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Diverse colorization results 

Controllable and smooth transitions

Figure 1: By leveraging the generative color prior and the delicate designs, our method is capable of generating vivid and
diverse colorization results without relying on external exemplars. Besides, our method could attain controllable and smooth
transitions by walking through the GAN latent space.

Abstract

Colorization has attracted increasing interest in recent
years. Classic reference-based methods usually rely on
external color images for plausible results. A large im-
age database or online search engine is inevitably required
for retrieving such exemplars. Recent deep-learning-based
methods could automatically colorize images at a low cost.
However, unsatisfactory artifacts and incoherent colors are
always accompanied. In this work, we aim at recovering
vivid colors by leveraging the rich and diverse color priors
encapsulated in a pretrained Generative Adversarial Net-
works (GAN). Specifically, we first “retrieve” matched fea-
tures (similar to exemplars) via a GAN encoder and then in-
corporate these features into the colorization process with

feature modulations. Thanks to the powerful generative
color prior and delicate designs, our method could pro-
duce vivid colors with a single forward pass. Moreover,
it is highly convenient to obtain diverse results by modify-
ing GAN latent codes. Our method also inherits the merit
of interpretable controls of GANs and could attain control-
lable and smooth transitions by walking through GAN latent
space. Extensive experiments and user studies demonstrate
that our method achieves superior performance than previ-
ous works.

1. Introduction
Colorization, the task of restoring colors from black-

and-white photos, has wide applications in various fields,
such as photography technologies, advertising or film in-
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dustry [21, 48]. As colorization requires estimating missing
color channels from only one grayscale value, it is inher-
ently an ill-posed problem. Moreover, the plausible solu-
tions of colorization are not unique (e.g., cars in black, blue,
or red are all feasible results). Due to the uncertainty and di-
versity nature of colorization, it remains a challenging task.

Classic reference-based methods (e.g. [17, 35, 53]) re-
quire additional example color images as guidance. These
methods attempt to match the relevant contents between ex-
emplars and input gray images, and then transfer the color
statistics from the reference to the gray one. The quality
of generated colors (e.g., realness and vividness) is strongly
dependent on the reference images. However, retrieving de-
sirable reference images requires significant user efforts. A
recommendation system for this can be a solution, but it is
still challenging to design such a retrieval process. A large-
scale color image database or online search engine is in-
evitably required in the system.

Recently, convolutional neural network (CNN) based
colorization methods [7, 11, 23] have been proposed to fa-
cilitate the colorization task in an automatic fashion. These
methods learn to discover the semantics [31, 58] and then
directly predict the colorization results. Though remarkable
achievements in visual qualities are achieved, unsatisfactory
artifacts and incoherent colors are always accompanied.

In this work, we attempt to exploit the merits of both
reference-based and CNN-based methods, i.e., achieving
realistic and vivid colorization results on par with reference-
based methods, while keeping them automatic at a low cost.
Inspired by recent success in Generative Adversarial Net-
work (GAN) [3, 27], our core idea is to leverage the most
relevant image in the learned GAN distribution as the exem-
plar image. The rich and diverse color information encapsu-
lated in pretrained GAN models, i.e., generative color prior,
allows us to circumvent the explicit example retrieval step
and integrate it into the colorization pipeline as a unified
framework. Specifically, we first ‘retrieve’ matched fea-
tures (similar to exemplars) via a GAN encoder and then
incorporate these features into the colorization process with
feature modulations. In addition, our method is capable
of achieving diverse colorization from different samples in
the GAN distribution or by modifying GAN latent codes.
Thanks to the interpretable controls of GANs, our method
could also attain controllable and smooth transitions by
walking through GAN latent space.

We summarize the contributions as follows. (1) We
develop a unified framework to leverage rich and diverse
generative color prior for automatic colorization. (2) Our
method allows us to obtain diverse outputs. Controllable
and smooth transitions can be achieved by manipulating the
code in GAN latent space. (3) Experiments show that our
method is capable of generating more vivid and diverse col-
orization results than previous works.

2. Related Work
User assisted colorization. Early colorization methods are
mostly interactive and require users to draw color strokes on
the gray image to guide the colorization. The propagation
from local hints to all pixels is usually formulated in a con-
strained optimization manner [33] that tries to assign two
pixels with the same color if they are adjacent and similar
under similarity measures. Attempts in this direction focus
on finding efficient propagation [55] with different similar-
ity metrics by hand-crafting [43] or learning [12], building
long-range relations[52], or using edge detection to reduce
bleeding [19]. While these methods can generate appeal-
ing results with careful interactions, it demands intensive
user efforts. The work of [59] alleviates this issue by using
sparse color points, and introduces a neural network to col-
orize from these hints. Some methods also propose to use
global hints like color palettes [2, 5] instead of dense color
points as constraints.
Reference-based methods try to transfer the color statis-
tics from the reference to the gray image using correspon-
dences between the two based on low-level similarity mea-
sures [34], semantic features [6], or super-pixels [8, 15].
Recent works [17, 35, 53] adopt deep neural network to im-
prove the spatial correspondence and colorization results.
Though these methods obtain remarkable results when suit-
able references are available, the procedure of finding ref-
erences is time-consuming and challenging for automatic
retrieval system [8].
Automatic colorization methods are generally learning
based [7, 11, 23, 30]. Pre-trained networks for classifica-
tion are used for better semantic representation [31]. Two
branch dual-task structures are also proposed in [22, 48, 60,
61] that jointly learn the pixel embedding and local (seman-
tic maps) or global (class labels) information. The recent
work [47] investigates the instance-level features to model
the appearance variations of objects. To improve the di-
versity of generated colors, Zhang et al. [58] uses a class-
rebalancing scheme, while some methods propose to predict
per-pixel color distributions [10, 39, 44] instead of a single
color. Yet, their results typically suffer from visual artifacts
like unnatural and incoherent colors.
Generative priors of pretrained GANs [3, 26, 27, 28] is
previously exploited by GAN inversion [1, 13, 38, 41, 62,
63], which aims to find the closest latent codes given an in-
put image. In colorization, they first ‘invert’ the grayscale
image back to a latent code of the pretrained GAN, and
then conduct iterative optimization to reconstruct images.
Among them, mGANprior [13] attempts to optimize mul-
tiple codes to improve the reconstruction quality. In or-
der to reduce the gap between training and testing images,
DGP [41] further jointly finetunes the generator and the
latent codes. However, these results struggle to faithfully
retain the local details, as the low-dimension latent codes
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Figure 2: Overview of our framework. Given a grayscale image xl as input, our framework first produces the most relevant
features FGAN and an inversion image xrgb

inv from a pretrained generative network as generative color priors. After that, we
calculate a spatial correlation matrix from xl and xrgb

inv , and warp GAN features FGAN for alignment. The warped features are
used to modulate the colorization network by spatially-adaptive denormalization (SPADE) layers. Finally, a vivid colorized
image can be generated with the colorization network. In addition, controllable and diverse colorization results, together with
smooth transitions could be achieved by adjusting latent code z.

without spatial information are insufficient to guide the col-
orization. In contrast, our method with spatial modulation
enables prior incorporation on multi-resolution spatial fea-
tures to achieve high texture faithfulness. In addition, our
method is feed-forward and does not require expensive iter-
ative optimization for each instance. Recent works on face
restoration [51, 54] also utilize generative priors for restora-
tion and colorization.

3. Method
3.1. Overview

With a grayscale image xl ∈ R1×H×W as input, the
objective of colorization is to predict the two missing
color channels a and b in the original color image xlab ∈
R3×H×W , where l and a, b represent the luminance and
chrominance in CIELAB color space, respectively. In this
work, we aim to leverage rich and diverse color priors en-
capsulated in a pretrained generative network to guide the
colorization. The overview of our framework is shown in
Figure 2. It mainly consists of a pretrained GAN G, a GAN
Encoder E , and a Colorization Network C.

Given the grayscale image xl, GAN Encoder E is re-
sponsible for mapping xl into a latent code z, which can
serve as an input of G. The pretrained GAN G then gen-
erates the most relevant color image (denoted as inversion
image xrgb

inv) to the grayscale input. In addition to using the
inversion image directly, the prior features FGAN from in-
termediate layers are more informative and are leveraged

to guide the colorization. However, these ‘retrieved’ fea-
tures usually do not spatially align with the grayscale input.
To solve this, we first perform an alignment step to warp
FGAN based on the correspondence between xl and xrgb

inv .
After that, we use the aligned GAN features to modulate
the multi-scale spatial features in Colorization Network C
with effective SPADE (spatially-adaptive denormalization)
layers [42], producing the final colorized image x̂rgb.

3.2. Generative Color Prior and GAN Encoder

Recently, GAN has achieved tremendous advances in un-
supervised image generation. Once trained on an adequate
number of images, GAN can map arbitrary random noises
into realistic and high-resolution images with impressive
details and rich colors, which motivates us to employ pre-
trained GAN models to assist the colorization task. As il-
lustrated above, we need to find a latent code z so that G
can take it as the input and produce the GAN features FGAN
from its intermediate layers which are most relevant to xl.
To achieve this goal, we constrain the generated image from
code z to have similar content with xl but contains rich
chrominance information. The process of finding a certain
z corresponding to a target image is termed as GAN inver-
sion. A typical inversion way is to randomly initialize z and
optimize it to reduce the difference between the generated
image and the target one. However, such a method requires
expensive iterative optimization at inference and thus is not
applicable for real-world scenarios. Instead, we choose to
train a GAN encoder E to map arbitrary grayscale images
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into latent codes, i.e.,

z = E(xl),

xrgb
inv, FGAN = G(z),

(1)

where G(z) simultaneously outputs the inversion image
xrgb
inv and the intermediate GAN features FGAN.

Discussion. It is well known that the optimization-based
inversion methods could generate more accurate inversion
images than encoder-based inversion methods [62, 63].
However, in our colorization scenarios, we do not need such
precise and high-quality inversion images. A coarse inver-
sion result already contains sufficient color information and
the colorization network (illustrated in the next section) will
further refine the corresponding inversion features. In addi-
tion, we use the GAN features as extra information to guide
the colorization, which could provide complementary infor-
mation to the inversion image.

3.3. Colorization Network

The colorization network C consists of two downsam-
pling blocks, six residual blocks and two upsampling
blocks, which proves to be an effective architecture used
in many image-to-image translation tasks [50]. It takes the
grayscale image xl as input and predicts two missing color
channels x̂ab. A color image x̂lab can then be obtained
by concatenating the luminance channel xl and the chromi-
nance channels x̂ab. As the two color spaces RGB and LAB
can be converted to each other, x̂rgb can also be obtained.

In order to use the prior color features FGAN to guide
the colorization, and to better preserve the color informa-
tion of FGAN, we use spatially-adaptive denormalization
(SPADE) [42] to modulate the colorization network. How-
ever, FGAN can not be directly used to modulate network C
until they are spatially aligned with the input. Taking the de-
picted image in Figure 2 as an example, the inversion image
xrgb
inv contains all the semantic components that appeared in

xl (i.e., the hen, soil and the weeds), but it is not spatially
aligned with the input image.

Before we introduce the align operation, it is worth men-
tioning that the prior color features FGAN are multi-scale
features, and the features from a certain scale are used to
modulate the layers of the corresponding scale in C. For
simplicity, we only use a specific scale in FGAN to illustrate
the align operation, denoted as F s

GAN ∈ RC×H′×W ′
.

In the alignment module, we first use two feature ex-
tractors with a shared backbone (denoted as FL→S and
FRGB→S , respectively) to project xl and xrgb

inv to a shared
feature space S, obtaining the feature maps FL→S(x

l)

and FRGB→S(x
rgb
inv). After that, we use a non-local op-

eration [50] to calculate the correlation matrix M ∈

RH′W ′×H′W ′
between the two feature maps. M(u, v) de-

notes the similarity between the input and the GAN features
in position u and v. This operation is widely adopted to cal-
culate dense semantic correspondence between two feature
maps [32, 56, 57]. Finally, we use the correlation matrix M
to warp F s

GAN and obtain the aligned GAN features at scale
s, which are then used to modulate corresponding layers in
C at scale s.

3.4. Objectives

GAN inversion losses. As we have the ground truth color-
ful images xrgb during training, we can train GAN encoder
E by minimizing the difference between xrgb

inv and xrgb. In-
stead of directly constraining the pixel values of xrgb

inv and
xrgb, we choose to minimize the discrepancy between their
features extracted by the pre-trained discriminator Dg of G,
as this will make the GAN inversion easier to optimize (es-
pecially for BigGAN) [9, 41]. Formally, the discriminator
feature loss Linv ftr is defined as:

Linv ftr =
∑
l

∥∥∥Dg
l (x

rgb
inv)−Dg

l (x
rgb)

∥∥∥
1
, (2)

where Dg
l represents the feature map extracted at l-th layer

from Dg .
To keep z within a reasonable range, we also add a

L2 norm Linv reg , otherwise, the GAN inversion with
grayscale input will lead to unstable results:

Linv reg =
1

2
∥z∥2 . (3)

Adversarial loss. We adopt the adversarial loss to help the
colorization images looking more realistic. To stabilize the
adversarial training, we employ the loss functions in LS-
GAN [36]:

LD
adv = E[(Dc(xlab)− 1)2] + E[(Dc(x̂lab))2],

LG
adv = E[(Dc(x̂lab)− 1)2],

(4)

where DC is the discriminator to discriminate the coloriza-
tion images x̂lab generated from C and color images xlab

from real world. C and DC are trained alternatively with
LG
adv and LD

adv , respectively.
Perceptual loss. To make the colorization image perceptual
plausible, we use the perceptual loss introduced in [25]:

Lperc =
∥∥ϕl(x̂

rgb)− ϕl(x
rgb)

∥∥
2
, (5)

where ϕl represents the feature map extracted at l-th layer
from a pretrained VGG19 network. Here ,we set l =
relu5 2.
Domain alignment loss. To ensure that the grayscale im-
age and inversion image are mapped to a shared feature
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space in correlation calculation, we adopt a domain align-
ment loss [57]:

Ldom =
∥∥FL→S(x

l)−FRGB→S(x
rgb)

∥∥
1
. (6)

Contextual Loss. The contextual loss [37] can measure
the similarity between two non-aligned images. This loss
term was originally designed for image translation tasks
with non-aligned data, and then extended to exemplar-based
colorization [56] to encourage colors in the output image
to be close to those in the reference image. In this paper,
we also adopt this loss to encourage the colorization image
x̂rgb to be relevant to the inversion image xrgb

inv . Formally,
the contextual loss Lctx is defined as:

Lctx =
∑
l

ωl

(
− log(CX(ϕl(x̂

rgb), ϕl(x
rgb
inv)))

)
, (7)

where CX denotes the similarity metric between two features
and we refer readers to [37] for more details. We use the
layer l = relu{3 2, 4 2, 5 2} from the pretrained VGG19
network with weight ωl = {2, 4, 8} to calculate Lctx. We
set larger loss weights for deeper features to guide the net-
work to focus more on the semantic similarity instead of
pixel-wise color closeness.
Full objective. The full objective to train the GAN encoder
E is formulated as

LE = λinv ftrLinv ftr + λinv regLinv reg. (8)

The full objective to train the colorization network C is for-
mulated as

LC =λdomLdom + λpercLperc

+ λctxLctx + λadvLG
adv.

(9)

The full objective to train the discriminator DC for coloriza-
tion is formulated as

LDC
= λadvLD

adv. (10)

In the above loss objectives, λinv ftr, λinv reg, λdom,λperc,
λctx and λadv are hyper-parameters that control the relative
importance of each loss term.

4. Experiments
4.1. Implementation Details

We conduct our experiments on ImageNet [45], a multi-
class dataset, with a pretrained BigGAN [3] as the genera-
tive color prior. We train our method with the official train-
ing set. All the images are resized to 256× 256.

Our training process consists of two stages. In the first
stage, we freeze the pretrained BigGAN generator and train
a BigGAN encoder with LE . We utilize the last three lay-
ers of BigGAN discriminator to calculate the feature loss,

where λinv ftr is set to 1.0 and λinv reg is set to 0.0125. We
train the model for totally 10 epochs with an initial learning
rate of 1e−5.

In the second stage, the BigGAN encoder is frozen and
the rest of networks are trained end-to-end. We set the λperc

to 1e−3, λadv to 1.0, λdom to 10.0 and λctx to 0.1. We train
the model for totally 10 epochs with an initial learning rate
of 1e−4. In both two stages, we set the batch size to 8
per GPU and decay the learning rate linearly to 0. All the
models are trained with the Adam [29] optimizer.

The BigGAN encoder has a similar structure to the Big-
GAN discriminator, while the class embedding is injected
into the BigGAN encoder following the BigGAN generator.
To reduce the learnable parameters of FL→S and FRGB→S ,
their backbones are shared. The discriminator for coloriza-
tion Dc is a three-scale PatchGAN network [23, 50] with
spectral normalization [40].

4.2. Comparisons with Previous Methods

To evaluate the performance of our method, we compare
our results to other state-of-the-art automatic colorization
methods including CIC [58], ChromaGAN [48], DeOldify1

and InstColorization [47]. We re-implement CIC and Chro-
maGAN in PyTorch based on the original paper.
Quantitative comparison. We test all the methods on the
ImageNet validation set of 50,000 images. The quantita-
tive results on five metrics are reported in Table 1. Fréchet
Inception Score (FID) [18] measures the distribution sim-
ilarity between the colorization results and the ground truth
color images. Our method achieves the lowest FID, indicat-
ing that our method could generate colorization results with
better image quality and fidelity. Colorfulness Score [16]
reflects the vividness of generated images. Our method ob-
tains a better colorfulness score (2nd column) and closest
colorfulness score to the ground-truth images (3rd column).
The highest colorfulness score of CIC is an outlier, also
observed in [56]. This is probably because CIC encour-
ages rare colors in the loss function, and the rare colors are
misjudged as vivid colors by this metric. We also provide
PSNR and SSIM for reference. However, it is well-known
that such pixel-wise measurements may not well reflect the
actual performance [4, 17, 39, 47, 48, 60], as plausible col-
orization results probably diverge a lot from the original
color image.
Qualitative Comparison. As shown Figure 3, compared to
CIC, ChromaGAN and Deoldify, our results tend to obtain
more natural and vivid colors. For instance, in contrast to
our vivid green, the broccoli color (Column 5) of the other
methods looks unnatural and yellowish. In addition, our
method generates better results with regards to consistent
hues. In column 1, we can observe inconsistent chromatic-
ities in the results of Deoldify and InstColorization, where

1https://github.com/jantic/DeOldify
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Figure 3: Visual comparisons with previous automatic colorization methods. Our method is able to generate more natural
and vivid colors.

Table 1: Quantitative comparison. ∆Colorful denotes the
absolute colorfulness score difference between the coloriza-
tion images and the ground truth color images.

FID↓ Colorful↑ ∆Colorful↓ PSNR↑ SSIM↑

CIC 19.71 43.92 5.57 20.86 0.86
ChromaGAN 5.16 27.49 10.86 23.12 0.87
DeOldify 3.87 22.83 15.52 22.97 0.91
InstColor 7.36 27.05 11.30 22.91 0.91
Ours 3.62 35.13 3.22 21.81 0.88

the dress is yellow and blue at the same time. Though Chro-
maGAN has consistent tones, it fails to capture the details
by only mapping overall blue tones to the image, leading
to the blue artifacts on the lady’s face. Instead, our method
successfully maintains the consistent tone and captures the
details as shown in Column 1. Furthermore, our method can
yield more diverse and lively colors for each small instance
as shown in column 7, while InstColorization fails to detect
such small objects and inherently degrades to use its global
image colorization network, whose results are dim and less
vivid.
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Figure 4: Boxplots of user preferences for different meth-
ods. Green dash lines represent the means. Our method
got a significantly higher preference rate by users than other
colorization methods.

User study. In order to better evaluate the subjective qual-
ity (i.e., vividness and diverseness of colors), we conduct
a user study to compare our method with the other state-
of-art automatic colorization methods, i.e., CIC [58], Chro-
maGAN [48], DeOldify and InstColorization [47]. We re-
cruited 30 participants with normal or corrected-to-normal
vision and without color blindness. We randomly select 70
images from various categories of image contents (e.g., an-
imals, plants, human beings, landscape, food, etc.). For
each image, the grayscaled image is displayed at the left-
most while five colorization results are displayed in a ran-
dom manner to avoid potential bias. The participants are
required to select the best-colorized image according to the
colorization quality in terms of vividness and diverseness.
The boxplots are displayed in Figure 4. Our method ob-
tained a significant preference ( 46.3%) by users than other
colorization methods (CIC 12.4%, ChromaGAN 11.7%,
Deoldify 16.6%, InstColor 13.0%), demonstrating distinct
advantage on producing natural and vivid results.

4.3. Ablation Studies

Generative color prior. Generative color prior plays an
important role in providing exemplar features for vivid and
various colors. When we remove the pretrained GANs,
our method degrades to a common automatic colorization
method without guidance. As shown in Figure 5, the vari-
ant experiment without GAN prior generates dim and bleak
colors, while our method could produce bright and joyful
images, under the guidance of colorful exemplars in GAN
distributions. We could also observe a large drop in FID and
Colorfulness score without generative color prior (Table 2).
Feature guidance vs. image guidance. Our method adopts
multi-resolution intermediate GAN features to guide the
colorization. The design could fully facilitate the color and
detail information from GAN features. Compared to image
guidance, our results are capable of recovering more vivid
colors faithful to their underlying classes (e.g., the trees on

Input w/o GAN prior w/ GAN prior GT

Input Image guidance Feature guidance GT

Input w/o alignment w/ alignment GT

Figure 5: Qualitative comparisons of ablation studies on
GAN prior, feature guidance and spatial alignment. GAN
prior introduces brighter and more various colors. Multi-
resolution feature guidance could produce more coherent
and rich colors than image guidance. Spatial alignment mit-
igates the misalignment between ‘retrieved’ GAN features
and input gray images.

the beach, the grass on the mountains), as multi-resolution
features contain more semantic and color information (Fig-
ure 5 and Table 2).
Spatial alignment. The prior features from pretrained
GANs probably misalign with the input images. To address
this problem, we employ spatial alignment to align the GAN
features, leading to fewer artifacts and coherent results for
colorization. As shown in Figure 5, the tree and square col-
ors of our results are not affected by other objects.

4.4. Controllable Diverse Colorization

In order to achieve diverse colorization, many attempts
have been made. For automatic colorization methods, diver-
sity is usually achieved by stochastic sampling [10, 14, 44].
However, the results are barely satisfactory and difficult to
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Table 2: Quantitative comparisons for ablation studies.
∆Colorful denotes the absolute colorfulness score differ-
ence between the colorization images and the ground truth
color images.

Variants FID↓ Colorful↑ ∆Colorful↓

Full Model 3.62 35.13 3.22
w/o Generative Color Prior 8.40 31.21 7.14
Image Guidance 4.01 26.12 12.23
w/o Spatial Alignment 4.59 31.94 6.41
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Figure 6: Our method could adjust the latent codes to ob-
tain various inversion results, thus easily achieving diverse
colorization results for the parrot.

control (Detailed comparisons are provided in the supple-
mentary material). For exemplar-based colorization meth-
ods [17, 53], it is time-consuming and challenging to find
large amounts of reference images with various styles. Dif-
ferent from previous methods, our method could achieve
diverse and controllable colorization in a much easier and
novel manner.

On the one hand, we can adjust the latent codes with dis-
turbance to obtain various exemplars and their correspond-
ing features. As shown in Figure 6, various inversion results
are attained by adjusting the latent codes, and correspond-
ingly, diverse colorization results of parrots are obtained.
On the other hand, our method inherits the merits of inter-
pretable controls of GANs [20, 24, 46, 49] and could at-
tain controllable and smooth transitions by walking through
GAN latent space. Specifically, we employ an unsupervised
method [49] to find color-relevant directions, such as light-
ing, saturation, etc. As depicted in Figure 7, smooth transi-
tions on background colors, object colors, saturation could
be achieved.

4.5. Limitations

Though our method could produce appealing results in
most cases, it still has limitations. When the input image
is not in the GAN distribution or GAN inversion fails, our
method degrades to common automatic colorization meth-
ods and may result in unnatural and incoherent colors. As
shown in Figure 8, the human on the beach and the cac-
tus are missing from the GAN inversion results. Thus, our
method cannot find corresponding color guidance, result-
ing in unnatural colorization for these objects. This could
be mitigated by improving the GAN inversion and common
automatic colorization approaches in future works.

Input background color

Input object color

Input saturation

Figure 7: With the interpretable controls of GANs, our
method could attain controllable and smooth transitions by
walking through GAN latent space.

Inputs Inversion Warped Results GT

Figure 8: Limitations of our model. The human in the beach
and the cactus are missing from the GAN inversion, result-
ing in unnatural colors.

5. Conclusion
In this work, we have developed a framework to produce

vivid and diverse colorization results by leveraging genera-
tive color priors encapsulated in pretrained GANs. Specif-
ically, we ‘retrieve’ multi-resolution GAN features condi-
tioned on the input grayscale image with a GAN encoder,
and incorporate such features into the colorization process
with feature modulations. One could easily realize diverse
colorization by simply adjusting the latent codes or con-
ditions in GANs. Moreover, our method could also attain
controllable and smooth transitions by walking through the
GAN latent space.
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