
StyleFormer: Real-time Arbitrary Style Transfer via
Parametric Style Composition

Xiaolei Wu1∗, Zhihao Hu1∗, Lu Sheng1†, Dong Xu2

1College of Software, Beihang University, China 2The University of Sydney, Australia
{wuxiaolei,huzhihao,lsheng}.buaa.edu.cn, dong.xu@sydney.edu.au

Figure 1. Results of our proposed StyleFormer, which can faithfully transfer various styles to the content images.

Abstract
In this work, we propose a new feed-forward arbitrary

style transfer method, referred to as StyleFormer, which
can simultaneously fulfill fine-grained style diversity and
semantic content coherency. Specifically, our transformer-
inspired feature-level stylization method consists of three
modules: (a) the style bank generation module for sparse
but compact parametric style pattern extraction, (b) the
transformer-driven style composition module for content-
guided global style composition, and (c) the parametric
content modulation module for flexible but faithful styliza-
tion. The output stylized images are impressively coher-
ent with the content structure, sensitive to the detailed style
variations, but still holistically adhere to the style distribu-
tions from the style images. Qualitative and quantitative
comparisons as well as comprehensive user studies demon-
strate that our StyleFormer outperforms the existing SOTA
methods in generating visually plausible stylization results
with real-time efficiency.

1. Introduction
Arbitrary style transfer aims to re-render the content of

one natural image by using the style of an arbitrary artwork.

* First two authors contributed equally.
† Corresponding author: Lu Sheng.

The early work from Gatys et al. [1] discovered that the
features extracted from a well-trained deep convolutional
neural network can indicate the content structures, and their
statistical distributions capture the style patterns, which in-
spired a line of works with advanced style and content de-
scriptions [2, 3, 4, 5, 6, 7]. Despite remarkable results have
been achieved, these methods are usually formulated as a
complex optimization problem, whereby the losses over a
deep network must be minimized for every image pair, lead-
ing to high computational cost.

A large number of works [8, 9, 10, 11, 12, 13, 14, 15, 16]
have been proposed to balance among stylization quality,
generalization ability and execution efficiency. A common
paradigm is to pretrain a feed-forward network with a fea-
ture transfer module to “universally” produce stylized re-
sults by using a single forward pass. This module should
be able to simultaneously produce diversified style patterns
redistributed from the style image and preserve coherent
structures with the content image. The existing attempts
either tried to adjust the holistic statistics of the content fea-
tures with that of the style features [17, 18, 19, 20, 21, 22,
23], or non-locally swap the relevant style features in order
to match the content features [24, 25, 26, 27, 28, 29, 30, 31].
While these methods are significantly faster than those op-
timization based works, they may not generalize well to un-
seen images, which inevitably degrades stylization quality
or distorts content structures.

14618

In this work, we propose a new arbitrary style transfer
method that follows a similar feed-forward paradigm, but
here we formulate how to generate diversified and coher-
ent stylization results as a process, which first finds global
composition of a finite set of learnable style codes and then
parametrically modulates the content features by the com-
posed style codes. The whole network can be decomposed
into three modules: style bank generation, transformer-
driven style composition and parametric content modula-
tion. The style bank generation module produces a finite
set of style codes as a sparse and compact representation
of the style patterns. The transformer-driven style com-
position module adopts the expressive multi-head attention
strategy from the well-known transformer architecture [32]
to globally compose these representative style codes, which
aims at modeling new style distributions that are coherent
with the content structures and sensitive to the detailed style
variations, but still holistically belong to the style manifold
spanned by the style images. The parametric content mod-
ulation module aligns each content feature into its stylized
counterpart by viewing the composed style code as a set
of content-conditioned group-wise affine transforms, which
thus offers more flexibility to represent diverse style pat-
terns but still adheres to the content. Based on these mod-
ules, our feed-forward arbitrary style transfer method, re-
ferred to as StyleFormer, can produce visually plausible
stylization results for various artworks, while ensuring the
style diversity with fine-grained style details, and the con-
tent coherence with the input content images (see our results
in Fig. 1).

Our network is end-to-end trained on MS-COCO [33]
and Wikiart [34] based on the common style and content
losses [18, 3]. When compared with the prior optimization-
based [1, 3] and feed-forward based approaches [18, 17, 25,
19, 23, 35], our method achieves the SOTA stylization re-
sults in terms of both visual quality and efficiency.

2. Related Works
Optimization-based Stylization. Gatys et al. [1] first for-
mulated the style as multi-level feature correlation (e.g.,
Gram matrix) from a trained neural network such as
VGG [36], and defined style transfer as an iterative opti-
mization process that balances the content and style dis-
crepancies. Thereafter a number of variants [3, 5, 37, 38,
7, 39, 40] have been developed based on new style and con-
tent losses, or by adopting this framework to different sce-
narios and requirements. The works [5] and [7] explored
how to control the perceptual factors during the transfer
process, and another two works [37] and [38] demysti-
fied the components proposed in [1]. Different from the
above works, the recent work [3] firstly viewed the style
as non-parametric feature distributions instead of paramet-
ric statistics and then defined the content by using self-

similarity. Despite visually plausible results are reported
in these works, the careful hyper-parameter tuning process
is often required [39, 40] to better optimize the objective
function for each style. Moreover, the optimization-based
approaches are less efficient, making these approaches un-
suitable for real-time applications.

Feed-forward Approximation. Recently, a number of
works [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23] approximated the iterative back-propagation procedure
as the feed-forward networks for real-time style transfer.
Some works [10, 12, 41, 42, 16] specified each trained net-
work for a single style. Other approaches [8, 13, 9, 11, 43]
attempted to incorporate multiple styles in one model, but
they still cannot deal with the unseen styles. The recent
methods focused on arbitrary style transfer by building a
more flexible feed-forward architecture. For example, the
first line of works [18, 17, 22, 19] proposed to directly align
the holistic statistics of the content features to that of the
style features, which unfortunately leads to distortion arti-
facts. The second line of works [44, 45, 46, 47] exploited
the power of generative adversarial network to generate the
stylized images. The third line of works [24, 25, 28, 29, 30]
tried to swap the most relevant style patches to match the
content patches at the feature level, which may lead to flaky
results. SANet [23] proposed the style-attention network to
integrate the style patterns according to the semantic spa-
tial distribution of the content image. AAMS [27] used the
self-attention mechanism and swapped the styles to directly
match the content structures. MANet [35] used the self-
attention module to disentangle the content and style fea-
tures, and then used a cross-attention operation to reorga-
nize the style distribution according to the content distri-
bution. Instead of directly feeding the swapped style fea-
ture patches to the decoder, we produce a set of content-
aware affine transforms to group-wisely transfer each con-
tent feature into its stylized counterpart, and thus provide
more flexibility in representing diverse style patterns.

Transformer. Transformer [32] is originally applied to
the NLP tasks and has achieved significant improvements,
which leverages the attention mechanisms to encode long-
range dependencies. Recently, researchers used transformer
for various CV tasks like image classification [48, 49],
object detection [50, 51], video grounding [52, 53, 54]
and low-level vision tasks including image translation [55],
super-resolution [56] and de-noising [48]. Our proposed
StyleFormer inherits the impressive relation-modeling ca-
pability of transformer to learn content-consistent style
composition for the style transfer task, but we improve the
naı̈ve transformer-based style composition in a parametric
way, leading to more flexible rendering results with diverse
style patterns that adhere to the content semantics.

14619

𝐶

C
on

v
C

on
v

Slice &
Apply

S
o

ftm
a

x

Guide Map
Generation

C
on

v
C

on
v

Slice &
Apply

S
o

ftm
a

x

Guide Map
Generation

C
on

v
C

on
v

𝐺
𝐺

co
n

ca
te

n
a

tio
n

𝐙௦

𝐙

𝐙௦

StyleFormer
V

K

S
tyle

 B
an

k
G

e
n

e
ra

tio
n

𝐕෩()

Parametric
Content

Modulation

Slice &
Apply

Transformer-driven
Style Composition

S
o

ftm
a

x

Guide Map
Generation

D
ec

o
de

rE
ncod

er
(fix)

Q

Style Bank

Style Values

Style Image 𝚾௦

Content Image 𝚾

Stylized Image

𝐊ଶ 𝐊ேೞ

Style Keys

𝐊ଵ

𝐙௦
()

𝐖()

IN
IN

S
p

lit

𝐙
()S

p
lit

… …

𝐕ேೞ
…𝐕ଵ𝐶/𝐺

𝐶/𝐺 + 1

𝐺 × 𝐽

Figure 2. The overall framework of our proposed method. We first generate the content feature Zc and the style feature Zs from the content
image Xc and the style image Xs by using the fixed encoder (VGG-16). Then we feed the style feature Zs into the style bank generation
module to produce the style codes. Each style code stores the affine coefficients Vi (i.e. the style value) and the corresponding style key
Ki, i = {1, . . . , Ns}, where Ns is the number of style codes. Taking the content feature Zc as the query (Q), the style keys Ki as the key
(K), the style values Vi as the value (V), we employ the transformer-driven style composition module to produce the content-conditioned
affine coefficients Ṽ(g) for each group. The total number of group is G. After that, in the parametric content modulation module, we apply
the normalized content features Z

(g)
c to predict a guide map W(g) to slice the affine coefficient from Ṽ(g), and then generate the final

group-wise stylized feature Z(g)
cs . Finally, we concatenate Z(g)

cs from all groups as the final stylized feature Zcs and feed it into the decoder
to produce the stylized image. “IN” denotes the instance normalization operation. Best viewed in color.

3. Approach

Following the feed-forward style transfer paradigm, we
propose a new arbitrary style transfer method (referred to as
StyleFormer) to learn the global composition of styles based
on the well-known transformer-like architectures [32], and
generate globally content-consistent and locally realistic
style patterns in a parametric manner.

3.1. Overview

The framework of our proposed StyleFormer is summa-
rized in Fig. 2. At first, the content image Xc and the
style image Xs are fed into an encoder Eθenc(·) to ob-
tain the content and style features Zc ∈ RHc×Wc×C and
Zs ∈ RHs×Ws×C , where Hc and Wc are the height and
the width of the content feature, Hs and Ws are those of
the style feature and C is the number of channels. Note
the sizes of Zc and Zs may be different in our work. Then
the Zc is transferred to the stylized feature Zcs according
to Zs, based on a newly designed feature transfer module
including the proposed style bank generation, transformer-
driven style composition and parametric content modulation
modules. In the end, the stylized feature Zcs is fed into a
learnable decoder Dθdec(·) to generate the stylized image.

The style feature Zs is fed into the style bank gen-
eration (elaborated in Sec. 3.2) module to produce the
style codes, which include the style keys K ∈ RNs×C

as a set of exemplar style patterns, and style values V ∈
RNs×G×J×(C/G)×(C/G+1) as a set of affine transformation
matrices corresponding to the style keys, which can para-
metrically transform content features into the stylized fea-

tures based on appropriate reorganization and slicing oper-
ations. Ns is the number of style codes decided based on
the spatial size (see Sec. 3.5). Specifically, V contains Ns

style values and each one has G × J affine transformation
matrices with the size of (C/G)× (C/G+ 1). Note we di-
vide each style code into G groups to ensure the efficiency,
and also enrich the affine transformations in each group by
using J variants for producing more diverse style patterns.

Given the aforementioned two quantities as the key and
the value, respectively, taking the content feature Zc as
the query, the transformer-driven style composition (in
Sec. 3.3) module applies multi-head attention mechanism
to generate the group-wise content-consistent affine coef-
ficients Ṽ(g) ∈ RHc×Wc×J×(C/G)×(C/G+1), and addi-
tionally the group-wise normalized content feature Z

(g)
c ∈

RHc×Wc×(C/G)×1, g ∈ {1, . . . , G}.
The parametric content modulation (in Sec. 3.4) mod-

ule employs Z
(g)
c to generate a guide map for each group,

based on which we first sample two corresponding affine
transformation matrices from all J affine transformation
matrices at each spatial position and then we generate the
interpolated affine transformation matrix at each spatial po-
sition. Based on the interpolated affine transformation ma-
trices, Z(g)

c is eventually transformed to produce Z
(g)
cs for

each group. By concatenating {Z(g)
cs }Gg=1 along the channel

dimension, we produce the final stylized feature Zcs.

3.2. Style Bank Generation

The style bank generation process aims to discover a fi-
nite set of style codes from the style features Zs, which can

14620

(a) Content image (b) Style image (c) Stylized image

(d) Three visualization results of the attention maps

Figure 3. Visualization of the attention maps from different groups.
Different groups concentrate on different spatial locations of the
content image, e.g., the left attention map concentrates on the
bridge and the tree, the middle one concentrates on the sky and
river and the right one only concentrates on the bridge’s deck.

parametrically regenerate the encoded style patterns by us-
ing affine transforms upon the content features.

Each style code includes a style key Ki and a style value
Vi, i ∈ {1, . . . , Ns}. Ki ∈ RC indicates the exemplar style
feature and Vi ∈ RG×J×(C/G)×(C/G+1) integrates a rich
set of affine coefficients associated to this exemplar feature,
which includes G × J affine transformation matrices with
the size of (C/G)×(C/G+1). Dividing the style codes into
G groups can improve the efficiency while using J slices
will bring more flexibility. Specifically, the grouping op-
eration reduces the costs for storing and learning the affine
coefficients, since an affine transformation with C×(C+1)
coefficients can be approximated by grouped affine transfor-
mations with C×(C/G+1) coefficients in total. Moreover,
using J candidate affine transformations in each group fa-
cilitates more flexible style representations when we inter-
polate them with the additional guidance signals.

Therefore, the style bank generation module includes
two parallel branches for: (1) extracting the style value
tensor V ∈ RNs×G×J×(C/G)×(C/G+1), (2) extracting the
style key tensor K ∈ RNs×C . The network architecture is
shown in Fig. 4, and we will discussed it in Sec.3.5.

3.3. Transformer-driven Style Composition

Taking the content feature Zc as the query, the style key
K as the key, the style value V as the value, we employ
the multi-head attention mechanism to compose the styles
conditioned on the content structures. Note that instance
normalization [42] is required before feeding the key and
value into the the multi-head attention module and thus we
can enrich the interactions between the style and content
patterns, as indicated in [25]. Here the number of heads
is the same as the number of group G in the style bank.
Note that two additional convolutions with stride 2 are per-

formed on the instance normalized content feature in order
to reduce its spatial size and thus speed up the multi-head at-
tention process, and we will also upsample the output affine
transformation matrices Ṽ(g) to match the spatial resolu-
tion of Z(g)

c before the parametric content modulation mod-
ule. As shown in Fig. 3, this multi-head attention operation
indicates that different groups focus on distinctive style pat-
terns.

Therefore, the output of the attention module in each
head will be the group-wise content-consistent affine co-
efficients Ṽ(g) ∈ RHc×Wc×J×(C/G)×(C/G+1). Moreover,
the transformer-driven style composition module also gen-
erates the group-wise normalized content features Z

(g)
c ∈

RHc×Wc×(C/G)×1, g ∈ {1, . . . , G}, which are the channel-
wise splitted content feature after the instance normaliza-
tion operation, as shown in Fig. 2.

3.4. Parametric Content Modulation

In this module, we would like to slice the group-wise
content-consistent affine coefficients Ṽ(g), and then apply
the sliced affine coefficients to transform the group-wise
normalized content feature Z

(g)
c into Z

(g)
cs . By concatenat-

ing {Z(g)
cs }Gg=1 along the channel dimension , we eventually

produce the stylized feature Zcs.

Slicing. The slicing operation is performed by first gener-
ating a guide map W(g) ∈ RHc×Wc×1 from Z

(g)
c based

on a stack of convolutional layers. At each spatial lo-
cation, we then use the corresponding value in the guide
map to decide the two nearest indices and then sample
two corresponding affine transformation matrices from J
affine transformation matrices in Ṽ(g), and eventually lin-
early interpolate these two affine transformation matrices
to generate the sliced affine transformation matrix. Since
then, the group-wise sliced affine transformation matri-
ces become a pair of Ã(g) ∈ RHc×Wc×(C/G)×(C/G) and
b̃(g) ∈ RHc×Wc×(C/G)×1. In addition to the transformer-
driven style composition module, the slicing operation also
makes the final affine coefficients rely more on the content
structure. Moreover, other than the softmax-based inter-
polation, the slicing operation is more computationally effi-
cient.

Applying. After obtaining the group-wise sliced affine co-
efficients, the final stylized features can be obtain as

Zcs =
G

||
g=1

Z(g)
cs =

G

||
g=1

Ã(g) ⊗ Z(g)
c + b̃(g), (1)

where
G

||
g=1

means channel-wise concatenation among G

affine-transformed group-wise features, ⊗ indicates the ma-
trix multiplication operation at every spatial position. Zcs

has the same size as that of the input content feature Zc.

14621

C
on

v(
2

56
,3

,2
)

C
on

v(
2

56
,3

,2
)

C
on

v(
2

56
,3

,2
)

C
on

v(
2

56
,3

,1
)

C
on

v(
2

56
,3

,1
)

C
on

v(
17

40
8,

3
,1

)

C
on

v(
2

56
,3

,2
)

Style Bank
Generation

𝐕ଵ, 𝐕ଶ, … , 𝐕ேೞ

Style Values

R
es

h
ap

e

𝐊ଵ, 𝐊ଶ, … , 𝐊ேೞ

Style Keys
R

es
h

ap
e

௦

Style Feature

Figure 4. The network details of our style bank generation module.
Zs denotes the style feature. Vi and Ki, i = 1, . . . , Ns are the
output style values and keys, respectively.

Note that this module employs the instance-normalized
content features as its input so that it would like to pay more
attention to the structural clues and remove the textural pat-
terns in the content image, which again leads to more reli-
able stylization results.

3.5. Loss and Implementation Details

Loss. In our design, the proposed network is fully differ-
entiable, which enables back-propagation throughout the
whole network except the fixed encoder. It is trained in a
supervised fashion similarly as the recent feed-forward ar-
bitrary style transfer methods [18, 10], where the content
images are gathered from MS-COCO [33], and style im-
ages are from WikiArts [34]. The training losses consist of
a style loss and a content loss, namely,

L = αLc + βLs, (2)

where the style loss Ls matches the mean and standard de-
viations of the VGG-16 features between the generated out-
put and the input style image, in the same way as used
in AdaIN [18]. Following STROTSS [3], the content loss
Lc matches the self-similarity patterns extracted from the
VGG-16 features between the generated output and the in-
put content image, which loosely preserves the semantics
and spatial layout rather than the rigorous pixel values.
Implementation Details. The number of heads and the
number of group G in the style bank is set as 16. We set
the number of affine coefficients J in each group as 4. The
number of channel C = 256. The weighting parameters in
the loss functions are set as α = 60 and β = 1.

The network structure of our style bank generation mod-
ule is shown in Fig. 4. The style values and style keys are
generated in two parallel branches. In the style value gener-
ation branch, there are 2 strided convolutional layers, three
convolutional layers, and a reshape operation. In the style
key generation branch, there are 2 strided convolutional lay-
ers followed by a reshape operation. Each convolutional
layer is written as Conv(Cout, K, S), where Cout, K and S
denotes the number of output channels, the kernel size and

the stride parameter, respectively. Note that the output chan-
nel 17408 of the last convolution layer before generating the
style values is calculated by G×J×(C/G)×(C/G+1)×J ,
where C = 256, G = 16 and J = 4. The number of style
codes generated in this module (i.e., Ns = Hs

4 × Ws

4) is
decided by the spatial resolution of the input style feature,
but is downsampled due to 2 strided convolution layers.

The encoder Eθenc(·) is a pretrained and fixed VGG-
16 [36] (up to ReLU3 1 layer), and the decoder Dθdec(·)
mirrors the encoder with all padding layers replaced by re-
flection padding, which is randomly initialized at the train-
ing stage. There is no normalization layer (if not mentioned
specifically) in our models as suggested by [18].

4. Results and Evaluation
4.1. Dataset And Training Details

We use the content images from MS-COCO [33] and the
style images from WiKiArt [34] as the training data. Each
dataset contains about 80, 000 samples. We set the batch
size as 16 and use the Adam optimizer with a fixed learning
rate of 1e-4. For each content/style image, we first resize the
image to the resolution of 512× 512, then randomly crop a
256×256 region as the training samples. Since our network
is fully convolutional, it can be applied to the images of any
resolution during testing. We train our model for 800, 000
steps, which takes five days on the machine with a single
NVIDIA Tesla V100 GPU.

4.2. Comparison with Prior Arts

We quantitatively and qualitatively compare our ap-
proach with a set of baseline methods including AdaIN [18],
WCT [17], Avatar-Net [11], LST [19], two iterative opti-
mization methods (Gatys [1] and STROTSS [3]) and two
attention-based methods (SANet [23] and MANet [27]).
Qualitative Evaluations. The representative style transfer
results generated by our approach and the baseline meth-
ods are provided in Fig. 5. AdaIN [18] simply adjusts the
mean and variance in a channel-wise manner and thus pro-
vides a sub-optimal solution and often retains repeated tex-
ture patterns (see the 5th, 6th and 7th columns in Fig. 5).
Although WCT optimally matches the second-order statis-
tics, it may also yield distorted patterns as it cannot always
recover the original style patterns. For example, the back-
ground clutters and unwanted spiral patterns appear in the
1st, 5th, 6th and 7th columns in Fig. 5. It is also observed
that WCT has bad performance when the style pattern is
simply made up of lines (see the 2nd column in Fig. 5).
The results of Avatar-Net [25] are flaky and vague in most
cases (see the 1st, 3rd, 4th, 6th and 7th columns in Fig. 5)
since it directly swaps the style patches to the correspond-
ing content patches, which makes it hard to keep the con-
tent structures. Different from the above methods, LST [19]

14622

LS
T

G
a
tys

S
T
R
O
T
S
S

S
A
N
e
t

M
A
N
et

O
u
rs

A
d
aIN

W
C
T

A
vata

r-N
e
t

C
o
nten

t
S
tyle

Figure 5. Comparison of the stylization results. The first and second rows show the content and style images, respectively. The rest rows
are the stylized results by using AdaIN [18], WCT [17], Avatar-Net [11], LST [19], Gatys [1], STROTSS [3], SANet [23], MANet [35]
and our StyleFormer, respectively. Best viewed in color.

aims to transfer the lower-level style patterns (e.g., colors)
while the strokes of the style are usually ignored (see the
2nd, 6th, 7th columns in Fig. 5). The optimization-based
methods Gatys et al. [1] and STROTSS [3] allow arbitrary
style transfer but it is hard to tune the optimal results be-
cause the weights balancing the content and style losses
are sensitive, and it is likely to encounter a bad local min-
imum as shown in the 1st and 5th columns in Fig. 5. In

addition, STROTSS [3] tends to copy the contents from
the style images, which makes the results look weird (see
the 5th column in the Fig. 5). It should be mentioned that
the running speed of these two optimization-based meth-
ods is more than 100 times slower than our proposed feed-
forward method (see Table 1). We further provide the re-
sults from two attention-based methods SANet [23] and
MANet [35]. From the results, we observe that these two

14623

Table 1. Following WCT [17], we perform quantitative comparisons between our proposed method and the baseline methods (i.e., Gatys et
al. [1], STROTSS [3], AdaIN [18], WCT [17], Avatar-Net [25], LST [19], MANet [23] and SANet [35]) in terms of covariance matrix
difference (the style loss Ls), user preference and execution time. 256× 256 denotes the resolution of each test image is 256× 256.

Gatys et al. STROTSS AdaIN WCT Avatar-Net LST SANet MANet Ours
Style Loss (i.e., Ls) 3.20 1.22 1.77 3.09 5.91 2.67 1.41 1.83 1.14

Preference(%) 9.89 9.32 5.37 11.02 4.24 10.73 10.17 8.47 30.79
A/B Test(%) 25.00 24.69 22.83 32.91 11.69 33.33 32.31 27.16 -

Time (sec) for 256× 256 39.017 92.724 0.004 0.531 0.884 0.004 0.011 0.009 0.013
Time (sec) for 512× 512 40.341 112.53 0.005 1.298 0.971 0.005 0.038 0.011 0.026

Time (sec) for 1024× 1024 42.319 170.201 0.007 4.077 1.174 0.024 0.169 0.014 0.071

(a) Content image (b) Style image

(c) Baseline (d) Ours

Figure 6. Comparison between our proposed method and the sim-
ple transformer [32] based baseline method.

methods are more likely to generate the repeated style pat-
terns in the background area (see the 5th, 6th and 7th

columns in Fig. 5).
In contrast to these approaches, as shown in Fig. 5, our

method achieves the best performance that balances the
style pattern richness and content structure consistency. In-
stead of holistically aligning the second-order statistics or
directly rearranging the style features, our StyleFormer uses
the transformer-driven style composition module with the
aid of the group-wise content-conditioned parametric trans-
fer strategy, and thus our method can more flexibly rep-
resent the diverse style patterns, while still preserving the
content structure, which can also be observed in Fig. 6.

Quantitative Results. We further conduct quantitative
comparison in terms of the style loss, the user preference
and execution efficiency.

- Style Loss (i.e., Ls): Following WCT [17], we compare
different methods in terms of the co-variance matrix differ-
ence and report the results in the first row in Table 1. It is
observed that our proposed method StyleFormer achieves
the lowest style loss among all approaches.

- User Preference: Additionally, we conduct a user study
to compare our methods against eight state-of-the-art style
transfer methods [1, 3, 18, 17, 19, 25, 23, 35] in terms of

user preference (i.e., the result from which method is the
most favored by humans). We selected 100 content-style
pairs for evaluation. We use the official code and the default
parameters for each method. For each user, 20 content-style
combinations are selected and the stylized results from all
methods are displayed in a random order. Finally, we col-
lected 1140 votes from 57 users. As shown in Table 1, our
method receives 30.79% of the total votes, which is much
higher than the baseline methods. Considering that it is of-
ten a challenging task to select the best one from the re-
sults of nine methods, we also conduct the multiple A/B
test. As also shown in Table 1, our method wins 77%, 88%,
75%, 67%, 73%, 68%, 75% and 67% votes when compared
with AdaIN [18], Avatar-Net [25], Gatys [1], LST [19],
MANet [23], SANet [35], STROTSS [3] and WCT [17],
respectively. These results demonstrate that our method
achieves better results.

- Efficiency: In Table 1, we compare the running time of
our method with other methods at three image resolutions:
256× 256, 512× 512 and 1024× 1024. The optimization-
based methods [1, 3] are computationally expensive since
it requires hundreds of forward and backward passes to
generate the final stylized results. Other works including
WCT [17], AdaIN [18], Avatar-Net [11] and LST [19] are
all based on the feed-forward networks, in which WCT is
relatively slow as it requires several feed-forward passes
and the SVD operation has to be executed in CPU. Bene-
fited from the down-sampling and group-wise operations,
the running time of our method for each image pair with the
resolution of 1024× 1024 is still within 0.1s.

4.3. More Discussions

Is naı̈ve Transformer-driven style composition enough
for image stylization? In Fig. 6, we compare our Style-
Former with a simple baseline method without involving
the style bank generation and parametric content modula-
tion modules (namely, it only use the transformer-driven
style composition module), where the affine coefficients are
directly replaced with the style features. We observe that
our StyleFormer (Fig. 6 (d)) achieves better results than this
baseline method (Fig. 6 (c)) in terms of preservation of the
content structures and expression of style patterns. The re-

14624

Content Style 1 Style 2𝚭௦ = 𝚨ଵ𝚭 + 𝐛ଵ 𝚭௦ = 𝚨ଶ𝚭 + 𝐛ଵ 𝚭௦ = 𝚨ଵ𝚭 + 𝐛ଶ 𝚭௦ = 𝚨ଶ𝚭 + 𝐛ଶ

Figure 7. The exchange of the strokes and background of two style images. Zcs denotes the stylized feature, A and b denote the affine
transformation matrix and bias from style 1 or style 2 and Zc denotes the content feature.

(a) Content (b) Style (c) ௦ (d) ௦ (e) ௦

(f) ௦ with and (from left to right)

Figure 8. Ablation study of the affine transformation. We change
the notations in Eq. (1) as Zcs = AZc + b, in which Zc is the
content feature, A and b are the affine transformation matrix and
the bias vector, and Zcs is the stylized feature. The results in (c, d,
e, f) are the decoded stylized images.

With guide map W/o guide mapContent Style

Figure 9. Ablation study of the guide map. It is observed that our
method with the guide map preserves better content consistency
(see the blue box in the first row) and also generates richer style
patterns (see the second row).

sults not only indicate that we may not solve the image styl-
ization problem by simply applying the transformer-like ar-
chitecture for style composition, but also validate the effec-
tiveness of our parametric style composition module.

Disentangled functionalities of each terms in the affine
coefficients. For simplicity, we change the notations (for
the operation at each position) in Eq. (1) as Zcs = AZc+b,
in which A and b denote the content-conditioned affine
transformation matrix and bias vector, Zc is the normalized
content feature. We also modify it as Zcs = αAZc + b by
controlling the weight α of A. In Fig. 8, we provide the re-
sults when different sets of parameters are used. We observe
that the style background (or called holistic style patterns)

tends to disappear when b is removed (see whether the yel-
low background exists or not when setting Zcs = AZc in
Fig. 8 (c) and Zcs = b in Fig. 8 (e)). When A is replaced by
an identity matrix (i.e., Zcs = Zc + b in Fig. 8 (d)), the de-
tailed strokes from the style image no longer exist in the out-
put image. When α grows, the strokes of the output images
around the edges of the Eiffel Tower become stronger and
meanwhile more curved lines appear (see the second row
in Fig. 8). These observations demonstrate that the detailed
style patterns (e.g. the strokes) are mainly stored in A and
the holistic style pattern is mainly stored in b, which pro-
vides more flexibility to multi-style applications. In Fig. 7,
benefiting from the disentangled functionality of these co-
efficents, our StyleFormer exchanges the strokes and back-
ground of the two style images, enabling more flexible con-
trol on the stylization results.

Should affine coefficients be content-conditioned? In
Fig. 9, we provide the results of our full method and our
method without using the content-conditioned affine coef-
ficients from the slicing operation in Sec. 3.4. It is ob-
served that our StyleFormer generates richer style patterns
by comparing the two results in the 2nd row and preserves
better content consistency (see the stone bench in the 1st
row), which validates that the proposed content-conditioned
affine coefficients can bring more flexible style representa-
tions while preserving the content structures.

5. Conclusion

In this work, we have proposed a visually plausible real-
time style transfer method (referred to as StyleFormer),
which consists of three newly proposed modules including
the style bank generation module, the transformer-driven
style composition modoule and the parametric content mod-
ulation module. With these new modules, our StyleFormer
can generate the results with fine-grained style details and
coherent content structures. Extensive experimental results
demonstrate the effectiveness of our method and its poten-
tial to combine multiple style patterns.
Acknowledgment. This work was supported by the Na-
tional Key Research and Development Project of China
(No. 2018AAA0101900), and the National Natural Science
Foundation of China (No. 61906012, No. 62132001).

14625

References
[1] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In
CVPR, pages 2414–2423, 2016. 1, 2, 5, 6, 7

[2] Chuan Li and Michael Wand. Precomputed real-time texture
synthesis with markovian generative adversarial networks. In
ECCV, pages 702–716. Springer, 2016. 1

[3] Nicholas Kolkin, Jason Salavon, and Gregory
Shakhnarovich. Style transfer by relaxed optimal transport
and self-similarity. In CVPR, pages 10051–10060, 2019. 1,
2, 5, 6, 7

[4] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-
gan: Learning a generative model from a single natural im-
age. In ICCV, pages 4570–4580, 2019. 1

[5] Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron
Hertzmann, and Eli Shechtman. Controlling perceptual fac-
tors in neural style transfer. In CVPR, pages 3985–3993,
2017. 1, 2

[6] Mao-Chuang Yeh, Shuai Tang, Anand Bhattad, Chuhang
Zou, and David Forsyth. Improving style transfer with cali-
brated metrics. In WACV, pages 3160–3168, 2020. 1

[7] Alex J Champandard. Semantic style transfer and turn-
ing two-bit doodles into fine artworks. arXiv preprint
arXiv:1603.01768, 2016. 1, 2

[8] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang
Hua. Stylebank: An explicit representation for neural image
style transfer. In CVPR, pages 1897–1906, 2017. 1, 2

[9] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.
A learned representation for artistic style. In ICLR, 2017. 1,
2

[10] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711. Springer, 2016. 1, 2, 5

[11] Falong Shen, Shuicheng Yan, and Gang Zeng. Neural style
transfer via meta networks. In CVPR, pages 8061–8069,
2018. 1, 2, 5, 6, 7

[12] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-
tor S Lempitsky. Texture networks: Feed-forward synthesis
of textures and stylized images. In ICML, volume 1, page 4,
2016. 1, 2

[13] Hang Zhang and Kristin Dana. Multi-style generative net-
work for real-time transfer. In ECCVW, 2018. 1, 2

[14] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-
proved texture networks: Maximizing quality and diversity
in feed-forward stylization and texture synthesis. In CVPR,
pages 6924–6932, 2017. 1, 2

[15] Yongcheng Jing, Yang Liu, Yezhou Yang, Zunlei Feng,
Yizhou Yu, Dacheng Tao, and Mingli Song. Stroke con-
trollable fast style transfer with adaptive receptive fields. In
ECCV, pages 238–254, 2018. 1, 2

[16] Gilles Puy and Patrick Pérez. A flexible convolutional solver
for fast style transfers. In CVPR, pages 8963–8972, 2019. 1,
2

[17] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In NIPS, pages 386–396, 2017. 1, 2, 5, 6, 7

[18] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
pages 1501–1510, 2017. 1, 2, 5, 6, 7

[19] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.
Learning linear transformations for fast image and video
style transfer. In CVPR, pages 3809–3817, 2019. 1, 2, 5,
6, 7

[20] Hao Wang, Xiaodan Liang, Hao Zhang, Dit-Yan Yeung, and
Eric P Xing. Zm-net: Real-time zero-shot image manipu-
lation network. arXiv preprint arXiv:1703.07255, 2017. 1,
2

[21] Chunjin Song, Zhijie Wu, Yang Zhou, Minglun Gong, and
Hui Huang. Etnet: Error transition network for arbitrary style
transfer. In NIPS, pages 668–677, 2019. 1, 2

[22] Ming Lu, Hao Zhao, Anbang Yao, Yurong Chen, Feng Xu,
and Li Zhang. A closed-form solution to universal style
transfer. In ICCV, pages 5952–5961, 2019. 1, 2

[23] Dae Young Park and Kwang Hee Lee. Arbitrary style trans-
fer with style-attentional networks. In CVPR, pages 5880–
5888, 2019. 1, 2, 5, 6, 7

[24] Tian Qi Chen and Mark Schmidt. Fast patch-based style
transfer of arbitrary style. arXiv preprint arXiv:1612.04337,
2016. 1, 2

[25] Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-
net: Multi-scale zero-shot style transfer by feature decora-
tion. In CVPR, pages 8242–8250, 2018. 1, 2, 4, 5, 7

[26] Shuyang Gu, Congliang Chen, Jing Liao, and Lu Yuan. Ar-
bitrary style transfer with deep feature reshuffle. In CVPR,
pages 8222–8231, 2018. 1

[27] Yuan Yao, Jianqiang Ren, Xuansong Xie, Weidong Liu,
Yong-Jin Liu, and Jun Wang. Attention-aware multi-stroke
style transfer. In CVPR, pages 1467–1475, 2019. 1, 2, 5

[28] Yulun Zhang, Chen Fang, Yilin Wang, Zhaowen Wang, Zhe
Lin, Yun Fu, and Jimei Yang. Multimodal style transfer via
graph cuts. In ICCV, pages 5943–5951, 2019. 1, 2

[29] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing
Kang. Visual attribute transfer through deep image analogy.
ACM Transactions on Graphics (TOG), 36(4):1–15, 2017. 1,
2

[30] Roey Mechrez, Itamar Talmi, and Lihi Zelnik-Manor. The
contextual loss for image transformation with non-aligned
data. In ECCV, pages 768–783, 2018. 1, 2

[31] Zhizhong Wang, Lei Zhao, Sihuan Lin, Qihang Mo, Huim-
ing Zhang, Wei Xing, and Dongming Lu. Glstylenet:
exquisite style transfer combining global and local pyramid
features. IET Computer Vision, 14(8):575–586, 2020. 1

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998–
6008, 2017. 2, 3, 7

14626

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 2, 5

[34] K. Nichol. Painter by numbers.
https://www.kaggle.com/c/painter-by-numbers, 2016.
2, 5

[35] Yingying Deng, Fan Tang, Weiming Dong, Wen Sun, Feiyue
Huang, and Changsheng Xu. Arbitrary style transfer via
multi-adaptation network. In ACM Multimedia, pages 2719–
2727, 2020. 2, 6, 7

[36] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 2, 5

[37] Len Du. How much deep learning does neural style transfer
really need? an ablation study. In WACV, pages 3150–3159,
2020. 2

[38] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. De-
mystifying neural style transfer. In IJCAI, pages 2230–2236,
2017. 2

[39] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox.
Artistic style transfer for videos. In German conference on
pattern recognition, pages 26–36. Springer, 2016. 2

[40] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and
controllable neural texture synthesis and style transfer using
histogram losses. arXiv preprint arXiv:1701.08893, 2017. 2

[41] Wei Gao, Yijun Li, Yihang Yin, and Ming-Hsuan Yang.
Fast video multi-style transfer. In WACV, pages 3222–3230,
2020. 2

[42] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 2, 4

[43] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Diversified texture synthesis with
feed-forward networks. In CVPR, pages 3920–3928, 2017.
2

[44] Jan Svoboda, Asha Anoosheh, Christian Osendorfer, and
Jonathan Masci. Two-stage peer-regularized feature recom-
bination for arbitrary image style transfer. In CVPR, pages
13816–13825, 2020. 2

[45] Dmytro Kotovenko, Artsiom Sanakoyeu, Pingchuan Ma,
Sabine Lang, and Bjorn Ommer. A content transforma-
tion block for image style transfer. In CVPR, pages 10032–
10041, 2019. 2

[46] Dmytro Kotovenko, Artsiom Sanakoyeu, Sabine Lang, and
Bjorn Ommer. Content and style disentanglement for artistic
style transfer. In ICCV, pages 4422–4431, 2019. 2

[47] Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and
Bjorn Ommer. A style-aware content loss for real-time hd
style transfer. In ECCV, pages 698–714, 2018. 2

[48] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, pages 1691–1703. PMLR,
2020. 2

[49] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv, 2020. 2

[50] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020. 2

[51] Lichen Zhao, Jinyang Guo, Dong Xu, and Lu Sheng.
Transformer3D-Det: Improving 3D object detection by vote
refinement. IEEE T-CSVT, 2021. 2

[52] Zongheng Tang, Yue Liao, Si Liu, Guanbin Li, Xiaojie Jin,
Hongxu Jiang, Qian Yu, and Dong Xu. Human-centric
spatio-temporal video grounding with visual transformers.
IEEE T-CSVT, 2021. 2

[53] Rui Su, Qian Yu, and Dong Xu. STVGBert: A visual-
linguistic transformer based framework for spatio-temporal
video grounding. In ICCV, pages 4343–4351, 2021. 2

[54] Lichen Zhao, Daigang Cai, Lu Sheng, and Dong Xu. 3DVG-
Transformer: Relation modeling for visual grounding on
point clouds. In ICCV, pages 4883–4891, 2021. 2

[55] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In ICML, pages 4055–4064. PMLR, 2018.
2

[56] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In CVPR, pages 5791–5800, 2020. 2

14627

