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Abstract

The existence of noisy data is prevalent in both the train-
ing and testing phases of machine learning systems, which
inevitably leads to the degradation of model performance.
There have been plenty of works concentrated on learning
with in-distribution (IND) noisy labels in the last decade,
i.e., some training samples are assigned incorrect labels
that do not correspond to their true classes. Nonetheless,
in real application scenarios, it is necessary to consider the
influence of out-of-distribution (OOD) samples, i.e., sam-
ples that do not belong to any known classes, which has
not been sufficiently explored yet. To remedy this, we study
a new problem setup, namely Learning with Open-world
Noisy Data (LOND). The goal of LOND is to simultane-
ously learn a classifier and an OOD detector from datasets
with mixed IND and OOD noise. In this paper, we propose
a new graph-based framework, namely Noisy Graph Clean-
ing (NGC), which collects clean samples by leveraging ge-
ometric structure of data and model predictive confidence.
Without any additional training effort, NGC can detect and
reject the OOD samples based on the learned class proto-
types directly in testing phase. We conduct experiments on
multiple benchmarks with different types of noise and the re-
sults demonstrate the superior performance of our method
against state of the arts.

1. Introduction

Deep neural networks (DNNs) have gained popularity
in a variety of applications. Despite their success, DNNs
often rely on the availability of large-scale labeled train-
ing datasets. In practice, data annotation inevitably intro-
duces label noise, and it is extremely expensive and time-
consuming to clean up the corrupted labels. The existence
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Figure 1: A demonstration of the LOND setup. We use
green boxes to represent clean samples while yellow and
red boxes are IND and OOD noisy samples, respectively.

of label noise can be problematic for overparameterized
deep networks, as they may overfit to label noise even on
randomly-assigned labels [54]. Therefore, mitigating the
effects of noisy labels becomes a critical issue.

When learning with noisy labels (LNL), plenty of
promising methods have been proposed to improve the gen-
eralization [39, 7, 42, 22, 40, 56, 48, 49, 47]. Many exist-
ing methods work by analyzing output predictions to iden-
tify mislabeled samples [51, 35, 21] or reweighting sam-
ples to alleviate the influence of noisy labels [36, 1]. Note
that, these methods are particularly designed to deal with
in-distribution (IND) label noise. Some other works also
consider the existence of out-of-distribution (OOD) noise
in training datasets [41, 20]. Their basic assumption is that
clean samples are clustered together while OOD samples
are widely scattered in the feature space.

Although significant performance improvement is
achieved, most existing LNL works only take account of
OOD samples in training phase, while the existence of OOD
samples in testing phase is neglected, which is crucial for
machine learning systems in real applications [10, 19, 38].
In this paper, we study this practical problem, i.e., the ex-

62



DivideMix MSP ODIN MD Ours
Methods

0.6

0.7

0.8

0.9

F-
m

ea
su

re

MSP ODIN MD Ours
Methods

60

70

80

90

AU
RO

C 
(%

)

IND dataset: CIFAR-10 (w/ 50% sym. noise); OOD dataset: CIFAR-100 (20k in training set and 10k in test set)

Figure 2: Performance on testing dataset with extra OOD
samples. MSP, ODIN, MD are combined with DivideMix.

istence of both IND and OOD noise in training phase, as
well as the presence of OOD samples in testing phase. We
name this new setup as learning with open-world noisy data
(LOND). An illustration of the LOND setup can be found in
Figure 1. A straightforward approach to address LOND is
to combine LNL methods with OOD detectors [10, 27, 19].
However, we empirically find that such direct combinations
lead to unsatisfactory results as shown in Figure 2. There-
fore, obtaining models that can handle IND and OOD noise
in both training and testing phases remains challenging.

To address the LOND problem, we present Noisy Graph
Cleaning (NGC), a unified framework for learning with
open-world noisy data. Different from previous LNL meth-
ods that utilize either model predictions [21, 35, 23, 24]
or neighborhood information [41, 45], where the interac-
tion between model predictions and geometric structure of
data is neglected, NGC simultaneously takes advantage of
output confidence and the geometric structure. With the
help of graph structure, we find that the confidence-based
strategy can break the connectivity between clean and noisy
samples, which significantly facilitates the geometry-based
strategy. In specific, NGC iteratively constructs the near-
est neighbor graph using latent representations of train-
ing samples. Given the graph structure, NGC corrects
IND noisy labels by aggregating information from neigh-
borhoods through soft pseudo-label propagation. Then, to
remove the OOD and remaining obstinate IND noise, we
present subgraph selection. It first degrades the connec-
tivity between clean and noisy samples by removing sam-
ples with low-confidence predictions. Then, subgraphs cor-
responding to the largest connected component are con-
structed for each class. Moreover, NGC employs the de-
vised contrastive losses [46, 4, 15] to refine the representa-
tions from both instance-level and subgraph-level, which in
return benefits label correction and subgraph selection. At
test time, NGC can readily detect and reject OOD samples
by calculating distances to learned class prototypes.

The main contributions of this work are:

1. We study a new problem, that is, the training set con-
tains both IND and OOD noise and the test set contains
OOD samples, which is practical in real applications.

2. We propose a new graph-based noisy label learning
framework, NGC, which corrects IND noisy labels
and sieves out OOD samples by utilizing the confi-
dence of model predictions and geometric structure of
data. Without any additional training effort, NGC can
detect and reject OOD samples at testing time.

3. We evaluate NGC on multiple benchmark datasets un-
der various noise types as well as real-world tasks.
Experimental results demonstrate the superiority of
NGC over the state-of-the-art methods.

The rest of the paper is organized as follows. First, we
introduce some related work. Then, we present the stud-
ied learning problem and the proposed framework. Further-
more, we experimentally analyze the proposed method. Fi-
nally, we conclude this paper.

2. Related Work
Learning from Noisy Labels is a heavily studied prob-

lem. Many methods attempt to rectify the loss function,
which can be categorized into two types. The first type
treats samples equally and rectifies the loss by either re-
moving or relabeling noisy samples [9, 35, 50, 32]. For
example, AUM [35] designs a margin-based method for de-
tecting noisy samples by observing that clean samples have
a larger margin than noisy samples. TopoFilter [45] as-
sumes that clean data is clustered together while noisy sam-
ples are isolated. Joint-Optim [39] and PENCIL [51] treat
labels as learnable variables, which are jointly optimized
along with model parameters. Another type of method
learns to reweight samples with higher weights for clean
data points [29, 36, 16]. Instead of using a fixed weight for
all samples, M-correction [1] uses dynamic hard and soft
bootstrapping loss to dynamically reweight training sam-
ples. Some recent works resort to early-learning regulariza-
tion [28] and data augmentation [33] to handle noisy labels.

The above methods only consider IND label noise in
training datasets. Recently, some works [41, 20, 37, 24, 23]
propose to handle both IND and OOD noise in training
datasets. For instance, ILON [41] discriminates noise sam-
ples by density estimating. MoPro [24] and ProtoMix [23]
identify IND and OOD noise according to predictive con-
fidence. However, these approaches cannot be directly ap-
plied for detecting OOD at test time, and the performance
of simply combining with existing OOD detection methods
is not satisfactory. In this work, we introduce a new frame-
work that simultaneously learns a classifier and an OOD
detector from training data with both IND and OOD noise.

OOD Detection aims to identify test data points that are
far from the training distribution. According to whether re-
quiring labels during training time, OOD detection meth-
ods can be categorized into supervised learning meth-
ods [18, 27, 19, 52, 11] and unsupervised learning meth-
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ods [5, 6, 38]. For example, ODIN [27] separates IND and
OOD samples by using temperature scaling and adding per-
turbations to the input. Lee et al. [19] obtains the class con-
ditional Gaussian distributions and calculates confidence
score based on Mahalanobis distance. Recently, SSD [38]
uses self-supervised learning to extract latent feature repre-
sentations and Mahalanobis distance to compute the mem-
bership score between test data points and IND samples.

Compared with supervised detectors, NGC does not as-
sume the availability of clean datasets which are often diffi-
cult to obtain in many real-world applications [43, 44]. In-
stead, NGC can detect OOD examples by training on noisy-
labeled datasets.

3. Learning with Open-World Noisy Data

In this section, we first introduce the studied problem
setup and an overview of the proposed noisy graph cleaning
framework. Then, we present the proposed framework.

3.1. Problem Formulation

Given a training dataset Dtrain = {xi, yi}Ni=1, where
xi is an instance feature representation and yi ∈ C =
{1, . . . ,K} is the class label assigned to it. In Dtrain, we
assume that the instance-label pair (xi, yi), 1 ≤ i ≤ N
consists of three types. Denote y∗i as the ground-truth label
of xi, a correctly-labeled sample whose assigned label
matches the ground-truth label, i.e., yi = y∗i . An IND mis-
labeled sample has an assigned label that does not match
the ground-truth label, but the input matches one of the
classes in C, i.e., yi 6= y∗i and y∗i ∈ C. An OOD mislabeled
sample is one where the input does not match the assigned
label and other known classes, i.e., yi 6= y∗i and y∗i /∈ C.
In inference, there are two types of test samples. An IND
sample is one where x is taken from the distribution of one
of the known classes, i.e., y∗i ∈ C. An OOD sample is the
one taken from unknown class distributions, i.e., y∗i /∈ C.

3.2. An Overview of the Proposed Framework

To address the LOND problem, we present a graph-
based framework, named Noisy Graph Cleaning (NGC),
which can exploit the relationships among data and learn
robust representations from reliable data. Initially, a k-
NN graph is constructed, where samples are represented
as vertices (nodes) in the graph with edges represent sim-
ilarities between samples. Since labels of samples may
be mislabeled, we refer to the resulting graph as noisy
graph. Then, NGC accomplishes noisy graph cleaning in
two steps. First, to cope with IND noise, NGC refines
noisy labels using the proposed soft pseudo-label propa-
gation based on the smoothness assumption [57, 58, 13].
Second, since OOD samples do not belong to any IND
classes, soft pseudo-label propagation is not able to correct

their labels. We propose to collect a subset of clean sam-
ples to guide the learning of the network. To achieve this
goal, a two-stage subgraph selection method is introduced,
i.e., confidence-based and geometry-based selection. The
confidence-based strategy breaks the edges between nodes
with clean labels and noisy labels by removing samples
with low-confidence predictions. Then the geometry-based
strategy selects nodes that are likely to be clean. Figure 3
provides an illustration of the proposed method. We ob-
serve that these two selection strategies are indispensable
and single application of each one leads to inferior perfor-
mance. Based on that, we employ devised instance-level
and subgraph-level contrastive losses to learn robust repre-
sentations, which in return can benefit the construction of
graph and the subgraph selection. In each training iteration,
the graph is re-constructed and noise correction as well as
subgraph selection are performed. Then, the selected clean
samples are used for the training of DNNs.

3.3. Graph-based Noise Correction

The goal of noise correction is to propagate labels on
the undirected graph G = 〈V,E〉 by leveraging similarities
between data. V and E denote the set of graph vertices and
edges, respectively. In graph G, the similarities between
vertices are encoded by a weight matrix W . For scalability,
we adopt the k-NN matrix, which is obtained by:

Wij :=

{ [
z>i zj

]γ
+
, if i 6= j ∧ zi ∈ NNk (zj)

0, otherwise
(1)

Here, γ is a parameter simply set as γ = 1 in our experi-
ments. zi is the latent representation for xi and NNk de-
notes the k nearest neighbors. To capture high-order graph
information, researchers have designed models on the as-
sumption that labels vary smoothly over the edges of the
graph [57, 58, 13, 26]. In this work, we propose to propa-
gate soft pseudo-labels obtained from the network. Denote
Y = [y1, · · · ,yN ] ∈ RN×K as the initial label matrix.
We set yi to the one-hot label vector of xi if xi is selected
as a clean sample by our method introduced in Section 3.4,
otherwise we use model prediction aggregated by temporal
ensemble [17, 32] to initialize it. Let D be the diagonal de-
gree matrix for W with entry dii =

∑
jWij , we obtain the

refined soft pseudo-labels Ỹ = [ỹ1, · · · , ỹN ] ∈ RN×K by
solving the following minimization problem:

J(Ỹ ) :=
α

2

N∑
i,j=1

Wij

∥∥∥∥∥ ỹi√
dii
− ỹj√

djj

∥∥∥∥∥
2

+(1−α)‖Y −Ỹ ‖2F

(2)
In Eq. (2), all nodes propagate pseudo-labels to their neigh-
bors according to edge weights. α is used to trade-off be-
tween information from neighborhoods and vertices them-
selves and we simply set it to 0.5 in all experiments. This
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Figure 3: An illustration of graph-based noise correction and subgraph selection in binary classification case.

minimization problem can be solved by using conjugate
gradient as [58, 13]. After obtaining refined soft pseudo-
labels, it is common to transform Ỹ into hard pseudo-labels
to guide the training. Specifically, in iteration t, the hard
pseudo-label for the i-th data point is generated by taking
the largest prediction score as ŷi = argmaxk Ỹ

(t)
ik .

3.4. Subgraph Selection

When training DNNs with noisy labels, it is observed
that clean samples of the same class are usually clustered
together in the latent feature space, while noisy samples are
pushed away from these clusters [20, 45]. This inspires us
to find the connected component with the same class label
in the graph for each class. Unfortunately, OOD samples
can be similar to some clean samples, leading to undesir-
able edges in the graph such that nodes corresponding to
OOD samples are included in the largest connected compo-
nent (LCC). To remedy this, we introduce confidence-based
selection to remove edges associated with low-confidence
nodes because these edges are unreliable. After that, the
geometry-based selection is employed to obtain the LCC in
subgraphs of each class.

Confidence-based Sample Selection. Since low-
confidence nodes are more likely to connect OOD nodes
to the clusters of clean nodes, we use a sufficiently high
threshold η ∈ [0, 1] to select a reliable subset of nodes:

gi =

{
1, if Ỹ (t)

iyi
> 1

K

I
[
maxk Ỹ

(t)
ik > η

]
, otherwise

(3)

where gi is a binary indicator representing the conserva-
tion of node vi ∈ V when gi = 1 and the removal of
node vi when gi = 0. Note that we have another condition
Ỹ

(t)
iyi

> 1
K which is complementary to the high-confidence

condition inspired by previous works [24, 23]. The reason
is that the network may not produce confident predictions
in the early phase of training, while it has been observed to

first fit the training data with clean labels [35, 28]. There-
fore, we incline to treat label yi as clean if its correspond-
ing prediction score is higher than uniform probability 1

K ,
and we set ŷi = yi. Then we refine graph G based on
the indicator g as Ṽ = V \ {v | ∀v ∈ V, gv = 0} and
Ẽ = E \ {e | ∀e = 〈e1, e2〉 ∈ E, ge1 + ge2 < 2}. In this
way, low-confidence nodes and their corresponding edges
are removed from graph G and the resulting graph is de-
noted by G̃ = 〈Ṽ , Ẽ〉. In the modified graph G̃, the con-
nectivity between nodes are more reliable, which facilitates
to the geometry-based selection.

Geometry-based Sample Selection. In graph G̃, we ex-
pect that nodes with same labels are connected. Since nodes
with noisy labels locate far away from clean ones, more
than one connected component may exist for each class.
Therefore, we selected the LCC for robustness. Specifically,
for the k-th class, graph nodes that possess labels of other
classes, i.e., ŷi 6= k, ∀i ∈ [N ], and their adjacent edges
G̃ are removed. We denote this as the class-specific sub-
graph for class k as G̃(k). Let G̃(k)lcc be the set of nodes
in the LCC of G̃(k), we obtain a subset of clean samples
by S =

⋃K
k=1 G̃(k)lcc. Note that a connected component

of G̃(k) is a subgraph in which any two vertices are con-
nected by edges, and which is not connected to any other
vertex in the rest of the graph. In other words, we con-
sider data points belonging to the LCC of the class-specific
subgraphs for each class to be clean, since small connected
components may contain noisy samples. In practice, we
implement disjoint-set data structures to compute the com-
ponents effectively.

In summary, we identify clean samples by using both
predictive confidence and the geometric structure of data:

gi =

{
I[i ∈ S], if Ỹ (t)

iyi
> 1

K

I
[
maxk Ỹ

(t)
ik > η

]
· I[i ∈ S], otherwise

(4)
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3.5. Subgraph-level Contrastive Learning

It is noted that exploring the similarities between sam-
ples is essentially based on meaningful feature representa-
tions. To this end, we take advantage of contrastive learn-
ing, which has been successfully used to learn good repre-
sentations in many tasks [46, 4, 15, 23]. The basic idea of
contrastive learning is to pull together two embeddings of
the same samples, while pushing apart embeddings of other
samples. Formally, the instance-level contrastive loss is ob-
tained as follows.

Linst = −
∑
i∈I

log
exp

(
zi · zj(i)/τ1

)∑
a∈A(i) exp (zi · za/τ1)

(5)

Here zi = Proj (Enc (xi)) ∈ RDP denotes the l2 nor-
malized feature representation with dimension DP , and τ1
is a scalar temperature parameter. I denotes the set of
training samples, I ′ is another augmented set, and A(i) =
(I\{i})∪ I ′. Different augmentation strategies can be used
on I and I ′ as [23]. We use j(i) to denote the index of the
other augmented sample of xi.

However, direct optimization of the instance-level con-
trastive objective in Eq. (5) is ineffective, which does not
leverage the label information and the geometry of data. To
this end, we design a subgraph-level contrastive loss:

Lsubgraph =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp (zi · zp/τ2)∑

a∈A(i) exp (zi · za/τ2)
(6)

Here P (i) = {p ∈ A(i) : ŷp = ŷi ∧ gp + gi = 2}, and
|P (i)| is its cardinality. In the calculation of |P (i)|, gi = 1
indicates that only selected clean samples by NGC are used
for training. τ2 is another temperature parameter. For
each class, samples belonging to the corresponding LCC
are pulled together by optimizing Eq. (6). In return, it ben-
efits the clean data selection because more samples of the
same class are connected in the k-NN graph.

Considering the above definitions and denoting Lce as
conventional cross-entropy loss, the overall training objec-
tive is written as follows.

L = Lce + λ1Linst + λ2Lsubgraph, (7)

where hyperparameters λ1 and λ2 are simply set to 1 in
all experiments. We adopt DNN model as feature extractor
Enc(·) and a linear layer as projector Proj(·) to generate
latent feature representation zi. Another linear layer fol-
lowing the feature extractor is used as classifier. Finally, we
train the network by minimizing the total loss in Eq. (7).

3.6. OOD Detection

By far, NGC is able to learn classifiers from data with
mixed IND and OOD noise. To fully achieve the goal of

LOND, the framework must account for the presence of
OOD samples at test time. This motivates us to design a
principled way to detect OOD samples by measuring the
class-conditional probability. Specifically, given a feature
representation learned from NGC, the class-conditional
probability is computed based on the similarity between
the latent representation of input x and the class prototypes
{ck}Kk=1, where ck is the normalized mean embedding for
selected clean samples of class k, and can be obtained by:

ck = Normalize(
1∑

i∈Ik gi

∑
i∈Ik

gizi), (8)

where Ik denotes the set of samples for which the corre-
sponding pseudo-labels ŷi = k, ∀i ∈ [N ]. Then, the maxi-
mum class-wise similarity is computed as follows.

s (x) := max
k∈[K]

sim (z, ck) . (9)

Here z = Proj (Enc (x)) and sim stands for any similarity
measure. In practice, we measure cosine similarity to com-
pute s(x). When detecting OOD samples, the lower s (x)
is, the more likely it is to be an OOD sample. To make
hard decisions, the probability threshold ζ is used. That is,
a testing point x is deemed as OOD if and only if s(x) < ζ.

4. Experiments
In this section, we investigate the performance of the

proposed NGC on multiple datasets with various label
noises. Specifically, we introduce our experiments in three
aspects as shown in Table 1. We verify the effectiveness of
our method in the proposed LOND task and learning with
closed-world noisy labels (LCNL) as well as learning from
real-world noisy dataset (LRND) tasks in order.

Table 1: Three types of tasks considered in our experiments.

Setup IND noise in Dtrain OOD in Dtrain OOD in Dtest

LOND X X X
LCNL X 7 7

LRND X X 7

Implementation details. For all CIFAR experiments,
we train PreAct ResNet-18 network using SGD optimizer
with momentum 0.9 and weight decay 5 · 10−4. The ini-
tial learning rate is set to 0.15 and cosine decay schedule is
used. The batch size is set to 512 and the dimension of pro-
jector layer is set to 64. For CIFAR-10 experiments, we use
k = 30 for sym. noise and k = 10 for asym. noise, warmup
with cross-entropy loss for 5 epochs. For CIFAR-100 ex-
periments, we set k = 200 and warmup for 30 epochs. The
network is trained for 300 epochs. Mixup [55] and Aug-
Mix [12] are used as data augmentation. We provide de-
tailed experimental settings in the supplementary material.

66



Table 2: Test accuracy (%) under mixed IND and OOD noise compared with state-of-the-art LNL methods. 50% sym. IND
noise is injected into dataset. We run methods three times with different seeds and report the mean and the standard deviation.

IND dataset OOD dataset # OOD CE RoG [20] ILON [41] DivideMix [21] Ours

CIFAR-10

CIFAR-100
10k 53.36±0.92 63.01±0.46 75.17±1.50 92.73±0.27 93.69±0.09

20k 50.73±0.80 62.56±1.76 74.85±1.61 92.26±0.13 92.31±0.29

TinyImageNet
10k 51.85±1.09 61.69±1.18 75.93±1.13 94.08±0.18 93.73±0.36

20k 52.32±1.41 63.15±1.13 74.63±0.74 93.83±0.08 93.54±0.21

Places-365
10k 54.06±0.53 64.21±0.27 76.17±0.90 93.81±0.33 94.18±0.09

20k 55.30±1.31 63.52±1.73 76.36±1.26 93.59±0.07 93.67±0.22

CIFAR-100
TinyImageNet

10k 37.01±0.40 52.65±0.30 51.43±0.29 70.38±0.09 74.57±0.23

20k 34.55 ±0.55 50.40 ±0.44 50.14±0.66 69.89±0.25 73.49±0.11

Places-365
10k 37.53±0.54 52.43±0.03 50.74±0.65 70.01±0.11 74.89±0.21

20k 34.54±0.18 50.32±0.29 49.87±0.46 69.84±0.15 73.44±0.35

Table 3: AUROC (%) comparison with state-of-the-art OOD detectors. 50% sym. IND noise is injected into training dataset.
20k and 10k OOD samples are added into training set and test set, respectively. + indicates supervised detection methods.

IND dataset OOD dataset MSP[10]+ ODIN[27]+ MD[19]+ Rot[6] Rot[11]+ SSD[38] SSD[38]+ Ours

CIFAR-10
CIFAR-100 69.91 65.40 64.45 63.84 60.25 68.42 55.88 90.37

TinyImageNet 70.12 67.31 77.55 68.87 64.64 75.51 60.52 94.18
Places-365 71.08 71.12 70.83 50.42 69.35 77.11 62.30 94.31

CIFAR-100
TinyImageNet 86.59 91.36 67.33 58.63 57.40 68.50 65.48 94.24

Places-365 85.82 89.93 68.08 44.85 59.90 68.97 76.16 91.20

Table 4: F-measure comparison with DivideMix (DM)
combined with OOD detection methods. 50% sym. IND
noise is injected into training set, 20k and 10k OOD sam-
ples are added into training set and test set, respectively.

IND dataset OOD dataset DM MSP ODIN MD Ours

CIFAR-10
CIFAR-100 0.632 0.698 0.681 0.635 0.838

TinyImageNet 0.638 0.726 0.707 0.702 0.875
Places-365 0.637 0.717 0.705 0.651 0.887

CIFAR-100
TinyImageNet 0.516 0.687 0.705 0.526 0.773

Places-365 0.519 0.685 0.696 0.541 0.731

4.1. Learning with Open-World Noisy Data

To investigate the effectiveness of NGC, we test it under
mixed IND and OOD label noise. In this setup, we report
both classification and OOD detection performance to show
that NGC can learn a good classifier and OOD detector si-
multaneously. We use CIFAR-10 and CIFAR-100 as IND
datasets, and TinyImageNet and Places-365 as the OOD
datasets. We first add 50% symmetric IND noise. Then,
additional samples are randomly selected from the OOD
datasets to form the training dataset. It is noted that the
CIFAR-100 dataset is also used as one of the OOD datasets

when CIFAR-10 is treated as the IND dataset.

First, we present the classification performance in Ta-
ble 2. We compare NGC with the cross-entropy base-
line and three recent methods for LNL, i.e., ILON [41],
RoG [20] and DivideMix [21].

ILON reweights samples based on the outlier measure-
ment. RoG uses an ensemble of generative classifiers built
from features extracted from multiple layers of the pre-
trained model. DivideMix is the state-of-the-art method for
LNL. We report the results of DivideMix without ensem-
ble for a fair comparison. The number of OOD samples
in training datasets is set to either 10k or 20k. We can see
that NGC and DivideMix significantly outperform the other
three methods. On CIFAR-10, NGC achieves better or on
par performance compared with DivideMix. On CIFAR-
100, NGC obtains an average performance gain of ∼4%.
This demonstrates the superiority of NGC in classification.

Next, we present the OOD detection performance us-
ing AUROC in Table 3 following [10] and open-set clas-
sification performance [2] using F-measure in Table 4 as
the metric. Since different OOD detectors need particu-
larly tuned probability thresholds ζ, for fair comparison, we
search the best ζ for all methods. Noted that LOND has not
been studied before, we hence combine one of the best LNL
methods DivideMix with leading OOD detectors including
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Table 5: Test accuracy (%) under controlled IND label noise compared with state-of-the-art methods on CIFAR-10 and
CIFAR-100 datasets. We run our method three times with different random seeds and report the mean and the standard
deviation. Results for baseline methods are copied from [21, 23]

Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym.

Noise level 20% 50% 80% 90% 40% 20% 50% 80% 90%

Cross-Entropy 82.7 57.9 26.1 16.8 85.0 61.8 37.3 8.8 3.5
F-correction [34] 83.1 59.4 26.2 18.8 87.2 61.4 37.3 9.0 3.4
Co-teaching+ [53] 88.2 84.1 45.5 30.1 - 64.1 45.3 15.5 8.8
Mixup [55] 92.3 77.6 46.7 43.9 - 66.0 46.6 17.6 8.1
P-correction [51] 92.0 88.7 76.5 58.2 88.5 68.1 56.4 20.7 8.8
Meta-Learning [22] 92.0 88.8 76.1 58.3 89.2 67.7 58.0 40.1 14.3
M-correction [1] 93.8 91.9 86.6 68.7 87.4 73.4 65.4 47.6 20.5
DivideMix [21] 95.0 93.7 92.4 74.2 91.4 74.8 72.1 57.6 29.2
ProtoMix [23] 95.8 94.3 92.4 75.0 91.9 79.1 74.8 57.7 29.3

Ours 95.88±0.13 94.54±0.35 91.59±0.31 80.46±1.97 90.55±0.29 79.31±0.35 75.91±0.39 62.70±0.37 29.76±0.85

MSP [10], ODIN [27] and Mahalanobis distance (MD) [19]
for comparisons. We also compare with recent OOD detec-
tion methods, Rot [6, 11] and SSD [38], which cannot be
simply combined with DivideMix and need separate train-
ing. From the results, it can be seen that most comparison
methods perform significantly worse than NGC. In terms
of AUROC, NGC obtains performance gains over 17.2%
on CIFAR-10 and 1.27% on CIFAR-100. Regarding F-
measure, NGC outperforms other methods by at least 14%
on CIFAR-10 and 3.5% on CIFAR-100. In supplementary
material, we conduct comprehensive comparisons with an-
other recent method for LNL, i.e., ProtoMix [23], due to
limited space. We also provide further analysis to show that
our method is robust to the selection of ζ.

4.2. Learning with Closed-World Noisy Labels

In addition to the LOND task, we test NGC in the con-
ventional closed-world noisy label setup. We conduct ex-
periments under controlled IND noise using the CIFAR-10
and CIFAR-100 datasets. To validate the efficacy of NGC,
we compare it with many existing methods, including Meta-
Learning [22], P-correction [51], M-correction [1], Di-
videMix [21], and ProtoMix [23]. Following commonly
used LNL setups [1, 21], we run algorithms under asym-
metric noise and symmetric noise with different noise lev-
els. The noise level for symmetric noise ranges from 20%
to 90% where it consists of randomly selecting labels for a
percentage of the training data using all possible labels (i.e.,
the true label could be randomly retained). The noise level
for asymmetric noise is set to 40%.

As Table 5 shown, in most cases, our method out-
performs recent methods particularly designed for closed-
world noisy label problems. This indicates the superiority
and robustness of NGC.

4.3. Learning from Real-World Noisy Dataset

We test the performance of our method on real-world
dataset WebVision [25] which contains noisy-labeled im-
ages collected from Flickr and Google. Similar to previous
work [21], we perform experiments on the first 50 classes.

Table 6: Accuracy (%) on WebVision-50 and ILSVRC2012
validation sets. Results of baselines are from [3, 21, 28].

Method
WebVision ILSVRC12

top-1 top-5 top-1 top-5

F-correction [34] 61.12 82.68 57.36 82.36
Decoupling [31] 62.54 84.74 58.26 82.26
D2L [30] 62.68 84.00 57.80 81.36
MentorNet [14] 63.00 81.40 57.80 79.92
Co-teaching [8] 63.58 85.20 61.48 84.70
Iterative-CV [3] 65.24 85.34 61.60 84.98
DivideMix [21] 77.32 91.64 75.20 90.84
ELR+ [28] 77.78 91.68 70.29 89.76

Ours 79.16 91.84 74.44 91.04

We report comparison results in Table 6, measuring top-
1 and top-5 accuracy on WebVision validation set and Im-
ageNet ILSVRC12 validation set. NGC consistently out-
performs competing methods in most cases, which verifies
the efficacy of our method on real-world noisy label task.

4.4. Ablation Studies and Discussion

To better understand NGC, we examine the impact of
each component of NGC in Table 7. It can be observed
that all components contribute to the efficacy of NGC. In
particular, the two strategies in subgraph selection and the
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Figure 4: Analysis of subgraph selection under 50% IND noise (CIFAR-100) and 20k OOD noise (Places-365).

Table 7: Ablation study. GNC denotes graph-based noise
correction. CS denotes confidence-based selection and GS
denotes graph-based selection. For experiments whose
noise type is OOD, Places-365 is used as OOD dataset and
50% sym. IND noise is injected into training set.

Dataset CIFAR-10 CIFAR-100

Noise type OOD Sym. Asym. OOD Sym.

Noise level 20k 50% 40% 20k 50% 80%

w/o GNC 92.13 94.32 85.85 72.85 74.20 55.56
w/o CS 87.20 92.44 89.68 63.78 73.22 37.82
w/o GS 86.55 85.59 81.17 65.34 67.18 35.16
w/o Linst 92.45 94.02 82.67 71.38 73.30 51.59
w/o Lsubgraph 70.39 85.12 79.17 55.12 58.06 41.42
w/o mixup 89.51 90.73 84.24 66.93 68.06 42.59
w/o AugMix 93.62 94.53 89.39 71.49 75.18 61.75

Ours 93.67 94.54 90.55 73.44 75.91 62.70

subgraph-level contrastive learning serve as the most im-
portant parts in our framework, without which the perfor-
mance deteriorates severely. The observations validate that
confidence-based (CS) and geometry-based selection (GS)
can exploit neighborhood information from graph structure
effectively. As a result, the test accuracy and OOD detection
performance also improve as shown in Figure 5a, demon-
strating the good generalization ability of our method. In
supplementary material, we also demonstrate the robustness
of our method to hyperparameters, i.e., η in Eq. (3) and k
which is used to construct the k-NN graph.

Discussion on subgraph selection. To further exam-
ine the effect of the two subgraph selection strategies, we
investigate the impact of each one for selecting clean sam-
ples. In Figure 4a and Figure 4b, we can see that the noise
rate in the selected data by performing each strategy alone
is significantly larger than the combined strategy. Figure 4c
and Figure 4d further show that both IND and OOD noise
can be drastically removed by the combined strategy, while
merely using one of them has little effect. This is because
the confidence-based selection can degrade the connectivity

between clean samples and noisy samples such that sam-
ples in the largest connected component are clean. More-
over, we divide the nodes into three parts: clean data, IND
noise and OOD noise, and analyze the average degrees of
nodes in each part after performing confidence-based se-
lection. As demonstrated in Figure 5b, we find that as
the training process progresses, the average node degree of
OOD noisy samples is decreasing, while the average de-
gree of clean samples is increasing. This further validates
that confidence-based strategy facilitates the selection of the
largest connected component in geometry-based strategy.
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Figure 5: Visualization for convergence of our method and
node degrees under 50% IND noise (CIFAR-100) and 20k
OOD (Places-365).

5. Conclusion

In this paper, we study a realistic problem where the
training dataset contains both IND and OOD noise, and the
presence of OOD samples at test time. To address this prob-
lem, we introduce a noisy graph cleaning framework that
simultaneously performs noise correction and clean data se-
lection based on prediction confidence and geometric struc-
ture of data in latent feature space. NGC outperforms many
existing methods on different datasets with varying degrees
of noise. Our work may motivate researchers in two direc-
tions: learning from IND and OOD noisy data is worth fur-
ther exploration due to its broad range of applications and
OOD detection from weakly-labeled datasets is promising.
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