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Abstract

Currently, the state-of-the-art methods treat few-shot
semantic segmentation task as a conditional foreground-
background segmentation problem, assuming each class is
independent. In this paper, we introduce the concept of
meta-class, which is the meta information (e.g. certain
middle-level features) shareable among all classes. To ex-
plicitly learn meta-class representations in few-shot seg-
mentation task, we propose a novel Meta-class Memory
based few-shot segmentation method (MM-Net), where we
introduce a set of learnable memory embeddings to memo-
rize the meta-class information during the base class train-
ing and transfer to novel classes during the inference stage.
Moreover, for the k-shot scenario, we propose a novel im-
age quality measurement module to select images from the
set of support images. A high-quality class prototype could
be obtained with the weighted sum of support image fea-
tures based on the quality measure. Experiments on both
PASCAL-5i and COCO datasets show that our proposed
method is able to achieve state-of-the-art results in both 1-
shot and 5-shot settings. Particularly, our proposed MM-
Net achieves 37.5% mIoU on the COCO dataset in 1-shot
setting, which is 5.1% higher than the previous state-of-the-
art.

1. Introduction
With the development of convolution neural networks

(CNNs), fully supervised image semantic segmentation
[12, 3] has achieved great success in both speed and ac-
curacy. However, the state-of-the-art image segmentation
methods usually require abundant pixel-level annotations
which requires huge human labeling efforts. If we want
to segment a new class that has not been seen in the train-
ing set, we usually need to label thousands of images for
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Figure 1. Comparison between the typical pipeline of state-of-the-
art (SOTA) methods (top part) and that of our proposed meta-class
memory based network (MM-Net) (bottom part) for few-shot seg-
mentation. The main difference is that SOTA treats the task as
a class-agnostic conditional foreground-background segmentation
problem, while we propose to learn a set of meta-class middle-
level representations shareable between base and novel classes.

the new class. In order to reduce human labeling efforts
on novel classes, the few-shot image segmentation task
[35, 17] has been introduced, which aims to predict the
segmentation mask of a query image of a novel class with
only one or a few labelled support images in testing, while
with abundant images of base classes with full annotations
in training.

The top part of Fig. 1 shows the typical pipeline of the
state-of-the-art (SOTA) few-shot image segmentation meth-
ods [35, 34]. Firstly, a pre-trained CNN network is used
to extract the features of both support and query images.
Then, the two features are typically processed by convo-
lutional layers and compared for similarity so as to gener-
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ate the segmentation map for the query image. Essentially,
these methods treat the few-shot segmentation task as a con-
ditional binary foreground-background segmentation prob-
lem, i.e. to find and segment the most relevant regions in the
query image based on the given support images and their
masks, regardless of the class information.

The class-agnostic design in SOTA is understandable.
This is because by class-agnostic design the interaction /
comparison between query and support features in base
classes can be transferred to novel classes. However, we
argue that although different classes of objects are quite dif-
ferent, there are still some common attributes or middle-
level knowledge shareable among them, which we call
meta-class information. Similar observations have been
made in [38, 10, 32] for classification and detection tasks,
where some low-level information (e.g. circle, dot) and
middle-level information (e.g. wings, limbs) are shared
among different classes.

Motivated by this, in this paper, we propose a novel
Meta-class Memory Module (MMM) to learn middle-level
meta-class embeddings shareable between base and novel
classes for few-shot segmentation. As shown in the lower
part of Fig. 1, a set of meta-class memory embeddings is
introduced into the SOTA pipeline, which can be learned
through the back-propagation during the base class training.
The meta-class memory embeddings are then used to attend
the middle-level features of query and support images to
obtain meta-class activation maps. This can be considered
as aligning both query and support middle-level features to
the meta-class embeddings. Based on the obtained meta-
class activation maps of query and support images, we then
perform interaction / comparison between them to propa-
gate the support mask information from support activation
maps to query activation maps, and the fused query activa-
tion maps are finally used for the query mask prediction.

In addition, when it comes to the k-shot scenarios, which
means more than one support images are given, previous
methods usually apply an average operation [34] on the few
support image features to obtain the class prototype feature.
However, we observe that some support images are in low
quality which is hard to represent the support class. Thus,
we further propose a Quality Measurement Module (QMM)
to obtain the quality measure for each support image. Based
on the quality measure, the features from all support images
are fused via weighted sum to get a better class prototype
feature.

In our experiments, we follow the design of [26] to per-
form training and testing for a fair comparison. We evalu-
ate our proposed method on four different splits with 1-shot
and 5-shot settings on PASCAL-5i [24] and COCO [13]
datasets. Our method is able to achieve state-of-the-art re-
sults on both datasets under both 1-shot and 5-shot settings.

Our main contributions can be summarized as follows:

• For few-shot semantic image segmentation, to our
knowledge, we are the first one to introduce a set of
learnable embeddings to memorize the meta-class in-
formation during base class training that can be trans-
ferred to novel classes during testing. Specifically, a
Meta-class Memory Module (MMM) is proposed to
generate the meta-class activation maps for both sup-
port and query images, which is helpful for the final
query mask prediction.

• For k-shot scenarios, a Quality Measurement Module
(QMM) is proposed to measure the quality of all the
support images so as to effectively fuse all the support
features. With QMM, our model is able to pay more
attention to the high quality support samples for better
query image segmentation.

• Extensive experiments on PASCAL-5i and COCO
datasets show that our proposed method performs the
best in all settings. Specifically, our method signif-
icantly outperforms SOTA on the large scale dataset
COCO, with 5.1% mean mIoU gain, as our memory
embeddings are able to learn a universal meta-class
representation.

2. Related Works
2.1. Semantic Segmentation

Semantic segmentation [30, 36, 16, 14, 15] is a task of
classifying each pixel in an image into a specified cate-
gory and has been applied in various fields [31, 25, 37].
State-of-the-art segmentation methods are usually based on
the Fully Convolutional Network (FCN) [19], which uses a
classification network as the backbone and replaces fully
connected layers with convolutional layers to predict the
dense segmentation map. Later, to obtain a higher reso-
lution prediction and have a larger receptive field of the net-
work, DeepLab [1, 2] proposed to use dilated convolutions
which insert holes to the convolutional filters instead of us-
ing the conventional convolution with downsampling. Re-
cently, Chen et al. further explored the effect of atrous con-
volutions, multi-grid, atrous spatial pyramid pooling, differ-
ence backbones, and different training sizes in DeepLab V3
[3] and DeepLab V3+ [4]. These methods usually require
abundant pixel-level annotations for all the classes during
training and cannot generalize to novel classes with only a
few labelled images.

2.2. Few-Shot Semantic Segmentation

Few-shot semantic segmentation [6, 8, 28, 22, 24, 5]
aims to give a dense segmentation prediction for new
class query images with only a few labeled support im-
ages. CANet [35] proposed Dense Comparison Module
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Figure 2. Overview of our proposed meta-class memory based network (MM-Net) for few-shot semantic segmentation. Different from
previous few-shot segmentation methods, Meta-class Memory Module (MMM) (orange) is introduced to learn the meta-class features that
can be shared among all base and novel classes and generate meta-class activation maps for support and query images, respectively. Then,
Activation Propagation Module (APM) (purple) is used to propagate support mask information to the query activation maps for the query
mask generation. Meanwhile, foreground confidence module (FCM) (yellow) is used to obtain a confidence map from the high-level image
features. Finally, the fused query activation maps are concatenated with the foreground confidence map and fed into FEM [26] for the final
query segmentation mask prediction (green).

(DCM) and Iterative Optimization Module (IOM) to give a
dense prediction and iteratively refine the prediction. Sim-
ilarly, the prototype alignment regularization was used in
PANet [29] which encourages the model to learn more con-
sistent embedding prototypes. Later, PGNet [34] used a
Graph Attention Unit (GAU) to build the local similarity
between support and query images. Liu et al. [17] proposed
to use a Siamese Network on query and support images to
get the co-occurred features between the two images. More
recently, following the practice in PGNet [34] which uses
the pyramid structure to refine results, PFENet [26] used
a multi-scale decoder Feature Enrichment Module (FEM)
to incorporate the prior masks and query features to give a
better segmentation map prediction.

Unlike all the existing few-shot semantic segmentation
methods, we introduce a concept of meta-class memory that
could learn a set of shareable meta-class representations
among base and novel classes.

2.3. Meta Learning

Most state-of-the-art recognition methods require a large
number of training images with abundant annotations which
often need tremendous human labeling efforts. Meta-
learning methods [7], also known as learning to learn, have
been introduced to better transfer existing knowledge to
novel classes or get faster training on new given data. One
popular set of approaches [11, 23] are to learn a meta-
learner which could help deep neural networks optimize
faster when given new data on unseen classes. Another set
of meta-learning approaches [7] are introduced to learn a
better parameter initialization which could be fast to opti-
mize with fewer training data. Metric learning methods [27]

are belonging to another type that use a certain similarity
measurement to obtain the classification results over differ-
ent classes. On the other hand, Munkhdalai et al. [20] pro-
posed an external memory model across different tasks and
can shift its inductive biases via fast parameterization for
rapid generalization on new tasks.

Different from these meta-learning approaches, we do
not have a meta-learner. Instead, we construct a meta-class
memory to capture representative middle-level features for
better transfer between base and novel classes for few-shot
semantic segmentation.

3. Method
Fig. 2 gives an overview of our proposed meta-class

memory based network (MM-Net) for few shot seman-
tic segmentation. It consists of three major modules,
meta-class memory module (MMM), activation propaga-
tion module (APM) and foreground confidence module
(FCM), as well as two off-the-shelf modules, feature ex-
traction backbone and feature enrichment module (FEM)
[26]. MMM is particularly novel, which learns the meta-
class features that can be shared among all base and novel
classes and generate meta-class activation maps for support
and query images, respectively. APM is used to propagate
support mask information to the query activation maps for
the query mask generation. FCM is to retain the conven-
tional interactions of the high-level features of the query
and support images. Moreover, we also propose an addi-
tional Quality Measurement Module (QMM) to measure the
quality of different support images in k-shot settings so as
to fuse the information from different support images in a
better way. In the following, we describe the major modules
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Figure 3. Illustration of Activation Propagation Module (APM).

of our MM-Net in detail.

3.1. Meta-class Memory Module

Meta-class Memory module (MMM) aims to learn the
meta-class information that can be shared among all classes
and use them to encode / classify the middle-level features
of the query or support image. As shown in Fig. 2, the in-
put to MMM includes the features of either query image IQ
or support image IS , and a set of meta-class embeddings
M1...MN , each with a dimension of D, where we set N
as 50 and D as 256. These meta-class embeddings can be
learned during the network training through the back prop-
agation. The outputs of MMM are the meta-class activation
maps corresponding to the given image. In particular, we
firstly use the ResNet50 as a feature extractor to extract the
features for both support and query images. Similar to the
previous few-shot segmentation works [35, 34], the feature
extractor is pre-trained on the image classification task. We
choose the features from the 2nd and 3rd levels, since the
middle-level features are better for transfer, same as the ob-
servation in [35]. Then, we apply a channel-wise concate-
nation of the 2nd and 3rd level features, followed by a 3×3
convolution layer to get the feature maps FQ and FS for the
query and support images, respectively. Then, we compute
the similarity between the meta-class memory M and im-
age feature maps F to get the meta-class activation maps
ActQ and ActS for query and support images, respectively:

Actn(x, y) = σ(F (x, y)TMn), (1)

where Actn(x, y) indicates the nth meta-class activation
map at the spatial location (x, y) obtained by the nth em-
bedding, and σ(·) is the Sigmoid function to normalize the
value between 0 to 1.

3.2. Activation Propagation Module

With the two memory activation maps ActS and ActQ
encoded by the N meta-class embeddings, which are of the
dimensions of H × W × N and H × W is the spatial di-
mensions, the purpose of this activation propagation module

(APM) is to propagate the label information (support mask)
from the support image to the unlabeled query image for the
mask generation.

For APM, we adopt an approach similar to [34] but us-
ing our unique memory activation maps, where we treat the
vector at each spatial location of the activation maps as a
node. Fig. 3 illustrates the process of APM. In particular,
we denote hq ∈ ActQ as a query node and hs ∈ ActS as a
support node, where h ∈ RN , and q, s ∈ {1, 2, ...,HW}.
Then, we calculate the cosine similarity eq,s = cos(hq, hs)
between all node pairs, with one from ActQ and the other
from ActS :

eq,s =
hT
q hs

∥hq∥ ∥hs∥
q, s ∈ {1, 2, ...,HW}. (2)

For each query node hq , we obtain an H ×W similarity
map eq , which is then element-wise multiplied with the sup-
port mask to keep the similarity of the foreground support
nodes while setting the similarity of the background support
nodes to −∞, followed by Softmax to generate the weights:

wq,s =
exp(eq,s)∑HW

k=1 exp(eq,k)
. (3)

We then do a weighted sum over all support node features
and multiply it with the original query node feature:

vq =

HW∑
s=1

wq,shs, (4)

h′
q = hq ⊙ vq (5)

where ⊙ denotes element-wise product. Combining all
the fused query features h′

q , we obtain the fused activa-
tion map Act′Q ∈ RH×W×N . Here, (4) essentially se-
lects the most similar foreground support nodes and (5)
highlights the query nodes matched with foreground sup-
port nodes while suppressing the query nodes matched with
background support nodes, all in the context of the meta-
class representation.

3.3. Foreground Confidence Module

Inspired by PFENet [26], which concludes that the high
level features can give a guidance mask telling the probabil-
ity of pixels belonging to the target class. Thus, we further
introduce a foreground confidence module (FCM) to pro-
duce a high-level foregournd confidence map. Compared
with the previous process based on MMM and APM, which
facilitates the interactions of the query and support images
via middle-level meta-class features, FCM facilitates their
interactions via high-level within-class features, i.e. the 4th
level features of the pre-trained ResNet50.

For simplicity, we reuse FQ and FS for the high level
backbone feature maps for the query and support images,
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Figure 4. Visual results of our proposed MM-Net on fold-0 of PASCAL-5i dataset.

respectively. To generate the foreground confidence map
CQ, we first update FS by element-wise multiplying it with
the support mask. Then, similar to that in APM, we com-
pute cosine similarity cos(fq, fs) between all pairs of fea-
ture nodes of fq ∈ FQ and fs ∈ FS as

cos(fq, fs) =
fT
q fs

∥fq∥ ∥fs∥
q, s ∈ {1, 2, ...,HW}. (6)

For each fq , we take the maximum similarity among all sup-
port nodes as the foreground probability value cq ∈ R as

cq = max
s∈{1,2,...,HW}

(cos(fq, fs)). (7)

We then reshape all the probability values cq into the fore-
ground confidence map CQ ∈ RH×W . Finally, we normal-
ize all the values in CQ by a min-max normalization:

CQ =
CQ −min(CQ)

max(CQ)−min(CQ) + ϵ
, (8)

where ϵ is set to 10−7.
With the fused query attention map Act′Q from APM and

the foreground confidence map CQ from FCM, we apply a
channel-wise concatenation of the two maps, and then pass
it to the feature enrichment module (FEM) [26] to generate
the final segmentation mask.

3.4. Quality Measurement Module

The diagram in Fig. 2 is only for one-shot setting. When
it comes to K-shot (K > 1) settings, more than one support
images are given. A common way is to average the fea-
tures [34] extracted from the support images and then pass
the averaged feature for further processing. Such a sim-
ple average feature fusion might not be good, since some
support images could be of poor quality for generating the
class prototype features. Thus, we further propose a Quality
Measurement Module (QMM) to select high quality support
features.

Specifically, we make use of the cosine similarity eq,s
in (2) with −∞ on the background regions, same as in Sec-
tion 3.2. For the kth support image, we have ekq,s. Then, we
compute the quality measure for the kth support image and
the qth query node:

pkq =

HW∑
s=1

(σ(ekq,s)), k ∈ {1, 2, ...,K}, q ∈ {1, 2, ...,HW}

(9)
where σ(·) is a Sigmoid function. Essentially, (9) sug-
gests that for the qth query node, the larger similarity sum
from the the kth support image, the higher quality / weight
we rank the support image. After that, we reshape pkq ,
q ∈ {1, 2, ...,HW} into a map P k

Q ∈ RH×W aligning with
the fused activation map Act′Q. With the obtained K maps
P k
Q, k ∈ {1, 2, ...,K}, we further apply softmax over the

k dimension to normalize the quality maps across different
support images. Finally, we treat each quality map P k

Q as
a weight map, multiply with the corresponding fused acti-
vation map Act′kQ , and sum them together. In this way, we
obtain the final weighted average map Act′Q, which is then
passed to FEM for segmentation prediction.

3.5. Training Loss

Image Segmentation loss is used to supervised the
segmentation mask generation. Specifically, following
PFENet [26], we apply multiple cross entropy losses, with
Lseg2 on the final segmentation prediction ŶQ and Li

seg1

(i ∈ {1, 2, ..., L}) on the intermediate masks Ŷ i
Q.

Memory Reconstruction Loss. To avoid the meta-class
memory from learning similar embeddings, we propose a
memory reconstruction loss function to encourage learning
meaningful and diverse meta-class embeddings. Specifi-
cally, we firstly apply a channel-wise Softmax function over
all the activation maps Actn(x, y) obtained in (1) as

ˆActn(x, y) =
exp(Actn(x, y))∑N
k=1 exp(Actk(x, y)

). (10)
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Table 1. 1-shot and 5-shot mIoU results on PASCAL 5i dataset. We list the backbone and training size used by each method. Our MM-Net
outperforms the state-of-the-art under all the experiment settings.

1-shot 5 shotMethods Training Size Backbone Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PANet [29] 417 × 417 VGG 16 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7
FWBF [21] 512 × 512 VGG 16 47.0 59.6 52.6 48.3 51.9 50.9 62.9 56.5 50.1 55.1

CANet [35] 321 × 321 ResNet 50 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
PGNet[34] 321 × 321 ResNet 50 56.0 66.9 50.6 50.4 56.0 54.9 67.4 51.8 53.0 56.8
CRNet [17] 321 × 321 ResNet 50 - - - - 55.7 - - - - 58.8
PMMs [33] 321 × 321 ResNet 50 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PPNet [18] 417 × 417 ResNet 50 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0

PFENet [26] 473 X 473 ResNet 50 v2 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

Ours 321 X 321 VGG 57.1 67.2 56.6 52.3 58.3 56.6 66.7 53.6 56.5 58.3
Ours 321 X 321 ResNet 50 58.0 70.0 58.0 55.0 60.2 60.0 70.6 56.3 60.3 61.8
Ours 473 X 473 ResNet 50 v2 62.7 70.2 57.3 57.0 61.8 62.2 71.5 57.5 62.4 63.4

Then, we use ˆActn(x, y) and the meta-class embeddings M
to reconstruct the original image features F (x, y) as

F̂ (x, y) =

N∑
n=1

Âct
n
(x, y)Mn. (11)

Essentially, (10) and (11) are to select the most similar
meta-class embeddings to obtain the reconstructed feature
F̂ . Reshaping F̂ into D ×HW , we then compute the cor-
relation matrix Cf ∈ RHW×HW :

Cf = F̂TF. (12)

Finally, we define the reconstruction loss LRecon as a cross-
entropy loss to maximize the log-likelihood of the diagonal
elements in Cf . This reconstruction loss encourages differ-
ent meta-class embeddings to be different. This is because,
if all Mn are similar, it will not be able to well reconstruct
the diverse original feature F .

The overall loss function can be summarized as

L =
α

L

L∑
i=1

LSeg1 + βLi
Seg2 + γLRecon, (13)

where α, β and γ are the trade-off parameters, being set as
1, 1 and 0.1, respectively.

4. Experiments
4.1. Implementation details

Datasets. We follow PFENet [26] to conduct experiments
on PASCAL-5i [24] and COCO [13] datasets. PASCAL-
5i combines PASCAL VOC 2012 with external annota-
tions from SDS dataset [9]. It contains 20 classes, divided
into 4 folds with 5 classes per fold. We randomly sample
5000 support-query pairs for testing. For COCO, follow-
ing [26], we split its 80 classes into 4 folds with 20 classes
per fold. The class indexes in fold i are selected according

to 4x− 3 + i, where x ∈ [1, 20] and i ∈ [1, 4]. We random
select 20,000 support and query pairs for testing.
Experiment setting. For fair comparisons with previous
methods, we consider multiple backbones including VGG-
16, ResNet-50 and ResNet-50-v2. Here, VGG-16 and
ResNet-50 are the commonly used backbone networks and
ResNet-50-v2 is a modified version by PFENet [26], where
the standard 7 × 7 convolution layers are replaced with a
few 3× 3 convolutional layers. All the backbone networks
are pre-trained on the ImageNet classification task and fixed
during our model training. We use SGD for training the rest
of the network layers with momentum and weight decay be-
ing 0.9 and 10−4, respectively. In addition, we use a learn-
ing rate of 0.0025 and a batch size of 4 to train our model
for both 1-shot and 5-shot settings. All of our experiments
are conducted on one NVIDIA RTX 2080Ti GPU.
Evaluation metrics. Following the previous works [35,
17], we adopt the class mean intersection over union
(mIoU) as our evaluation metric for ablation studies and fi-
nal comparisons.

4.2. Comparisons with state-of-the-art

Tables 1 and 2 show the 1-shot and 5-shot mIoU results
of different methods on PASCAL-5i and COCO datasets,
respectively. We list the training size and the backbone used
in the previous methods. For CANet, PGNet, CRNet and
PMM methods, they all use the image size of 321 × 321
with the standard ResNet-50 backbone to extract the fea-
tures. However, PPNet and PFENet use larger image sizes.
As observed in [3], a larger image size usually gives a better
segmentation performance. Moreover, PFENet also uses a
more powerful ResNet-50-v2 backbone. For a fair compar-
ison, we report the performance of our method under differ-
ent image sizes and backbones. We can see that our MM-
Net achieves the best results under all training conditions.

For the experiments on COCO dataset, PFENet uses the
image size of 641×641 (as specified in their released code)
with ResNet-101-v2 as backbone. Due to our GPU memory
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Table 2. 1-shot and 5-shot mIoU results on COCO dataset. The results of CANet* is obtained from [33].
1-shot 5 shotMethods Training Size Backbone Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PANet [29] 417 × 417 VGG 16 - - - - 20.9 - - - - 29.7
FWBF [21] 512 × 512 ResNet 101 19.9 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7

CANet* [35] 321 × 321 ResNet 50 25.1 30.3 24.5 24.7 26.1 26.0 32.4 26.1 27.0 27.9
PMMs [33] 321 × 321 ResNet 50 29.5 36.8 29.0 27.0 30.6 33.8 42.0 33.0 33.3 35.5
PFENet [26] 641 × 641 ResNet 101 v2 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4

Ours 321 × 321 ResNet 50 34.9 41.0 37.8 35.2 37.2 38.5 39.6 38.4 35.5 38.0
Ours 473 × 473 ResNet 50 v2 34.9 41.0 37.2 37.0 37.5 37.0 40.3 39.3 36.0 38.2

Table 3. Ablation studies on PASCAL-5i dataset about how many
meta-class embeddings are better.

Numbers of 1 shot
Meta-class Embeddings fold 0 fold 1 fold 2 fold 3 Mean

20 61.4 70.0 57.5 58.0 61.7
50 62.7 70.2 57.3 57.0 61.8
100 62.2 70.4 55.9 55.6 61.0

Table 4. Ablation studies of our proposed Meta-class Memory
Module (MMM) on PASCAL 5i dataset.

Methods 1 shot
fold 0 fold 1 fold 2 fold 3 Mean

FCM 40.4 47.4 42.9 40.5 42.8
FCM + Feat 59.6 68.0 54.5 53.5 58.9
FCM + MMM 62.7 70.2 57.3 57.0 61.8

Table 5. Ablation studies on PASCAL 5i dataset about which lev-
els of features are better. Here (2+3) indicates the 2nd and 3rd level
features are fused, and (2,3) indicates we learn two memories from
the 2nd and 3rd level features, respectively.

Methods 1 shot
Fold 0 Fold 1 Fold 2 Fold 3 Mean

MMM(3) + APM 59.8 69.3 54.2 55.2 59.6
MMM(2,3) + APM 60.2 70.0 53.7 56.0 60.0
MMM(2+3) + Global 61.8 69.1 56.7 56.4 61.2
MMM(2+3) + APM 62.7 70.2 57.3 57.0 61.8

restriction, we still use ResNet-50-v2 as our model back-
bone and 473 × 473 as our training size. Despite this, our
1-shot results still outperform PFENet by 5.1%, as shown
in Table 2. In addition, Fig. 4 gives a few qualitative testing
results on fold-0 of PASCAL-5i dataset.

For the inference speed and GPU memory consumption,
our proposed MM-Net consumes 2466 MiB GPU memory
(17 FPS), comparable to previous SOTA PFENet’s 1920
MiB GPU memory consumption (42 FPS). The slightly
more memory consumption and running time of MM-Net
are due to our introduced Meta-class Memory Module.

4.3. Ablation studies

Number of Mate-class Memory Embeddings. We con-
duct ablation experiments to analyze how many meta-class

Table 6. Ablation studies on our proposed memory reconstruction
loss under 1-shot setting on PASCAL 5i dataset.

Recon Loss On: 1 shot
Support Query Fold 0 Fold 1 Fold 2 Fold 3 Mean

60.7 70.2 55.6 56.2 60.7√
64.1 69.8 56.1 55.5 61.4√ √
62.5 70.2 57.7 56.1 61.6√
62.7 70.2 57.3 57.0 61.8

Table 7. Ablation studies on our proposed Quality Measurement
Module under 5-shot setting on PASCAL 5i dataset.

Methods 5 shot
Fold 0 Fold 1 Fold 2 Fold 3 Mean

Ours w/o QMM 60.7 71.0 56.9 61.8 62.6
Ours w/ QMM 62.2 71.5 57.5 62.4 63.4

memory embeddings are better for memory learning. Ta-
ble 3 shows that 50 embeddings yield the best performance.
This suggests that the network learns more meaningful and
effective features with 50 meta-classes. Thus, we use 50
meta-class memory embeddings for our following experi-
ments.
Effect of Meta-class Memory Module. We construct two
baselines to show the effectiveness of our proposed MMM.
The first baseline is that we only use the foreground con-
fidence map for the mask decoding (denoted as ‘FCM’ in
Table 4). The 2nd baseline is that we add the middle-level
image features for the mask prediction. Specifically, we ex-
tract the middle-level features (2nd and 3rd levels) of sup-
port and query images. Instead of computing the meta-class
activate maps, we direct pass the image features to APM
and FEM to predict the query mask. This baseline is de-
noted as ‘FCM+Feat’ in Table 4.

As can be seen in Table 4, our proposed method
‘FCM+MMM’ improves the segmentation performance
with 2.9% gain in mean mIoU compared with directly using
the middle-level features for decoding (‘FCM+Feat’). This
suggests that our proposed meta-class memory module is
able to give better class prototype information for the query
mask prediction.

Fig. 5 gives some examples of the computed meta-class
activation maps Act, where we random select 5 from all 50
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Image                    Map 1                    Map 2                    Map 3                   Map 4                    Map 5 

Figure 5. Visual results of the meta-class activation maps Act. We random select 5 from all 50 activation maps and all activation maps are
obtained from the same meta-class memory. In the 1st row, we can see the meta-class memory highlights human’s head, torso, edge, etc.

meta-class activation maps and all the maps are obtained
from the same learned meta-class memory. As we can see,
different meta-class embeddings memorize different meta-
class features and capture different patterns in the images,
e.g., capturing human head, torso, edge, etc, in the first row.
Features for memory learning. We conduct ablation ex-
periments to analyze which level of feature is better for the
memory learning. Table 5 shows that fusing 2nd and 3rd
level features (‘2+3’) yields the best performance. Our con-
jecture is that because the 2nd-level features capture more
edge information and the 3rd-level features capture more
part and object information, a combination of them leads to
learning better meta-class memory embeddings.
Effect of Activation Propagation Module. With the meta-
class activation maps of query and support images, instead
of using APM, one simple way to propagate the support
mask information to query activation maps is to apply a
global average pooling within the foreground region on the
support activation maps to get a global average foreground
representation vector, and then element-wise multiply it
with each node in the query activation maps. This is de-
noted as ‘MMM(2+3)+Global’ in Table 5. It can be seen
that the APM is able to improve the mIoU by 0.6%.
Effect of Memory Reconstruction Loss. Table 6 shows
the ablation study on our proposed memory reconstruction
loss. It can be seen that the results with the loss are much
better than the one without using the loss, clearly demon-
strating its effectiveness. Note that the reconstruction loss
can be applied for the reconstructions of different features,
including query features, support features and both features.
We can see that applying the loss for support features leads
to the overall best performance.
Effect of Quality Measurement Module. Table 7 shows

the effectiveness of our proposed Quality Measurement
Module. For the baseline method (ours w/o QMM), we
use APM to obtain 5 fused activation maps independently
from 5 different support images, and then we follow the
conventional way to average the 5 maps and pass the av-
eraged map to FEM for the segmentation mask generation.
Our proposed QMM improves mIoU by 0.8%. This sug-
gests that high quality support samples are more helpful for
the query segmentation mask prediction.

5. Conclusion

In this paper, we have proposed a novel Meta-class
Memory based few shot semantic segmentation method
(MM-Net) with the major components of MMM, APM,
FCM and QMM. The key novelty of our method lies in
MMM, where we introduced a set of learnable meta-class
embeddings to allow the common knowledge transfer be-
tween base classes and novel classes. Another novelty is
from QMM, which can measure the quality of each support
image so as to better fuse the support features. With all
these components, our MM-Net has significantly improved
the SOTA results on both PASCAL-5i and COCO datasets.
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