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Abstract

Few-Shot Learning (FSL) aims at classifying samples
into new unseen classes with only a handful of labeled sam-
ples available. However, most of the existing methods are
based on the image-level pooled representation, yet ignore
considerable local clues that are transferable across tasks.
To address this issue, we propose an end-to-end Task-aware
Part Mining Network (TPMN) by integrating an automatic
part mining process into the metric-based model for FSL.
The proposed TPMN model enjoys several merits. First, we
design a meta filter learner to generate task-aware part fil-
ters based on the task embedding in a meta-learning way.
The task-aware part filters can adapt to any individual task
and automatically mine task-related local parts even for an
unseen task. Second, an adaptive importance generator is
proposed to identify key local parts and assign adaptive
importance weights to different parts. To the best of our
knowledge, this is the first work to automatically exploit the
task-aware local parts in a meta-learning way for FSL. Ex-
tensive experimental results on four standard benchmarks
demonstrate that the proposed model performs favorably
against state-of-the-art FSL methods.

1. Introduction
Deep Convolutional Neural Networks (CNNs) have

achieved tremendous success in a wide range of computer
vision tasks [43, 14, 20, 37, 29, 54, 55]. However, the train-
ing of CNNs requires large amounts of annotated images,
which are prohibitively expensive to collect [2]. Few-Shot
Learning (FSL) [12, 11, 48, 44] is promising in reducing the
need for human annotation, which aims at learning a model
with good generalization capability such that it can classify
unlabeled samples (query set) into new unseen classes with
only one or a few examples (support set). Usually, a few-
shot classifier is trained to solve N -way K-shot tasks that
consist of N classes and K support samples per class.

To tackle the FSL problem, a series of previous work [44,
46, 13, 23, 22, 52] adopts a metric-based learning model,
which firstly learns a good embedding space, and then se-
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Figure 1. Illustration of our motivation. (a) shows the comparison
of different local representations. The first row presents the local
patches derived by grid dividing in the previous methods. The sec-
ond row shows the local parts learned in an automatic way. The lat-
ter achieves better discriminability and contains fewer background
noises. (b) shows the task-aware mechanism. For the same image
of dog, the attended local parts change with different tasks.

lects a distance metric to directly compute the distances
between the query and support images for classification.
However, most of these methods utilize the image-level
pooled representation for classification, which could lose
considerable discriminative local clues that enjoy favorable
transferability across classes [53]. Recently, several meth-
ods [24, 25, 53, 9] consider taking advantage of the local
representation for FSL. These methods decompose images
into a set of local patches by grid dividing on the feature
map. Then the image-level distance measurement between
a pair of the query and the support images is achieved by
aggregating the similarities between local patches.

By studying the previous FSL methods based on local
representations [24, 25, 53, 9], we sum up three charac-
teristics that are imperative for building a robust few-shot
model. (1) Automaticity. In the previous methods, the lo-
cal patches obtained by the pre-defined decomposition strat-
egy suffer from large randomness. Some local patches have
high possibilities to cover only a small part of the semantic
regions of the object, or even completely the background
regions (see the first row in Figure 1 (a)). This random-
ness could cause misalignments when matching the local
patches. However, the human can quickly recognize a new
category by automatically segmenting the objects into mul-
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tiple local parts (see the second row in Figure 1 (a)) and
comparing them to the similar object parts that have already
been seen. The automaticity in the part mining process en-
sures natural semantic correspondences between the local
parts. (2) Task-Aware Mechanism. In previous methods,
a common set of local regions is shared across tasks, which
may not handle the diverse tasks with large distribution dif-
ferences well. As each individual task consists of a unique
set of categories, the local regions that are effective for the
current task may not always satisfy the needs of other tasks.
For example, when differentiating dog from tiger, humans
pay more attention on the texture of part face, while when
recognizing dog and pig, the structure of part nose is obvi-
ously more essential (see Figure 1 (b)). Even for the same
image, the importance degrees of the local parts vary from
task to task. Therefore, without a task-aware mechanism,
it is challenging to make the learned model generalize to
novel classes well. (3) Adaptive Weights. When making
the final predictions, suppressing the importance of irrele-
vant regions can avoid introducing noises, while more dis-
criminative regions should enjoy higher weights. Therefore
the importance weights of different local parts should be
adaptively assigned.

Inspired by the above insights, we propose an end-to-end
Task-aware Part Mining Network (TPMN) to integrate the
automatic local part mining process into the metric-based
FSL. To achieve the automaticity in discovering local part
regions, we firstly introduce a set of Part Filters (PFs) to au-
tomatically generate part-aware activation maps. The PFs
are parameterized by multiple learnable 1 × 1 convolution
kernels, which can activate the spatial attention that covers a
certain local part on the feature map. The resulted activation
maps are used as part masks to obtain multiple discrimina-
tive part-aware features for both support and query images.
However, the above PFs, once are learned, are fixed and
shared across tasks, which are incapable of handling var-
ious tasks well. Therefore, to equip the network with the
task-aware mechanism, we design a Meta Filter Learner
(MFL) to flexibly generate the parameters of the PFs that
are customized for an individual task, in a meta-learning
way. This is achieved by incorporating the task embedding,
which expresses the unique categorical information of the
specific task. MFL establishes the connection between the
task embedding and part filters. Intuitively speaking, the
parameters of the PFs will be derived by transforming the
task embedding into the parameter space. In this way, the
task-aware PFs are able to adapt from task to task and can
provide the most desired information for any tasks, even the
tasks with unseen classes. Then, to determine the image-
level similarity for the given query and support image, we
assign adaptive weights to local parts by an adaptive im-
portance generator, such that the less relevant parts will be
suppressed while the discriminative ones are highlighted.

Finally, the image-level similarity is derived as the weighted
aggregation of local similarities between part-aware fea-
tures from different images.

The contributions of our method could be summarized
into three-fold: (1) We propose an end-to-end Task-aware
Part Mining Network by jointly exploiting the automatic
local part mining process and the meta-learning strategy.
(2) We design a meta filter learner to generate task-aware
part filters, which can discover task-related local parts even
for the unseen tasks. Also, an adaptive importance gen-
erator is proposed to assign importance weights for local
parts. To our best knowledge, this is the first work to ex-
ploit discriminative local parts in a meta-learning way for
FSL. (3) Extensive experimental results on four challeng-
ing benchmarks demonstrate that our method performs fa-
vorably against state-of-the-art FSL methods.

2. Related Work
In this section, we introduce several lines of research in

few-shot learning, local representation learning in FSL, and
part-aware attention mechanism.

Few-Shot Learning. Existing FSL methods can be gen-
erally divided into three groups: (1) Metric-based meth-
ods [48, 44, 46, 47, 26, 42, 52] learn a discriminative em-
bedding space for their chosen distance metrics. Match-
ingNet [48] and ProtoNet [44] perform classification by
computing the similarities or distances between support and
query samples. There are also interesting methods that di-
rectly learn a deep distance metric, e.g., using the CNN-
based relation module to produce the relation score [46],
utilizing graph neural network to infer the edge strength [41,
18, 50]. (2) Gradient-based methods [12, 34, 3, 45, 16] de-
sign the meta-learner as an optimizer to adapt model param-
eters to new tasks in the low-shot regime. MAML [12] and
many of its variants [3, 45, 16] aim to learn a good model
initialization so that the learner can rapidly adapt to novel
tasks. In [34], an LSTM-based meta-learner is trained as
the optimizer that learns to update model parameters, for
replacing the SGD optimizer. (3) Generation-based meth-
ods [5, 33, 32, 30, 38] usually develop a meta-learner as a
parameter predicting network to generate task-specific net-
works given few novel class samples. [32] and [33] gen-
erate the weights of the classification layer from extracted
features. [30] and [38] modulate the feature maps with scal-
ing and shifting parameters predicted from the current task
input. Our proposed method belongs to the metric-based
methods. However, a key difference lies in that the above
methods generally adopt a global representation for metric-
based classification, while our method focuses on automat-
ically mining multiple local object parts.

Local Representation Learning in FSL. Some FSL
methods [25, 24, 9, 53] attempt to exploit the discrimina-
tive power of local representations. The basic idea is to
consider each spatial location in the feature map as a local
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patch, and gather the patch-level distances as image-level
distance. DC [25] performs dense classification on each
local feature and fuses the results for the final prediction.
DN4 [24] adopts k-NN selection on the patch distance ma-
trix to fuse highly-related distances, and ATL-Net [9] makes
a refinement by applying an episodic attention mechanism
to select important patches. DeepEMD [53] performs a
many-to-many matching between local patches and gets the
global distance by solving an optimization problem of Earth
Mover’s distance. However, none of these methods explic-
itly design a task-adaptive mechanism to dynamically adapt
the local features to different tasks. Our method utilizes
a meta-learning strategy to automatically localize multiple
object parts as the local representations, which is task-aware
and can generalize to an arbitrary unseen task well.

Part-Aware Attention Mechanism. Attention mecha-
nisms aim to highlight important regions to extract more
discriminative features. Several methods [31, 56, 8] uti-
lize attention mechanisms to exploit multiple object parts
and learn complementary representation from these parts.
In [31], selective search is adopted to mine candidate lo-
cal patches and remove noisy patches by threshold filter-
ing. [56] clusters the feature channels to produce multi-
ple part attention maps. In [8], dynamic sparse attentions
are learned to focus on the informative regions. How-
ever, these methods are not designed for FSL, where test
tasks comprise different sets of novel classes. Furthermore,
these methods lack the task-adaptive mechanism, thus can-
not generalize to the test images from unseen classes well.
Different from these existing methods, in this paper, we de-
sign a task-aware mechanism through a meta filter learner,
which can help the FSL model adapt to new tasks and dis-
cover task-related local parts.

3. Our Method
In this section, we first formulate the task of few-shot

learning. Then we describe each modules of the proposed
Task-aware Part Mining Network (TPMN) in detail. As
shown in Figure 2, our TPMN consists of two modules. (1)
The task-aware part filter module is responsible for discov-
ering local parts through the task-aware part filters that are
generated by a meta filter learner. (2) The part-aware met-
ric module aims at calculating the final similarity score by
weighted aggregation of the part-level similarities.

3.1. Problem Definition
The few-shot classification is conducted on a set of tasks

T (also called episodes). The training set Dtrain is seg-
mented into a set of tasks Ttrain to mimic the test setting, in
the hope of acquiring the generalization ability across tasks.
The testing set Dtest is composed of testing tasks Ttest, and
contains classes disjoint from the training set Dtrain. Each
few-shot task T consists of a support set S and a query set
Q. Specifically, an N -way K-shot task means the model

is trained over the support set S consisting of N classes
with K samples per class, i.e., S = {(xs

i , y
s
i )}NK

i=1 , where
ysi ∈ {1, 2, · · · , N}. The query set is composed of M sam-
ples per class, i.e., Q = {(xq

i , y
q
i )}MN

i=1 . Our goal is to
classify a query sample xq

i ∈ Q into one of the N support
classes given a few labeled samples from S.

3.2. Task-Aware Part Filter Module
Different from previous approaches that extract local

features by manually grid-dividing [24, 25, 53, 9], we au-
tomatically explore the diverse object part regions to flexi-
bly focus on the multi-scale local information, without any
bounding boxes or part annotations. To achieve this goal,
we design a part mining process to obtain part-aware fea-
tures, and a meta filter learner to augment the part mining
process with task-aware ability.

Part Mining Process. We introduce multiple Part Filters
(PFs) to filter out the noisy background regions and retain
the discriminative part regions with high objectness. Specif-
ically, the feature map x ∈ RH×W×C is extracted from fea-
ture extractor φ, where C,H and W denote the number of
channels, height, and width, respectively. We assume that
the object is composed of k meaningful local parts. Thus we
design k PFs with each of them responsible for dealing with
one specific part, denoted as P = {p1,p2, · · · ,pk}. Each
PF is parameterized by a 1 × 1 convolution kernel weight
(the kernel bias is omitted to simplify notation), i.e., the i-th
part filter pi ∈ R1×1×C . We apply PFs to convolve with
feature map x and derive the activation map:

Ai = pi ⊙ x, i = 1, 2, · · · , k, (1)

where Ai ∈ RH×W is the i-th part-aware activation map,
and ⊙ is the convolution operation. Then, the i-th part mask
Mi can be generated by applying Sigmoid function σ on Ai,
i.e., Mi = σ(Ai), i = 1, 2, · · · , k. Mi covers the region
of the i-th object part by activating the pixels belonging to
it.Then we can obtain k corresponding part-aware feature
maps F = {F1, F2, · · ·Fk} w.r.t. the input feature map x:

Fi = x⊗R(Mi), i = 1, 2, · · · , k, (2)

where R reshapes the mask Mi to be the same dimension
as x, i.e., R(Mi) ∈ RH×W×1, and ⊗ denotes the element-
wise multiplication at each spatial location in every chan-
nel. Fi ∈ RH×W×C is the resulted i-th part-aware feature
map. Then, by applying global average pooling on each Fi

in the spatial dimensions, we derive k part-aware features:
Ω(x) = {fi}ki=1, where fi ∈ RC . These part-aware fea-
tures encapsulate the discriminative local part information,
thus can be viewed as multi-scale and complementary rep-
resentations of the given image.

Meta Filter Learner. The above generic PFs are shared
across different tasks and are fixed after end-to-end train-
ing. However, the training tasks and testing tasks are sam-
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Figure 2. The architecture of TPMN (illustrated in the 1-shot setting): (1) The task-aware part filter module takes in the query and support
images to derive their part features. The meta filter learner produces the task-aware part filters PT conditioned on the task embedding. PT

are used to generate multiple part masks for each image. (2) The part-aware metric module computes the part similarities, which are then
weighted by the importance weights produced by the adaptive importance generator for the final similarity score.
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Figure 3. The illustration of the meta filter learner Gp. Gp con-
sists of a sequence of weight generators {gpi }

k
i=1, which generate

the parameters of the corresponding task-aware part filter.

pled from different categories with large distribution differ-
ences. The generic PFs are not able to accommodate the
need of these diverse tasks, as each task involves distin-
guishing a potentially unique set of classes. Therefore, we
design a Meta Filter Learner (MFL) to augment the task-
aware ability of the model. The MFL, denoted as Gp, is
responsible for adaptively generating the PFs conditioned
on the categorical information of the specific task. Specifi-
cally, the MFL consists of a sequence of weight generators
{gp

1,g
p
2, · · · ,g

p
k} (see Figure 3), which can generate the pa-

rameters of the k corresponding task-aware PFs respectively
(see Supplementary Material for details of the kernel bias
generation). Gp accepts as input the task embedding eT

to contextualize the categorical information involved in the
current task T . eT is defined as the mean vector of the fea-
ture vectors x̃s of all the support instances in the task T , i.e.,
eT = 1

NK

∑NK
m=1 x̃

s
m. Here, x̃s ∈ RC is derived by apply-

ing global average pooling on the support feature map xs.
Gp establishes the mapping from the task embedding eT to
the parameter space of part filters. In this way, the formula-

tion of PFs is conditioned on the contextualized information
of the specific task, such that the PFs are aware of the task
characteristics and can exploit the most task-related parts
even for the unseen tasks. These task-aware PFs are de-
noted as PT = {pT

1 ,p
T
2 , · · · ,pT

k }, where pT
i ∈ R1×1×c

can be produced by the corresponding generators gp
i in Gp:

pT
i = gp

i (e
T ; θpi ), i = 1, 2, · · · , k, (3)

where θpi denotes the parameters of the gp
i . Then, we ap-

ply PT to Eq. (1) and Eq. (2) to produce the adapted part-
aware features {fi}ki=1. The MFL can be trained on large
amounts of tasks to learn how to produce part filters that
best fit the current task, in a meta-learning way. This is
achieved by minimizing classification errors on query sam-
ples. The meta-learned MFL enables good generalization
and fast adaptation on the completely new tasks in testing.

Diversified Local Parts. Without part-level supervision,
it is likely the case that all of the part masks gather in the
most discriminative regions and consequently produce iden-
tical part-aware features. To help the part-aware features
target for distinct object part regions, we propose a part di-
versity loss motivated by [27, 51], which is formulated as:

Ldiv =

k∑
i=1

k∑
j=1,j ̸=i

< fi, fj >

∥fi∥2∥fj∥2
. (4)

The intuition behind Ldiv is that, if the i-th and j-th
part-aware features simultaneously give high activation re-
sponses in a similar area, then the Ldiv will have a large
value. By minimizing Ldiv , the part-aware features are pre-
vented from having high similarities with each other.
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3.3. Part-Aware Metric Module
After going through the task-aware part filter module,

each instance is structurally reframed as a set of part-aware
features: Ω(x) = {fi}ki=1. To predict the class of the query
sample, we design a part-aware metric module to calculate
and merge the part-level similarities based on the natural
semantic correspondences between local parts. Then we use
global similarities to perform k-NN classification.

Specifically, given the part-aware feature set of query
sample xq: Ω(xq) = {fq

i }ki=1, we wish to obtain its sim-
ilarities with all the categories {c}Nc=1 in the support set,
which can then be transformed as the predicted class prob-
abilities. For the 1-shot setting, the support sample xs

c from
class c can directly represent its class: Ω(c) = {fs

i }ki=1.
Notably, for the many-shots setting, we average the part-
aware features of the support instances in the same class as
the category part-aware features: f c

i = 1
K

∑K
n=1 f

s,n
i , i =

1, 2, · · · , k, where fs,n
i denotes the n-th support sample in

the class c. Then the category c can be represented as:
Ω(c) = {f c

i }ki=1. For the convenience of the expression,
we use Ω(c) = {f c

i }ki=1 as the category part-aware features
for both the 1-shot and many-shot settings. Afterwards, the
part-aware features obtained from the same task-aware PF
form a natural semantic correspondence, as they are most
likely to describe the same local parts. Thus we match fq

i

and f c
i to form a part-aware feature pair.

The global image-level similarity between query xq and
category c can be determined by aggregating the part sim-
ilarities. However, naively combining the local similarities
with equal weights is suboptimal, as the contribution of dif-
ferent local parts varies a lot. Some parts may contain back-
ground noises and need to be suppressed. To achieve this
goal, we design an adaptive importance generator Ga to
assign the proper importance weights to the part-aware fea-
tures. Specifically, the part-ware feature pairs are concate-
nated and fed into Ga to derive the importance weights:

ai = Ga(f
q
i ⊕ f c

i ; θa), i = 1, 2, 3, · · · , k, (5)

where ⊕ represents the concatenation, and ai is the impor-
tance weight for the i-th part-aware feature pair, θa denotes
the parameters of Ga. Constrained by ground-truths, the
end-to-end trained Ga could learn to assign higher weights
to the parts that have a large contribution to the classifica-
tion, e.g., the well-matched and discriminative parts. De-
note the comparison module as Φ, the final global similarity
is defined as the weighted sum of local similarities:

Φ(xq, c) =

k∑
i=1

ai(f
c
i · fq

i ). (6)

3.4. Training Objectives

Based on the global similarities computed by Φ, our
network can compute the probability over class c ∈

{1, 2, · · · , N} for each query point xq in the current task
by a softmax function:

p(y = c|xq) =
exp(Φ(xq, c))∑N

c′=1 exp(Φ(xq, c′))
, (7)

The classification loss can be formulated as the negative
log-probability:

Lcls = − 1

|Q|
∑

(xq,yq)∈Q

log p(y = yq|xq), (8)

As such, the final loss for our TPMN is as follows:

Ltotal = Lcls + λdivLdiv. (9)

where λdiv is the weight of Ldiv . Please refer to the Sup-
plementary Material for the discussion of the differences
between TPMN and the relevent methods.

4. Experiments
In this section, we first introduce implementation details

and datasets. Then, we show experimental results and some
visualizations. Please refer to the Supplementary Material
for more implementation details and results.

4.1. Implementation Details
For a fair comparison with previous works [52, 15, 53],

we choose ResNet-12 as the backbone of the feature ex-
tractor φ, and remove the last global average pooling layer.
Specifically, the input images, resized as 84×84×3, are fed
into φ to get the feature map x with the size of 5× 5× 640.
The weight generator gp

i (i = 1, 2, · · · , k) in Gp is com-
posed of 2 fully connected (FC) layers, each of which is
followed by a ELU activation function. The adaptive im-
portance generator Ga also consists of 2 FC layers. Before
the meta-training, we apply a pre-training strategy for the
backbone φ to accelerate the training process, as in [40, 52].
Then the model is trained in an episodic way. Each episode
is comprised of an N -way K-shot task including 15 query
samples for each class. We mainly experiment with 5-way
1-shot and 5-way 5-shot settings. The SGD optimizer is
employed with the learning rate of 0.0001. We adopt image
augmentations including horizontal flip, random crop and
color jitter for training. The number of local parts is set as
15 and 20 for 1-shot and 5-shot settings on miniImageNet,
which is selected by episodic cross validation. The default
value of λdiv is set as 0.1. During the testing stage, we
report the average classification accuracy with ±95% con-
fidence intervals in 1000 randomly sampled tasks.

4.2. Dataset Descriptions
We evaluate our model on four challenging datasets

including miniImageNet [48], tieredImageNet [36],
Fewshot-CIFAR100 (FC100) [30] and CIFAR-FS [4].
MiniImageNet [48] has 100 categories with 600 samples

8437



A
cc

u
ra

cy
 (

in
 %

)

Number of Masks

A
cc

u
ra

cy
 (

in
 %

)

60.5
61.5

64
65.6 66.4 67.6 67.1 66.1

45

50

55

60

65

70

75

80

0 1 2 5 10 15 20 25

mini-1shot

(b)(a)

79.5
81.4 81.2

82.2 82.6 83.1 83.4 83.2

72

74

76

78

80

82

84

86

88

0 1 2 5 10 15 20 25

mini-5shot

Number of Masks
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Figure 5. The visualization of the learned local parts (taking five
local parts as examples) of two pairs of support and query images
from the class Doberman and class Electric Guitar. Each pair
of images are from the same class. We can observe the explicit
semantic correspondences between the local parts.

per category chosen from the ILSVRC-2012 [39]. Follow-
ing the split in [34], these categories are split into 64, 16,
and 20 for training, validation and testing, respectively.
TieredImageNet [36] is a larger subset of ILSVRC-
12 [39], containing 608 classes that are split into 351
training classes, 97 validation classes and 160 test classes,
as in [36]. CIFAR-FS [4] is built upon CIFAR100 [19] and
contains 100 classes, with 600 samples per class. These
classes are split into 64, 16 and 20 classes for training,
validation, and testing, respectively. FC100 [30] is also
derived from CIFAR100 [19], which contains 100 classes
grouped into 20 superclasses to minimize class overlap.
These classes are split into 60, 20, and 20 for training,
validation, and testing, respectively.

4.3. Comparison with Other Methods
Comparison with the baseline. We first compare our

method with the baseline ProtoNet [44], which is based on
the image-level representation. ProtoNet calculates the dis-
tances of the query sample with every class prototype (the
mean representation of the support samples) as the class
probabilities for the prediction. We re-implement the Pro-
toNet with the same pre-trained backbone and training strat-
egy with our TPMN. As shown in Table 1, our TPMN
significantly outperforms the ProtoNet that relies on the
global image representations under both settings, achieving

a whopping accuracy gain of 7.17% in 5-way 1-shot set-
ting and 3.97% in 5-way 5-shot setting on miniImageNet.
This verifies the effectiveness of our method in discovering
local parts and utilizing the local features. The accuracy im-
provements also show the superiority of the local part rep-
resentation over the global representation, as local features
are more fine-grained and transferable across tasks.

Comparison with methods based on local represen-
tations. We also compare our method with several metric-
based baselines that are based on local embedding, includ-
ing DN4 [24], ATL-Net [9], DC [25] and DeepEMD [53].
The results are summarized in Table 1. Our method out-
performs all of these methods and achieves significant ac-
curacy gains than the best local-based method (i.e., Deep-
EMD). This is because previous methods simply adopt the
patch representation divided from the feature map and suf-
fer from large randomness. The patches could cover large
noises and lose discriminative information contained in the
irregular part regions like the head, leg and so on. However,
our model can automatically exploit multiple local parts by
part filters, and percept the most task-related local features
for the current task with a task-aware mechanism.

Comparison with the state-of-the-arts. We com-
pare TPMN with some state-of-the-art methods. (1) Re-
sults on miniImageNet and tieredImageNet (see Table 1
(a)). The compared state-of-the-art methods are divided
into three groups: gradient-based, generation-based, and
metric-based. Our TPMN achieves the new state-of-the-
art performance on both benchmarks under all settings,
which strongly proves the effectiveness of our method.
Compared with the best generation-based method (DTN),
TPMN achieves a large margin of 4.19% in 1-shot setting,
and 5.53% in 5-shot setting. The previous generation-based
methods generally produce the parameters of linear classi-
fiers and convolution layers, while our method focuses on
the generation of the more generalizable task-aware part fil-
ters. Compared with the metric-based methods, our method
also has a clear lead. This is because our method claims
better transferability by utilizing the task-aware local parts.
(2) Results on FC100 and CIFAR-FS (see Table 1 (b) and
Table 1 (c)). The proposed method also achieves superior
performance in all the tasks on FC100 and CIFAR-FS. In
particular, our results outperform the state-of-the-art perfor-
mance by a significant margin of 1.6% in the 5-way 1-shot
task on CIFAR-FS, which further demonstrates the effec-
tiveness of our method in exploiting task-aware local parts.

4.4. Ablation Study
In this section, we perform detailed ablation studies to

evaluate the effect of each design.
Analysis of Model Components. We perform detailed

analysis of model components of TPMN on miniImageNet,
as shown in Table 2. To investigate the contribution of the
task-aware part filters (TAPFs), we compare with our re-

8438



Method Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

Gradient-based
MAML [12] ConvNet 48.70 ± 0.84 55.31 ± 0.73 51.67 ± 1.81 70.30 ± 1.75

MTL [45] ResNet-12 61.20 ± 1.80 75.50 ± 0.80 65.62 ± 1.80 80.61 ± 0.90

MetaOptNet [21] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.71 81.56 ± 0.63

E3BM [28] ResNet-12 63.8 ± 0.4 80.1 ± 0.3 71.2 ± 0.4 85.3 ± 0.3

Generation-based
TADAM [30] ResNet-12 58.50 ± 0.30 76.60 ± 0.38 - -
Dynamic [13] ConvNet 56.20 ± 0.86 73.00 ± 0.64 - -
LEO [40] WRN-28 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

DTN [6] ResNet-12 63.45 ± 0.86 77.91 ± 0.62 - -
Metric-based
MatchingNet [48]ResNet-12 43.56 ± 0.84 55.31 ± 0.73 - -
RelationNet [46] ResNet-12 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78

CAN [15] ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37

DN4§ [24] ConvNet 51.24 ± 0.74 71.02 ± 0.64 - -
ATL-Net§ [9] ConvNet 54.30 ± 0.76 73.22 ± 0.63 - -
Distill [47] ResNet-12 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49

DSN [42] ResNet-12 62.64 ± 0.66 78.83 ± 0.45 66.22 ± 0.75 82.79 ± 0.48

FEAT [52] ResNet-12 66.78 ± 0.20 82.05 ± 0.14 - -
TRAML [22] ResNet-12 67.10 ± 0.52 79.54 ± 0.60 - -
DC§ [25] ResNet-12 62.53 ± 0.19 78.95 ± 0.13 - -
DeepEMD§ [53] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

ProtoNet‡ [44] ResNet-12 60.47 ± 0.62 79.47 ± 0.43 70.46 ± 0.69 83.78 ± 0.65

TPMN (ours) ResNet-12 67.64 ± 0.63 83.44 ± 0.43 72.24 ± 0.70 86.55 ± 0.63

(a) Results on miniImageNet and tieredImageNet datasets.

Method Backbone
Fewshot-CIFAR100

1-shot 5-shot
TADAM [30] ResNet-12 40.10 ± 0.40 56.10 ± 0.40

MetaOptNet [21] ResNet-12 41.10 ± 0.60 55.50 ± 0.60

MatchingNet [48]ResNet-12 43.88 ± 0.75 57.05 ± 0.71

MTL [45] ResNet-12 45.10 ± 1.8 57.60 ± 0.9

Distill [47] ResNet-12 44.60 ± 0.7 60.90 ± 0.6

Centroid [1] ResNet-18 45.83 ± 0.48 59.74 ± 0.56

DC§ [25] ResNet-12 42.04 ± 0.17 57.05 ± 0.16

DeepEMD§ [53] ResNet-12 46.47 ± 0.26 63.22 ± 0.71

ProtoNet‡ [44] ResNet-12 42.66 ± 0.76 58.92 ± 0.76

TPMN (ours) ResNet-12 46.93 ± 0.71 63.26 ± 0.74

(b) Results on Fewshot-CIFAR100 dataset.

Method Backbone
CIFAR-FS

1-shot 5-shot
Shot-Free [35] ResNet-12 69.2 ± n/a 84.7 ± n/a

MetaOptNet [21] ResNet-12 72.0 ± 0.7 84.2 ± 0.5

MABAS [17] ResNet-12 73.5 ± 0.8 85.7 ± 0.7

Distill [47] ResNet-12 73.9 ± 0.8 86.9 ± 0.5

DSN [42] ResNet-12 72.3 ± 0.8 85.1 ± 0.6

ProtoNet‡ [44] ResNet-12 70.3 ± 0.7 83.5 ± 0.5

TPMN (ours) ResNet-12 75.5 ± 0.9 87.2 ± 0.6

(c) Results on CIFAR-FS dataset.

Table 1. Comparison of our method with the state-of-the-art methods on (a) miniImageNet, tieredImageNet, (b) Fewshot-CIFAR100 and
(c) CIFAR-FS. The bold font indicates the highest result. ‡ means the results are from our re-implemented version, and § denotes the
methods based on local representations.

Method 1-shot 5-shot
ProtoNet‡ 60.47 79.47
ProtoNet‡+PF 64.11 80.75
ProtoNet‡+TAPF 65.94 81.47
ProtoNet‡+TAPF+Ldiv 66.53 82.84
ProtoNet‡+TAPF+Ga 66.83 82.39
ProtoNet‡+TAPF+Ga+Ldiv(TPMN) 67.64 83.44

Table 2. Ablation results on miniImageNet in 5-way 1-shot and
5-way 5-shot settings.

implemented ProtoNet and the generic part filters (PFs) that
are end-to-end learned and shared across tasks, using the
same number of masks. Then, we test the performance im-
provement of Ldiv and the adaptive importance generator
Ga. The complete version of TPMN gives the highest re-
sults in both settings. The results are analyzed as follows:
(1) The introduction of TAPFs achieves remarkable perfor-
mance gains compared with ProtoNet, e.g., 5.47% in 1-shot
setting. The improvements can be mainly ascribed to the
strong ability of TAPFs to discover complementary local
parts. Also, the TAPFs significantly outperform the generic
PFs, with a lead of 1.83% in 1-shot setting. This justifies
the superiority of our task-aware mechanism. Compared
with generic PFs, TAPFs can adapt to arbitrary tasks and
produce more transferable and task-related part features.
(2) With the utilization of Ldiv , further improvements can
be observed, e.g., 1.37% in 5-shot setting. Ldiv prevents the
filters from focusing on similar local parts. The diversified

Method 1-shot 5-shot
cosmax [7] 43.06 ± 1.01 64.38 ± 0.86
ProtoNet‡ [44] 47.51 ± 0.72 67.96 ± 0.70
Diverse 20 [10] - 66.17 ± 0.55
centroid [1] 46.85 ± 0.75 70.37 ± 1.02
FEAT‡ [52] 50.67 ± 0.78 71.08 ± 0.73
TPMN(ours) 52.83 ± 0.65 72.69 ± 0.52

Table 3. Cross-domain results from miniImageNet to CUB in 1-
shot and 5-shot settings. ‡ denotes our implementation.

local regions help the model to form a more comprehen-
sive understanding of the object. (3) The addition of Ga

also contributes to a certain performance lift compared with
the combination of ProtoNet and TAPF, leading by 0.92%
in 5-shot setting. This proves that the Ga is productive in
discerning the discriminative parts and less-discriminative
ones. Thus Ga can assign proper part weights to promote a
more effective global metric.

Analysis of the Number of Local Parts. We study the
influence of the number of local parts (denoted as Nf ) on
miniImageNet (see Figure 4). In 1-shot setting, the best per-
formance is achieved when Nf = 15. With the growth of
Nf , the accuracy presents a rising trend, since more part re-
gions can bring in more complementary semantic informa-
tion of the object. However, after reaching the peak value
at Nf = 15, the accuracy falls as Nf increases. This is
because the available few samples cannot support the learn-
ing of the massive model parameters brought by increasing
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Figure 6. (a) The visualization of the local parts and their nor-
malized importance weights. Larger weights are assigned to the
more discriminative parts. (b) The local parts obtained from dif-
ferent part mining strategies on the unseen tasks. The task-aware
PFs have better generalization and localization abilities than the
generic PFs that are end-to-end learned and shared across tasks.

masks. Too many PFs may introduce redundant semantic
information and even background noises. A similar perfor-
mance variation trend can be observed in the 5-shot setting.
The difference is that the best performance is achieved at
Nf = 20. Overall speaking, the accuracy changes rela-
tively smoothly under different Nf , which indicates the ro-
bustness of our model.

4.5. Cross-Domain Transfer Experiments
Following the experimental setups in [7], we perform

cross-domain transfer experiments where the model is
meta-trained on miniImageNet dataset, but is meta-tested
on CUB dataset [49]. This experimental setting allows for
a larger domain gap and better evaluation of the knowledge
transfer ability of different methods. As shown in Table 3,
our method demonstrates the superiority over other meth-
ods and shows absolute accuracy gains of 2.16% in 1-shot
setting, and 1.61% in 5-shot setting over the best method
(i.e., FEAT [52]). This indicates that our method effectively
mines the object part regions that provide more transferable
local information across different domains. Furthermore,
the task-aware mechanism in meta filter learner allows for
the customization of the part mining process for any task.
Therefore, our model can overcome the domain gap and
generalize to the novel classes well.

4.6. Visualizations
Visualization of Part Correspondence. To qualita-

tively evaluate the task-aware part filters, we visualize sev-
eral groups of part masks of the query and support images
on miniImageNet and tieredImageNet. The images in each
group are from the same category (see Figure 5). As we
can see, clear semantic correspondences are established be-
tween the pair of part masks obtained from the same task-
aware PF. For example, in the category Doberman, the part

head, hip and lower limbs of the query image can accurately
match with the corresponding part masks of the support im-
age, even though the objects in the two images are in the op-
posite direction. This proves the efficiency of our PFs. After
meta-training on numerous tasks consisting of diverse im-
ages, each PF can capture a specific semantic pattern well,
so the resulted part alignments are robust to the view and
scale variations. Another interesting fact is that our PFs can
discover not only the small regions like the part head, but
also the large regions like the the upper part of the body.
The multi-scale information can further strengthen the dis-
criminative power and robustness of our model.

Visualization of Part Importance Weights. To vividly
present the working mechanism of adaptive importance
generator Ga, we visualize the part masks with their nor-
malized importance weights assigned by Ga, in the pair of
query and support images belonging to the same category.
As shown in Figure 6 (a), some well-matched and discrim-
inative parts are highlighted, occupying larger weights (i.e.,
the second, fourth and fifth parts), while some parts that are
not well-aligned or contain large background noises are as-
signed smaller weights (i.e., the first and the last parts).

Comparison between different part mining strate-
gies. We compare the part masks in the unseen task learned
by the generic PFs and task-aware PFs in a more intuitive
way. As shown in Figure 6 (b), the generic PFs can hardly
attend to the objects, with most of the masked regions full
of irrelevant backgrounds. Because of the absence of an
explicit mechanism for feature adaptation, the generic PFs
cannot generate discriminative part regions for the images
from novel classes. By contrast, the task-aware part filters,
be equipped with the task-adaptive ability brought by the
meta filter learner, have a good performance in mining di-
verse and high-quality local parts for the unseen classes.

5. Conclusion
In this paper, we propose a Task-aware Part Mining Net-

work for FSL. We automatically explore object parts in the
metric-based model in a meta-learning way. A meta filter
learner is proposed to generate task-aware part filters, which
can adapt to any individual task and mine discriminative lo-
cal parts for FSL. Experiments show the effectiveness.
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coste. Tadam: Task dependent adaptive metric for improved
few-shot learning. In Advances in Neural Information Pro-
cessing Systems, pages 721–731, 2018.

[31] Yuxin Peng, Xiangteng He, and Junjie Zhao. Object-part
attention model for fine-grained image classification. IEEE
Transactions on Image Processing, 27(3):1487–1500, 2017.

[32] Hang Qi, Matthew Brown, and David G Lowe. Low-shot
learning with imprinted weights. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2018.

[33] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-
shot image recognition by predicting parameters from activa-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[34] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In International Conference on Learn-
ing Representations, 2017.

[35] Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Few-shot learning with embedded class models and shot-free
meta training. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 331–339, 2019.

[36] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. In International Conference on Learning
Representations, 2018.

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(6):1137–1149, 2016.

[38] James Requeima, Jonathan Gordon, John Bronskill, Sebas-
tian Nowozin, and Richard E Turner. Fast and flexible
multi-task classification using conditional neural adaptive
processes. In Advances in Neural Information Processing
Systems, pages 7959–7970, 2019.

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[40] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol
Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-
sell. Meta-learning with latent embedding optimization.
In International Conference on Learning Representations,
2019.

[41] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot
learning with graph neural networks. In International Con-
ference on Learning Representations, 2018.

[42] Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. Adaptive subspaces for few-shot learn-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4136–4145, 2020.

[43] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[44] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Advances in Neural
Information Processing Systems, pages 4077–4087, 2017.

[45] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.
Meta-transfer learning for few-shot learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 403–412, 2019.

[46] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018.

[47] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-
fication: a good embedding is all you need? In European
Conference on Computer Vision, pages 266–282, 2020.

[48] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning. In
Advances in Neural Information Processing Systems, pages
3630–3638, 2016.

[49] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[50] Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin
Zhou, and Yu Liu. Dpgn: Distribution propagation graph
network for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 13390–13399, 2020.

[51] Wenfei Yang, Tianzhu Zhang, Zhendong Mao, Yongdong
Zhang, Qi Tian, and Feng Wu. Multi-scale structure-aware
network for weakly supervised temporal action detection.
IEEE Transactions on Image Processing, 30:5848–5861,
2021.

[52] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8808–8817, 2020.

[53] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12203–12213, 2020.

[54] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang.
Learning multi-task correlation particle filters for visual
tracking. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 41(2):365–378, 2019.

[55] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang.
Robust structural sparse tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 41(2):473–486,
2019.

[56] Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learn-
ing multi-attention convolutional neural network for fine-
grained image recognition. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2017.

8442


