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Abstract

Anomaly detection (AD) aims to address the task of clas-
sification or localization of image anomalies. This paper
addresses two pivotal issues of reconstruction-based ap-
proaches to AD in images, namely, model adaptation and
reconstruction gap. The former generalizes an AD model to
tackling a broad range of object categories, while the latter
provides useful clues for localizing abnormal regions. At
the core of our method is an unsupervised universal model,
termed as Metaformer, which leverages both meta-learned
model parameters to achieve high model adaptation capa-
bility and instance-aware attention to emphasize the focal
regions for localizing abnormal regions, i.e., to explore the
reconstruction gap at those regions of interest. We jus-
tify the effectiveness of our method with SOTA results on
the MVTec AD dataset of industrial images and highlight
the adaptation flexibility of the universal Metaformer with
multi-class and few-shot scenarios.

1. Introduction
The principal goal of image Anomaly Detection (AD)

is to classify whether an image depicts an abnormal ver-
sion of the target object and if exist, localize those regions
of anomaly. The technique to detect the various anoma-
lies of interest is crucial for industrial inspection to ensure
that the resulting products meet the required standards [15].
However, since the anomalies (or the defects) can deviate
from the normal ones in numerous ways, it is hard to ex-
haustively pre-define an anomaly prior and collect enough
anomaly data for training an anomaly detection model. In-
stead, most of the previous methods use anomaly-free data
to construct its representative distribution for indirectly dis-
criminating the deviated data as anomalies. Hence, the AD
task is also known as out-of-distribution detection.

Driven by the attempt to model the one-class distribu-
tion of the anomaly-free data, the embedding-based [5, 28]
and the reconstruction-based methods [24, 35, 39] comprise
the two main trends for tackling the AD problem. The
former seeks to learn an embedding function for making
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Figure 1. Model adaptation and reconstruction gap are two piv-
otal issues of reconstruction-based anomaly detection. Top: most
AD techniques train a specific model for each category. Such an
approach would become demanding as the number of categories
increases. Bottom: we instead propose to train a universal model,
Metaformer with instance-aware ability to simultaneously address
the two key issues. Note that I − Î and I − Ĩ respectively denote
the reconstruction errors with or without instance-aware attention.

the anomaly-free data close to each other in the embedding
space, and the latter aims to leverage a neural network for
reconstructing each sample of the normal class. To deter-
mine the anomalies, the embedding-based methods draw
on the resulting learned metrics, while the reconstruction-
based ones employ reconstruction errors by contrast.

We resolve the AD problem from the reconstruction-
based point of view. Our formulation particularly pays at-
tention to explore two key factors, reconstruction gap and
model adaptation, in designing an effective AD framework.
(See Figure 1.) Most of the reconstruction-based AD tech-
niques include an autoencoder component. As the training
data are typically sufficient and all from the “normal” class,
a well-trained autoencoder is expected to satisfactorily re-
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construct such samples not only in training but also in infer-
ence. The assumption implies that the reconstruction gap
can be used to detect anomalies if a given image is out of
the distribution of the normal class. Different from most
existing reconstruction-based AD methods merely predict-
ing the image-level anomalies, our approach introduces the
instance-aware attention to further regulate the reconstruc-
tion gap for precisely localizing the pixel-level abnormal re-
gions. Regarding the issue of model adaptation, we observe
that prior arts on AD often need to collect a large number
of anomaly-free examples to train an additional AD model
for classifying a new object category. In real-world applica-
tions, an AD system could be deployed on edge devices of
limited computational power, and such a data-eager training
strategy may not be practical. To overcome the concern, we
design a meta-learning strategy that enables our universal
AD model to be fine-tuned with only a few anomaly-free
supporting examples for handling a novel category.

The cornerstone of our method is the Metaformer, which
leverages the meta-learned model parameters to effectively
carry out the few-shot fine-tuning for performing AD of a
novel object category and employs the instance-aware at-
tention to emphasize the abnormal focal regions. Briefly
speaking, the proposed Metaformer is a transformer-based
instance-aware autoencoder that learns its model parame-
ters using an unsupervised meta-learning strategy. Figure 1
overviews the proposed AD model. Figure 2 illustrates the
steps of our meta-training, meta-testing, and inference. Fig-
ure 3 sketches the key components of our Metaformer.

To enable the Metaformer for efficient model adaptation,
we learn its model parameters with an unsupervised meta-
training strategy. Namely, the training comprises numerous
few-shot image reconstruction tasks to obtain the parame-
ters for the universal model, which can be rapidly fine-tuned
using a few anomaly-free examples from each underlying
novel class in meta-testing. It follows that the fine-tuned
Metaformer is ready for performing the AD inference for
the novel object category. We note that the meta-training
stage does not have access to any of the images used in
the meta-testing stage and the testing/inference stage of a
novel category. In addition, to empower the Metaformer to
more precisely uncover the abnormal regions, we introduce
instance-aware attention to regularize the autoencoder (AE)
to focus on the instance area while reconstructing an im-
age. In our formulation, we first establish the instance prior
based on saliency prediction and then carry out the AE reg-
ularization via an attention mechanism.

To the best of our knowledge, the proposed method is the
first to address the image AD task by employing an adaptive
instance-aware reconstruction method. We characterize our
main contributions as follows:

• We introduce unsupervised few-shot meta-training to
learn the universal Metaformer that exhibits the effi-

cient flexibility of model adaptation to an arbitrary ob-
ject category of interest.

• We couple the instance-aware attention mechanism
with the autoencoder such that anomaly detection
based on reconstruction gap can emphasize the area of
target object rather than the distracting background.

• We provide extensive experimental results and com-
parisons to demonstrate that our method achieves the
overall SOTA performance on both the anomaly clas-
sification and anomaly localization.

2. Related Work
In this section, we concisely review the recent research

efforts relevant to the tasks of anomaly detection, meta-
learning, and instance-aware attention.

Anomaly Detection The task of anomaly detection in-
volves either image-level anomaly classification, which
classifies whether an image is abnormal [2, 5, 13, 28, 35,
36], or pixel-level anomaly localization, which further lo-
calizes the abnormal regions [4, 5, 32].

Previous methods for anomaly detection are mostly cast
as a one-class problem [1, 29] due to the scarcity of anomaly
samples. For example, [14] introduces the memory block
that enforces reconstructive images more like the given reg-
ular class. There are also several GAN-based approaches
[2, 3, 7, 24, 25, 30] that apply adversarial training to en-
hance the performance of AD.

The MVTec AD dataset is recently introduced in
[4], which includes the annotations of abnormal regions
for evaluating an AD task about industrial inspection.
Methodology-wise, techniques to deal with the AD prob-
lems can be divided into several essential types. The most
popular one is the reconstruction-based approach that is
conventionally established based on an autoencoder. The
benchmark presented in MVTec AD comprises the con-
volutional autoencoder with ℓ2 loss and structural similar-
ity (SSIM) loss named ℓ2-AE and SSIM-AE, respectively.
GANomaly [2] extends the general autoencoder architec-
ture and proposes an encoder-decoder-encoder network that
reconstructs both the input image and the bottleneck with
the adversarial training technique. Another autoencoder
variant for AD [36] employs energy based model (EBM)
and uses the energy score and the reconstruction error as the
scoring function. Reconstruction-by-inpainting anomaly
detection (RIAD) [35] treats AD as a self-supervised task
that randomly crops patches for every instance and inpaints
it via an autoencoder. A similar work [13] utilizes transfor-
mation in geometry and trains a multi-class model. Even
though these autoencoder-based models achieve good AD
accuracy, their reconstructed images generally tend to be
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blurry. The shortcoming could cause detecting many abnor-
mal regions, but most of them are not relevant to the AD
task. In [32], the authors adopt an attention mechanism and
designs an attention expansion loss to preserve spatial infor-
mation. In comparison with this work, we address this issue
by integrating the instance-aware attention mechanism with
the autoencoder to improve the AD localization.

More recently, DifferNet [28] adopts the normalizing
flow [26] as a density estimation of the image features
extracted by convolutional neural networks. Then the
anomaly score is computed based on the likelihoods of mul-
tiple transformations per image. Using the teacher-student
knowledge distilling approach, US [5] learns a discrimina-
tive embedding for making the student networks produce
regression errors and uncertainties. To compare the effec-
tiveness of feature distribution for anomaly localization, the
US model is further evaluated by fitting different algorithms
such as K-Means, OC-SVM, and 1-NN into the teacher net-
work. Observe that existing methods perform data augmen-
tation or model ensemble, which results in relatively high
cost. Moreover, they usually train a single model per cate-
gory in the dataset. We tackle this issue by applying meta-
learning to train an adapted universal model.

To address the AD task on retinal images, P-Net [39]
employs the external edge-structure information to encode
the relation between structure and texture for the subsequent
image reconstruction to detect the abnormal regions. They
obtain structure information using an off-the-shelf edge de-
tector. In comparison and to be explained later, we learn
an instance-prior generator and Metaformer using the same
dataset in an unsupervised manner. This advantage brings
more flexibility and less cost for real-world applications.

Meta-learning The objective of meta-learning is to en-
able a model for fast adaptability by training it on various
learning tasks. The learned model is hence able to adapt to
novel tasks with a few supporting examples. To this end,
one sort of meta-learning method [11, 12, 19, 22] aims to
explicitly maximize the model sensitivity concerning the
novel-task losses against the model parameters. To borrow
the fast model adaptability for addressing the model adapta-
tion issue in the AD task, we employ Model-Agnostic Meta-
Learning (MAML) [11] to train parameters of Metaformer
for sensitivity on a given task distribution. Note that we
explicitly train the Metaformer in an unsupervised manner.
Precisely, the task distribution for use is defined without any
additional annotations or attributes.

Instance-aware Attention To address the reconstruction
gap for precisely localizing the pixel-level abnormal re-
gions, we introduce the instance-aware attention to regulate
the reconstructed image focusing on the instance regions.
In practice, we factor the instance-aware attention into an
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Figure 2. The model learning pipeline. We first train Metaformer
using various tasks Ti from MSRA10K in the meta-training phase.
The learned universal model Mθ updates parameters efficiently to
obtain Mθ′ in the meta-testing stage. The fine-tuned model Mθ′

measures the performance using the original testing split S̃c in
MVTec AD. The green boxes and red boxes indicate the anomaly-
free examples and anomalous examples, respectively.

instance-aware generator and an attention mechanism. The
former depicts the region of interest, and the later enable our
image reconstruction focusing on these instance regions.

Our instance-aware generator considers the saliency de-
tection approach [8, 18, 20, 37, 38] to depict the region of
interest for anomaly detection. A saliency detection method
aims at finding salient objects in an image. For concerning
the unsupervised learning, we employ the generator within
the Visual-Effect GAN [8] as our instance-aware generator,
which is trained by using the annotation-free Flickr images.
Though the other methods [18, 20, 37] are unsupervised
ones, the hand-crafted methods [18, 20] generate noisy re-
sults, and the deep detection [37] needs to ensemble multi-
ple saliency detection results retrieved from other methods.

Our attention mechanism aims to leverage the instance-
aware prior for making the autoencoder pay attention to re-
constructing the region of interest. To this end, we form
the dependencies between the instance-aware prior and the
AE output via the transformer [31], which is devised for
addressing the machine translation task yet shows its con-
vincing improvement on various tasks such as image cap-
tion [10], instance segmentation [21], sketch classification
[27], and image super-resolution [34].
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3. Method
We introduce the Metaformer, which aims to tackle the

issues of model adaptation and reconstruction gap, to clas-
sify the image-level anomalies and localize the pixel-level
abnormal regions. For dealing with the model adaption is-
sue, we learn one single Metaformer model by leveraging
the meta-learning strategy, which comprises the steps of
meta-training and meta-testing. For the reconstruction gap
issue, we propose an instance-aware image reconstruction
accomplished within Metaformer. To illustrate our method,
we first elaborate on our model learning strategy and then
show the components of the Metaformer.

3.1. Model Learning Strategy

Our model learning strategy includes the meta-training
step and meta-testing step. The learned model is then avail-
able for tackling AD tasks in the inference step. Figure 2
shows the pipeline and required data in these steps. Briefly,
the unsupervised meta-training is used to learn the univer-
sal Metaformer for capturing the concept of the general
category-independent instance-aware image reconstruction.
While dealing with a category-dependent AD task, i.e., one
specific novel image category, the meta-trained model’s fast
adaptive tuning ability enables the universal Metaformer to
be rapidly fine-tuned with a few anomaly-free examples of
that category in the meta-testing step. Therefore, the fine-
tuned model is ready to carry out the anomaly detection of
that image category from AD dataset in the inference step.

3.1.1 Unsupervised Meta-training & Meta-testing

In meta-learning, a meta-task implies the application that
needs to be achieved by the learned model, and we define
the meta-task as a few-shot image reconstruction. We em-
ploy the MAML algorithm to carry out the meta-training
step and the meta-testing step, yet the unsupervised cluster-
ing is considered for sampling a meta-task while learning
the universal Metaformer within the meta-learning step.

Meta-task In our meta-learning, each meta-task mimics
one few-shot image reconstruction, i.e., only a few support-
ing examples are allowed for model tuning per reconstruc-
tion. The standard AD datasets often evaluate an AD model
through category by category testing, which implies that a
single meta-task is formulated on an image group of a spe-
cific category. Without losing generality, we assume that a
meta-task is defined on a set of similar-structure images.

Our unsupervised meta-training uses numerous few-shot
image reconstruction meta-tasks to train the model to cap-
ture the general category-independent image reconstruction
concept. Precisely, given a meta-training dataset Dmeta,
we first extract features using ResNet18 [16] and perform
k-means algorithm on feature space to divideDmeta into N

Algorithm 1 Unsupervised meta-learning for Metaformer
Hyperparameters: α, β
Input: Wild dataset Dmeta, training split Sc of AD dataset

1: Construct Ti via grouping images in Dmeta into N
clusters

2: Initialize θ and build MetaformerMθ

/* Unsupervised meta-training for Metaformer */
3: for i = 1 to N do
4: Evaluate∇θL(Ti)
5: Compute gradients for adaptive parameters with the

optimizer: θ′i = θ − α∇θL(Ti)
6: end for
7: Update θ ← θ − β∇θ

∑N
i=1 L({Mθ′

i
,Gi})

/* Meta-testing for task adaptation */
8: Update θ′ ← θ − α∇θL(Tc)

coarse groups. We then trim the groups according to the
structural similarity to the center features and form the fine
image groups {Gi}. For a meta-task Ti dealing with one
specific image category, we formally define the meta-task
Ti = {Mθ,Gi ⊂ Dmeta} comprises an AD modelMθ and
a fine image group Gi. The structural similarity between
images x and y derived from [33] is defined as

ssim(x, y) =
4µxµyσxy + ϵ

(µ2
x + µ2

y)(σ
2
x + σ2

y) + ϵ
, (1)

where µ, σ are average intensity and standard deviation of
the given image. ϵ is a small constant that prevents zero
division. Note that the structure-based clustering is carried
out according to the structural similarity among images, and
the ground-truth for each reconstructed image is essentially
its original one without accessing any annotations. Hence,
given an image I ∈ Gi, our meta-training step aims to learn
the MetaformerMθ for reconstructing the image I as Î =
Mθ(I), where the θ denotes the model parameters.

To capture the category-dependent image reconstruction
concept of a specific image category c in an AD dataset, the
universal modelMθ simply fine-tunes its parameters with
the training split Sc ⊂ DAD of AD dataset (see Figure 2).
We define the meta-task Tc = {Mθ′ ,Sc ⊂ DAD} com-
prises a fine-tuned AD modelMθ′ that is trained with the
subgroup Sc.

Meta-training The meta-training aims to learn a univer-
sal AD model with high adaptation capability. To this end,
our unsupervised meta-training employs numerous few-
shot image reconstructions as meta-tasks to capture the gen-
eral concept of the reconstruction, where each image group
for the corresponding meta-task results from an unsuper-
vised image clustering.

Given the Metaformer Mθ, the meta-training process
adaptsMθ concerning numerous meta-task Ti. Intuitively,
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Figure 3. An overview of our Metaformer. The Metaformer consists of three modules: a generator, an autoencoder, and a transformer. We
train a GAN (green dashed boxes) using MSRA10K and Flickr online images with specific visual effect (black dashed box). All parameters
of the generator are fixed and put into Metaformer after training. Next, we start to train the remaining modules (blue dashed boxes).

the image reconstruction loss is derived from the difference
between the reconstructed image Î =Mθ(I) and the input
image I . We then define the meta-task loss L(Ti) as

L(Ti) =
∑
I∈Gi

L(Mθ(I); I) , (2)

where the loss function L(a; b) measures the difference be-
tween a and b. With the loss, the model parameters can
thus be updated from θ to θ′i concerning the meta-task Ti

via gradient updates:

θ′i = θ − α∇θL(Ti) , (3)

where α is the learning rate. Since meta-training aims to
learn robust model parameters θ to form the universal model
Mθ, the task-adapted parameters θ′ in (3) will be mini-
mized its reconstruction loss among all meta-tasks via loss
calculation for retrieving the best θ. Therefore, the objective
function of meta-training is formulated as

min
θ

N∑
i=1

L({Mθ′
i
,Gi}) . (4)

As a result, the meta-training loss in (4) is summing over all
tasks, yet we sample a mini-batch of meta-tasks per training
iteration as MAML. Therefore, the meta-training optimiza-
tion across meta-tasks and the model parameters are hence
updated as

θ ← θ − β∇θ

N∑
i=1

L({Mθ′
i
,Gi}) , (5)

where β is the meta learning rate.

Meta-testing In the meta-testing step, the meta-trained
Metaformer Mθ is expected to reconstruct a given image
from a category-dependent AD task after performing the
fast adaptation with a few supporting examples. In this pa-
per, each novel meta-task is defined on the specific-category
set of the anomaly-free training images in the MVTec AD
dataset. Similar to the updating function in (3), the model
parameters are updated concerning the image group Sc in
MVTec AD dataset via one gradient update:

θ′c = θ − α∇θL({Mθc ,Sc}) . (6)

We summarize the meta-learning procedure in Algorithm 1.

Loss We define loss function as a couple of the mean
squared error lmse and the structural similarity loss lssim
[33] as

L(Î; I) = lmse(Î , I) + λlssim(Î , I) , (7)

where λ is the weight between the loss terms.

3.1.2 Inference

After a few-shot model tuning with the specific-category
supporting images, the tuned Metaformer Mθ′ is ready to
reconstruct the specific-category images in testing split S̃c
for inference.

3.2. Instance-aware Metaformer

To resort to the reconstruction gap issue for precisely
localizing anomaly regions, we design the Metaformer as
a transformer-based instance-aware autoencoder consisting
of three modules: autoencoder, instance-prior generator,
and transformer. The details of Metaformer are illustrated
in Figure 3. We describe each component as follows.
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Autoencoder Most conventional AD methods utilize the
autoencoder-like models to deal with anomaly detection
since only anomaly-free images allowed for model train-
ing. Our autoencoder module employs the similar model
designed in [5], which is symmetrical with five layers in
both the encoder and decoder. The detailed architectures are
provided in the supplementary material. The autoencoderA
first encodes an input image I into a latent representation,
and then it decodes the latent representation Z into an in-
termediate image Ĩ . Briefly, we represent this module as
Ĩ = A(I).

Instance-prior Generator We employ a module trained
in an unsupervised manner for extracting the instance-
prior to depict the foreground regions. Inspired by [8],
our instance-prior generator P employs the generator part
within the Visual-Effect GAN, which comprises a genera-
tor, an editor, and a discriminator. We use the same archi-
tecture as [8], and we use 4,061 Flickr online images with
color selectivo visual effects (see Figure 3) to learn
to extract the internal representations for discriminating the
image foreground from the image background. Please refer
to [8] for the details of training the GAN model.

Briefly, we represent the response map R generated from
this module as R = P(I). Note that once the Visual-Effect
GAN has been trained, we directly use its generator as our
instance-prior generator without any parameter fine-tuning.
Namely, only the model parameters within the autoencoder
module and the transformer module will be tuned during
our meta-learning process.

Transformer Our attention mechanism is the transformer
[31], which is purposed to solve the language translation
problem. The transformer comprises an encoder-decoder
pair, which performs the intra-attention on both the encoder
and decoder, and also carries out the inter-attention between
the encoder-decoder pair. In practice, the transformer’s at-
tention mechanism reformulates the feature representation
of the encoder’s input by concerning the decoder’s input,
hence enabling the encoder’s input to simulate the feature
representation possessed by the decoder’s input.

In an image reconstruction process within our AD task,
we propose to train an instance-aware autoencoder for ad-
dressing the reconstruction gap issue. Our idea is lever-
aging an instance-prior to highlight the reconstruction er-
rors locating in the foreground area. In this way, we can
guide autoencoder parameters focusing on the image fore-
ground due to the relatively large reconstruction errors com-
pared to the image background. Instead of directly apply-
ing the instance-prior to the reconstructed image, our trans-
former module reformulates the feature representation of
the instance-prior by concerning the reconstructed image.
Hence, the reformulated instance-prior can be treated as a

re-weighting indicator to be applied onto the reconstructed
image by element-wise multiplication. Here, we represent
the reformulated instance-prior R′ generated from this mod-
ule as R′ = T (R). Therefore, the instance-aware recon-
structed image Î is obtained as

Î = A(I)⊗ T (P(I);A(I)) (8)

where A, P , and T denote the autoencoder, instance-prior
generator, and transformer, respectively. The transformer
T (a; b) denotes that feature a is reformulated concerning
feature b. In practice, we use the vanilla transformer of eight
heads in three layers.

The anomalous regions can be determined by the differ-
ence between I and Î in a self-supervised manner once the
reconstructed image is generated.

4. Experiments
Implementation Details. Our meta-learning formulates the
meta-tasks by using the MSRA10K dataset [9] as Dmeta

and MVTec AD dataset [4] as DAD. Before the meta-
learning step, we use structural similarity and k-means to
construct meta-tasks that contain around 200 images per
group in our experiment. We set hyperparameters α = β =
0.0001 and λ = 0.1. The optimizer is Adam, with learning
rates decaying 10% every 20 epochs in meta-training stage.
The total epochs in meta-training and meta-testing are 100
and 30, respectively. Note that our instance-aware generator
is trained on its own. We train the Visual-Effect GAN for
200 epochs. The optimizer is Adam, with learning rates of
0.0002 decaying 10% every 50 epochs. All of our networks
are trained under the batch size of 64.
Dataset. We evaluate our method’s performance with state-
of-the-art methods selected from anomaly classification and
anomaly localization on MVTec AD [4] and Magnetic Tile
Defects (MTD) dataset [17]. Each image from the two
datasets is resized to 256 × 256, and only the anomaly-
free images are used for training. The MVTec AD contains
5,354 images in 15 categories of textures and objects. Each
category comprises anomaly-free and several defect types
such as broken, contamination, and bent objects. The var-
ious cases of irregular defects cause the MVTec AD chal-
lenging for anomaly detection. The MTD dataset comprises
1,344 instances of 952 being anomaly-free ones and 392
anomalous. The MTD dataset has five defect types of break,
blowhole, crack, fray, and uneven. While evaluating this
dataset, we adopt the equivalent setting of [28] to reserves
20% anomaly-free instances randomly and all the anoma-
lous images for evaluation.
Metrics. For assessing the performance in image-level
anomaly classification, we calculate the Area Under Curve
(AUC), which is the standard threshold-independent metric
used as [2]. For comparing the performance in pixel-level
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Table 1. Comparison the methods of image-level anomaly classification and pixel-level anomaly localization on the MVTec AD dataset.

Category Image-level Anomaly Classification Methods (AUC metric) Pixel-level Anomaly Localization Methods (PRO metric)

GeoTrans GANomaly DSEBM US RIAD DifferNet Metaformer ℓ2-AE 1-NN OC-SVM K-Means SSIM-AE
US

p = 65
Metaformer

Te
xt

ur
es

carpet 0.437 0.699 0.413 0.916 0.842 0.929 0.940 0.456 0.512 0.355 0.253 0.647 0.695 0.878
grid 0.619 0.708 0.717 0.810 0.996 0.840 0.859 0.582 0.228 0.125 0.107 0.849 0.819 0.865

leather 0.841 0.842 0.416 0.882 1.000 0.971 0.992 0.819 0.446 0.306 0.308 0.561 0.819 0.959
tile 0.417 0.794 0.690 0.991 0.987 0.994 0.990 0.897 0.822 0.722 0.779 0.175 0.912 0.881

wood 0.611 0.834 0.952 0.977 0.930 0.998 0.992 0.727 0.502 0.336 0.411 0.605 0.725 0.848

O
bj

ec
ts

bottle 0.744 0.892 0.818 0.990 0.999 0.990 0.991 0.910 0.898 0.850 0.495 0.834 0.918 0.888
cable 0.783 0.757 0.685 0.862 0.819 0.959 0.971 0.825 0.806 0.431 0.513 0.478 0.865 0.937

capsule 0.670 0.732 0.594 0.861 0.884 0.869 0.875 0.862 0.631 0.554 0.387 0.860 0.916 0.879
hazelnut 0.359 0.785 0.762 0.931 0.833 0.993 0.994 0.917 0.861 0.616 0.698 0.916 0.937 0.886
metal nut 0.813 0.700 0.679 0.820 0.885 0.961 0.962 0.830 0.705 0.319 0.351 0.603 0.895 0.869

pill 0.630 0.743 0.806 0.879 0.838 0.888 0.901 0.893 0.725 0.544 0.514 0.830 0.935 0.930
screw 0.500 0.746 0.999 0.549 0.845 0.963 0.975 0.754 0.604 0.644 0.550 0.887 0.928 0.954

toothbrush 0.972 0.653 0.781 0.953 1.000 0.986 1.000 0.822 0.675 0.538 0.337 0.784 0.863 0.877
transistor 0.869 0.792 0.741 0.818 0.909 0.911 0.944 0.728 0.680 0.496 0.399 0.725 0.701 0.926

zipper 0.820 0.745 0.584 0.919 0.981 0.951 0.986 0.839 0.512 0.355 0.253 0.665 0.933 0.936
Mean 0.672 0.762 0.709 0.877 0.917 0.949 0.958 0.791 0.640 0.479 0.423 0.694 0.857 0.901

Table 2. Comparison the methods of image-level anomaly classification on the MTD dataset.

Method GeoTrans GANomaly DSEBM ADGAN OCSVM 1-NN DifferNet Metaformer
mAUC 0.755 0.766 0.572 0.464 0.587 0.800 0.977 0.993

anomaly localization, we use the per-region-overlap (PRO)
metric proposed by Bergmann et al. [6]. We follow [5] to
compute the PRO value that scans over false-positive rates
by increasing the thresholds to keep the false-positive rates
within the range [0, 0.3]. The main property of the PRO
metric is that the weights for each overlap region are equal.
Hence, the localization that is only focusing on the large
regions will be penalized.

4.1. Anomaly Classification

In the image-level anomaly classification task, we com-
pare our model to GeoTrans [13], GANomaly [2], DSEBM
[36], US [5], RIAD [35], and DifferNet [28].

The left part in Table 1 shows the comparison results of
anomaly classification on the MVTec AD dataset. As seen
in Table 1, our model outperforms the other state-of-the-
art models in seven classes and matches in the toothbrush
category. Recent works involve MTD for AD problems with
proper data splits. We follow the setting described in [28]
to form training/testing splits. Our mean AUC, as shown in
Table 2, achieves new art on both MVTec AD and MTD,
improving around 1% and 1.6%, respectively.

4.2. Anomaly Localization

We consider the AD methods in the PRO metric for the
pixel-level anomaly localization task, including ℓ2-AE [4],
1-NN [23], OCSVM, K-Means, SSIM-AE, and US [5]. The
results we compared are all reported by [5].

The right part in Table 1 shows the comparison results
of anomaly localization on the MVTec AD dataset. In par-
ticular, p = 65 is the hyperparameter of receptive field size
for training the teacher network in US. As shown in Ta-

ble 1, Metaformer achieves the highest score in nine classes,
which implies that Metaformer can detect both small and
large defects better. Besides, our method improves the cur-
rent score by about 4.4%.

4.3. Ablation Study

Model Configuration To verify the effectiveness of each
module in the Metaformer, we consider three model config-
urations, i.e., autoencoder (A), autoencoder with a genera-
tor (A+ P), and the full Metaformer model (A+ P + T ).
Table 3 shows the ablation study on these configurations.
All the three model configurations are trained in our meta-
learning strategy, as shown in Algorithm 1. Precisely, the
reconstruction errors of the configuration (A) are merely
derived from the stand-along autoencoder. The configura-
tion (A + P) employs the additional instance-prior yet di-
rectly affects the reconstructed image Ĩ using the element-
wise multiplication. Our full Metaformer model (A+ P +
T ) employs the transformer to reformulates the instance-
prior concerning the reconstructed image Ĩ before such the
element-wise multiplication. The full model obtains the
best score in all categories and further enhances the mean
PRO score by 1.8% compare to (A+P). Besides, the result
shows that all the modules bring positive contributions, and
using such the instance-prior helps the AD task as demon-
strated on the performance improvement from 1.9% to 3.7%
mPRO metric.

Few-shot Scenario As we mentioned in the introduction,
the edge devices for deploying the AD systems prefer the
fast model adaptation in real-world AD applications. Intu-
itively, an AD model using fewer supporting examples for
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Table 3. Effect of each module in the proposed Metaformer.

Category Model Configuration
A A+ P A+ P + T

Te
xt

ur
es

carpet 0.852 0.877 0.878
grid 0.844 0.852 0.865

leather 0.901 0.940 0.959
tile 0.850 0.861 0.881

wood 0.797 0.824 0.848

O
bj

ec
ts

bottle 0.852 0.856 0.888
cable 0.880 0.914 0.937

capsule 0.861 0.878 0.879
hazelnut 0.840 0.851 0.886
metal nut 0.817 0.846 0.869

pill 0.917 0.915 0.930
screw 0.941 0.943 0.954

toothbrush 0.847 0.864 0.877
transistor 0.828 0.886 0.926

zipper 0.939 0.935 0.936
mPRO 0.864 0.883 0.901
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Figure 4. Effect of available supporting examples on model’s per-
formance. The green and the blue lines indicate the mAUC values
(given by the left y-axis) of Metaformer and DifferNet for vari-
ous k-shot settings, respectively. The yellow dotted line shows the
mAUC differences (by the right y-axis) between the two methods.

its model adaptation shows the lower cost of model training
or training-data collection. Here we experiment with a few-
shot configuration on MVTec AD dataset to discuss such a
model adaption issue. The main AD competitor is DifferNet
in this experiment, and we reproduce its results of the few-
shot setting with its released code. Figure 4 shows the ex-
perimental results, in which each k-shot indicates that there
are only k supporting images available for model training.
In Figure 4, our Metaformer outperforms DifferNet in all
numbers of k, especially the performance gap is more no-
ticeable when using fewer supporting examples. The results
demonstrate that our model shows the robust ability of the
few-shot model adaptation for dealing with the AD task.

4.4. Visualization

The visualization for qualitative analysis with the corre-
sponding instance-prior is presented in Figure 5. We show

(a) (b) (c) (d)

Figure 5. Qualitative results of the proposed Metaformer. (a) The
selected images from the MVTec AD dataset. (b) The instance-
priors obtained by the generator P . (c) The thresholded predic-
tions from Metaformer. (d) The ground-truths.

that the response map R provides a compelling clue that
enhances the reconstruction in focal regions. On the other
hand, the Metaformer is trained with a wild dataset consist-
ing of various anomaly-free images. Our method, therefore,
can reconstruct various low-level features and manifest ab-
normal regions. We provide some failure cases in the sup-
plementary material for more discussions.

5. Conclusion
We have presented our universal Metaformer trained via

unsupervised meta-learning to tackle the two common is-
sues existing in most previous reconstruction-based AD
methods, i.e., model adaptation and reconstruction gap.
Rather than maintaining one specific model per image cat-
egory as other AD methods, our Metaformer resolves the
model adaptation issue by an unsupervised meta-learning
strategy to learn one universal model. With such a univer-
sal model, our Metaformer is able to tackle a novel cate-
gory via few-shot fine-tuning. To deal with the reconstruc-
tion gap issue for precisely localizing the abnormal regions,
our Metaformer employs an instance-aware transformer to
leverage the instance-priors for guiding the image recon-
struction. With such guidance, the autoencoder can focus
on the instance area for precisely reconstructing its detail re-
gions. The experimental results on the MVTec AD dataset
show the notable performance gain over current state-of-
the-art methods, demonstrating that our Metaformer can de-
tect real-world anomaly images for industrial inspection.
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