [8] 96%: 4% 91%: 9% 92%: 8%
Ours: Dereflection [23] 83%:17% 78%:22% 64%:36%
Average 95%: 5% 92%: 8% 84%:16%

Table 2. Percent of images where the users favor our results (ours
+ U-Net) vs. prior work. Dataset 1 is captured using the same
lens design as in Sec. 4.2. Dataset 2 is captured using five other
lens types with different focal lengths. Dataset 3 contains images
from [3]. We outperform existing methods in all categories, even
on Chabert’s own dataset [3].
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Figure 7. Visual comparison between three related methods and ours, evaluated on both synthetic and real scenes. Networks trained using
our method remove lens flare more accurately and produce cleaner outputs.
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Figure 8. Our method robustly removes lens flare of various shapes, colors, and locations on diverse real-world images. It generalizes
reasonably to multiple light sources (column 2). When there is no significant flare (last column), the input is kept intact.

6.2. Ablation study

In this section, we study two key components in our pro-
cedure to demonstrate their impact on the output.

No LF No sim. data No captured data Full
PSNR 24.84 24.44 23.77 25.55
SSIM 0.841 0.843 0.828 0.850

Table 3. Ablation study on the flare loss and different flare data.

Flare loss Since most flares are brighter than the underly-
ing scene, we need to ensure that the network does not sim-
ply learn to darken all bright regions. We explicitly model
this in our flare loss LF . In Fig. 9, we show test set results
from the models trained with and without LF . Without LF ,
the network tends to remove some parts of bright objects
even if they are not part of the flare.

Captured and simulated flare data In Sec. 4, we men-
tioned that the captured data mostly accounts for reflective

(a) Input (b) No flare loss (c) With flare loss

Figure 9. Without our flare loss LF , bright regions in the input (a)
are incorrectly removed, especially on images taken at night (b).
LF makes the model more robust to such errors (c).

flare, whereas the simulated data covers the scattering case.
To show that both components are necessary, we train two
ablated models, each with one of the sources excluded. As
expected, models trained with flare-only images taken from
the captured or simulated dataset alone underperform the
model trained with both datasets, as shown in Fig. 10.
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(a) Input (b) Captured (c) Simulated (d) Both

Figure 10. The model trained with captured flare only (b) (con-
taining mostly reflective and limited scattering flare) is less ef-
fective at removing streak-like scattering artifacts, whereas the
simulation-only model (c) is unable to remove reflective flare pat-
terns. Training with both datasets (d) produces superior results.

f = 27mm f = 44mm iPhone Fisheye3

In
pu

t
O

ut
pu

t

Figure 11. Although our dataset contains real flare patterns from
only one camera of an Android smartphone (f = 13mm), the
trained model generalizes effectively to the phone’s other lenses
(f = 27 and 44mm), and another smartphone camera (iPhone).
When tested on a drastically different lens design (e.g., a fish-
eye mirrorless camera), the model performs less well on reflective
flare, as expected, and still manages to remove scattering flare.

6.3. Generalization

Across scenes As our semi-synthetic dataset contains di-
verse flare patterns and scenes, the trained model general-
izes well across a wide variety of scene types. As shown in
Fig. 8, the input images contain flares with different shapes,
colors, and locations, as well as scenes with varying sub-
jects and lighting conditions. The model produces a high-
quality output in most scenarios. When there is no flare in
the input image, the network correctly performs a no-op.

Across cameras As mentioned in Sec. 4.2, all of our re-
flective flare training images come from one smartphone
camera with focal length f = 13mm. We also test our
model on other camera designs excluded from training. As
shown in Fig. 11, the model is still able to reduce lens flare
effectively, echoing the findings of the user study in Table 2.

That said, there is a limit on how far the model can gener-
alize. For example, the model performs less well on images
taken with an extremely different lens, such as a fisheye
(Fig. 11, last column). This is especially true for the lens-
dependent reflective component, as discussed in Sec. 4.2.
Domain adaptation for drastically different camera designs
is an interesting avenue for future work.

3Photo by Flickr user barit / CC BY-SA.
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Input
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(a) Pipeline: blue and red blocks represent high- and low-res respectively.

(b) Input (c) Low-res output (d) High-res output

Figure 12. Because lens flares are mostly low-frequency, our algo-
rithm can be trivially extended to high-res inputs. As (a) shows, we
downsample (DS) a high-res input (b), predict a flare-free image
(c) with our network (CNN), and compute the flare as the differ-
ence. This predicted flare is then upsampled (US) and subtracted
from the input image to produce a high-res flare-free output (d).

6.4. High-resolution images

Our network is trained on 512 × 512 images. The naı̈ve
way to apply our method to a higher-resolution input is to
train at the desired resolution (e.g., 2048 × 2048), which
requires 16x more bandwidth at both training and test time.

Fortunately, we can leverage the fact that lens flare is pre-
dominantly a low-frequency artifact. For a high-resolution
image, we bilinearly downsample the input, predict a low-
resolution flare-only image, bilinearly upsample it back to
full resolution, and subtract it from the original input (see
Fig. 12). This allows a network trained at a fixed low reso-
lution to process high-resolution images without significant
quality loss. On a Xeon E5 CPU, processing time for a
2048 × 2048 input is reduced from 8s to 0.55s when run-
ning inference at 512× 512.

7. Conclusion

We introduced a novel, tractable, and physically-realistic
model for lens flare. By building a semi-synthetic data gen-
eration pipeline using a principled image formation model,
we are able to train convolutional neural networks to re-
cover a clean flare-free image from a single flare-corrupted
image without the need for real training data. Our method is
shown to achieve accurate results across a range of scenes
and cameras. To our knowledge, this is the first general-
purpose lens flare removal technique.
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