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Abstract

Few-shot object detection (FSOD) aims to strengthen the
performance of novel object detection with few labeled sam-
ples. To alleviate the constraint of few samples, enhancing
the generalization ability of learned features for novel ob-
jects plays a key role. Thus, the feature learning process of
FSOD should focus more on intrinsical object characteris-
tics, which are invariant under different visual changes and
therefore are helpful for feature generalization. Unlike pre-
vious attempts of the meta-learning paradigm, in this paper,
we explore how to enhance object features with intrinsical
characteristics that are universal across different object cat-
egories. We propose a new prototype, namely universal pro-
totype, that is learned from all object categories. Besides
the advantage of characterizing invariant characteristics,
the universal prototypes alleviate the impact of unbalanced
object categories. After enhancing object features with the
universal prototypes, we impose a consistency loss to max-
imize the agreement between the enhanced features and
the original ones, which is beneficial for learning invari-
ant object characteristics. Thus, we develop a new frame-
work of few-shot object detection with universal prototypes
(FSODup) that owns the merit of feature generalization
towards novel objects. Experimental results on PASCAL
VOC and MS COCO show the effectiveness of FSODup.
Particularly, for the 1-shot case of VOC Split2, FSODup

outperforms the baseline by 6.8% in terms of mAP.

1. Introduction
Recently, owing to the success of deep learning, great

progress has been made on object detection [26, 11, 14, 12].
However, the outstanding performance [25, 21, 3, 18] de-
pends on abundant annotated objects in training images for
each category. As a challenging task, few-shot object detec-

∗Corresponding author

Figure 1. Universal prototypes (colorful stars) are learned from
all object categories, which are not specific to certain object cat-
egories. Universal prototypes capture different intrinsical object
characteristics via latent projection, e.g., the prototype F incorpo-
rates object characteristics of ‘car’ and ‘motorbike’.

tion (FSOD) [16, 35] mainly aims to improve the detection
performance for novel objects that belong to certain cate-
gories but appear rarely in the annotated training images.

The main challenge of FSOD lies in how to learn gen-
eralized object features from both abundant samples in
base categories and few samples in novel categories, which
can simultaneously describe invariant object characteristics
and alleviate the impact of unbalanced categories. Re-
cently, meta-learning strategy [28, 30, 9] has been uti-
lized in [38, 37, 35, 8] to adapt representation ability from
base object categories to novel categories. However, the
weak performance compared to basic fine-tuning methods
[33, 36, 4, 5] shows the meta-learning technique fails to im-
prove the generalization ability of object feature learning.

One possible reason is that the adaptation process in
meta-learning mechanism could not capture the invariant
characteristics across categories sufficiently. The invari-
ance, i.e., invariant under different visual changes like tex-
tual variances or environmental noises, is always associated
with the intrinsical object characteristics. As demonstrated
in [23], the models that could extract invariant representa-
tions often generalize better than their non-invariant coun-
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terparts. Therefore, in this paper, we explore how to en-
hance the generalization ability of object feature learning
with the invariant object characteristics.

We devise universal prototypes (as shown in Fig. 1) to
learn the invariant object characteristics. Different from the
prototypes that are separately learned from each category
[28, 20, 32], the proposed universal prototypes are learned
from all object categories. The benefits are two-fold. On
the one hand, prototypes from all categories capture rich in-
formation not only from different object categories but also
from contexts of images. On the other hand, the univer-
sal prototypes reduce the impact of data-imbalance across
different categories. Moreover, via fine-tuning, the uni-
versal prototypes can be effectively adapted to data-scarce
novel categories. To this end, we develop a new frame-
work of few-shot object detection with universal prototypes
(FSODup). Particularly, we utilize a soft-attention of the
learned universal prototypes to enhance the object features.
Such a universal-prototype enhancement (i.e., each element
of the enhanced features is a combination of prototypes)
aims to simultaneously improve invariance and retain the
semantic information of original object features. Here we
employ a consistency loss to enable the maximum agree-
ment between the enhanced and original object features.
During training, we first train the model on data-abundant
base categories. Then, the model is fine-tuned on a re-
constructed training set that contains a small number of
balanced training samples from both base and novel object
categories. Experimental results on two benchmarks and
extensive visualization analyses demonstrate the effective-
ness of the proposed method. Our code will be available at
https://github.com/AmingWu/UP-FSOD.

The contributions are summarized as follows:
(1) Towards FSOD, we devise a dedicated prototype and

a new framework with universal-prototype enhancenment.
(2) We successfully demonstrate that, after fine-tuning

with universal-prototype enhanced features, object detec-
tors effectively adapt to novel categories.

(3) We obtain new performance on PASCAL VOC [7, 6]
and MS COCO [19]. Enhancing invariance and generaliza-
tion with the learned universal prototypes is empirically ver-
ified. Moreover, extensive visualization analyses also show
that universal prototypes are capable of enhancing object
characteristics, which is beneficial for FSOD.

2. Related Work
Few-shot image classification. Few-shot image clas-

sification [31, 24, 29, 13, 10] targets to recognize novel
categories with only few samples in each category. Meta-
learning is a widely used method to solve few-shot classifi-
cation [22], which aims to leverage task-level meta knowl-
edge to help the model adapt to new tasks with few labeled
samples. Vinyals et al. [31] and Snell et al. [28] employed

the meta-learning policy to learn the similarity metric that
could be transferrable across different tasks. Particularly,
based on the policy of meta-learning, prototypical network
[28] is proposed to take the center of congener support sam-
ples’ embeddings as the prototype of this category. The
classification can be performed by computing distances be-
tween the representations of samples and prototype of each
category. However, when the data is unbalanced or scarce,
the learned prototypes could not represent the information
of each category accurately, which affects the classifica-
tion performance. Besides, during meta-learning, Gidaris
et al. [10] and Wang et al. [34] introduced new param-
eters to promote the adaptation to novel tasks. However,
these meta-learning methods for few-shot image classifica-
tion could not be directly applied to object detection that
requires localizing and recognizing objects.

Few-shot object detection. Most existing methods em-
ploy meta-learning [8, 17] or fine-tuning [39, 36] strategies
to solve FSOD. Specifically, Wang et al. [35] developed
a meta-learning based framework to leverage meta-level
knowledge from data-abundant base categories to learn a
detector for novel categories. Yan et al. [38] further ex-
tended Faster R-CNN [26] by performing meta-learning
over RoI (Region-of-Interest) features. However, the weak
performance compared to basic fine-tuning methods shows
meta-learning based methods fail to improve the general-
ization ability of object detectors. For the method of fine-
tuning and the model pre-trained on the base categories,
Wang et al. [33] employed a two-stage fine-tuning process,
i.e., fine-turning the last layers of the detector and freezing
the other parameters of the detector, to make the object pre-
dictor adapt to novel categories. Wu et al. [36] proposed a
method of multi-scale positive sample refinement to handle
the problem of scale variations in object detection, which is
similar to data augmentation [40].

Different from previous methods for FSOD, in this pa-
per, we propose to learn universal prototypes from all ob-
ject categories. And we develop a new framework of FSOD
with universal-prototype enhancement. Experimental re-
sults and visualization analysis demonstrate the effective-
ness of universal-prototype enhancement.

3. FSOD with Universal Prototypes
In this paper, we follow the same FSOD settings intro-

duced in Kang et al. [16]. Annotated detection data are
divided into a set of base categories that have abundant in-
stances and a set of novel categories that have only few (usu-
ally less than 30) instances per category. The main purpose
is to improve the generalization ability of detectors.

3.1. Learning of Universal Prototypes

Recently, many methods [28, 20, 32] construct a pro-
totype for each category to solve few-shot image classifi-
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Figure 2. The architecture of few-shot object detection with universal-prototype enhancement. ‘Conv’ and ‘fc layer’ separately indicate
convolution and fully-connected layer. The colorful stars are the learned universal prototypes. ‘	’ and ‘[,]’ denote the residual operation
and concatenation operation, respectively. We focus on improving the generalization of detectors via learning invariant object characteris-
tics. Firstly, universal prototypes are learned from all object categories. With the output of RPN (Region Proposal Network), we obtain the
conditional prototypes via a conditional transformation of universal prototypes. Next, the enhanced object features are calculated based on
conditional prototypes. Finally, a consistency loss is computed between the enhanced and original features.

cation. Though prototypes reflecting category information
have been demonstrated to be effective for image classifica-
tion, they could not be applied to FSOD. The reason may
be that these category-specific prototypes represent image-
level information and fail to capture object characteristics
that are helpful for localizing and recognizing objects. Dif-
ferent from category-specific prototypes, based on all object
categories, we attempt to learn universal prototypes that are
beneficial for capturing intrinsical object characteristics that
are invariant under different visual changes.

Concretely, the left part of Fig. 2 shows the learning pro-
cess of universal prototypes. We adopt widely used Faster
R-CNN [26], a two-stage object detector, as the base de-
tection model. Given an input image, we first employ the
feature extractor, e.g., ResNet [15], to extract correspond-
ing features F ∈ Rw×h×m, where w, h, and m separately
denote width, height, and the number of channels. Then,
the universal prototypes are defined as C = {ci ∈ Rm, i =
1, ..., D}. Next, based on the prototypical set C, we calcu-
late descriptors that represent image-level information.

I = Wg ∗ F + bg,

Vi =

wh∑
j=1

eIj,i∑D
i=1 e

Ij,i
(Fj − ci),

(1)

where Wg ∈ R3×3×m×D and bg ∈ RD are convolutional
parameters. V ∈ RD×m represents the output descriptors.
‘Fj − ci’ indicates the residual operation, by which the vi-
sual features can be assigned to the corresponding proto-
type. Finally, we take the concatenated result of F and V as
the input of the RPN module.

P = RPN(Ψ([F, VrWp + bp])), (2)

where Vr ∈ R1×Dm is the reshaped result of V . Meanwhile,
Wp ∈ RDm×m and bp ∈ Rm are parameters of the fully-

connected layer. ‘[,]’ is the concatenation operation. By the
concatenation operation, the descriptors V can be fused into
the original features F , which enhances the representation
ability of F . Ψ consists of two convolutional layers with
ReLU activation and is used to transform the concatenated
result. Finally, P ∈ Rn×s×s×m is the output of RPN with
RoI Pooling [26, 14], where n and s separately indicate the
number of proposals and the size of proposals. The feature
dimension of P is the same as F .

3.2. Enhancement of Object Features

As shown in the right part of Fig. 2, we first compute
conditional prototypes based on the universal prototypes C.
Then, we conduct enhancement of object features with the
conditional prototypes.

3.2.1 The Computation of Conditional Prototypes

Since the computation of Eq. (1) is based on the extracted
features that represent the whole input image, the universal
prototypes C mainly reflect image-level information. Here,
the image-level information includes object-level informa-
tion and other associated information about image content.
Whereas, after RPN, the proposal features P mainly con-
tain object-level information. The directly using of univer-
sal prototypes C may not accurately represent object-level
information. Thus, we make an affine transformation to pro-
mote C to move towards the space of object-level features.

A = α� C + β, (3)

where α ∈ RD×1 and β ∈ RD×1 are the transformed pa-
rameters. � is element-wise product. Finally, A ∈ RD×m

represents the conditional prototypes. Next, we employ the
same processes as Eq. (1) to generate object-level descrip-
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tors. The processes are shown as follows:

E = Wc ∗ P + bc,

Ok,i =

s2∑
j=1

eEk,j,i∑D
i=1 e

Ek,j,i

(Pk,j − ai),
(4)

where k = 1, · · · , n. Wc ∈ R3×3×m×D and bc ∈ RD

are convolutional parameters. ai ∈ R1×m is the i-th condi-
tional prototype of A. O ∈ Rn×D×m indicates the output
descriptors. Finally, we take the concatenated result of P
and O as the input of the classifier.

y = Clf([Ψc(P ), OrWr + br]), (5)

where Or ∈ Rn×Dm is the reshaped result of O. Clf
denotes the classifier. Meanwhile, Wr ∈ RDm×2m and
br ∈ R2m are parameters of the fully-connected layer. Ψc

consists of two fully-connected layers and outputs a ma-
trix with the dimension n × 2m. Finally, y is the predicted
probability. In the experiment, we find employing the de-
scriptors O generated based on the conditional prototypes
improves the performance of FSOD, which shows the ef-
fectiveness of conditional prototypes.

3.2.2 Enhancement with Conditional Prototypes

In order to improve the generalization of detectors, we ex-
plore to utilize conditional prototypes to enhance object
features. Specifically, Fig. 3 shows the enhancement de-
tails. For proposal features P ∈ Rn×s×s×m and conditional
prototypes A ∈ RD×m, we separately employ a convolu-
tional layer Φp ∈ R1×1×m×m and fully-connected layer
Φa ∈ Rm×m to project P and A into an embedding space,
i.e., ep = Φp(P ) and ea = Φa(A). Then, based on each
element of ep, we calculate the soft-attention of ea to obtain
enhancement of object features.

λk = softmax(ep,ke
T
a ),

Enhk = ReLU(Φt([ep,k, λkea]) + Pk),
(6)

where k = 1, · · · , n. ep,k ∈ Rs2×m indicates the k-th com-
ponent of ep. λk ∈ Rs2×D denotes attention weights. Φt

consists of two convolutional layers with ReLU activation.
And the output dimension of Φt is m. Pk ∈ Rs×s×m is
the k-th component of P . Finally, Enh ∈ Rn×s×s×m is
the enhanced object features, which fuses the information
of conditional prototypes and is helpful for improving the
generalization on novel objects. Next, Enh is taken as the
input of the classifier to output the predicted probability.

yenh = Clf([Ψc(Enh), Ψc(P )]), (7)

where yenh is the predicted probability. Besides, Eq. (5)
and Eq. (7) share the same classifier. In the experiment, we

Figure 3. Enhancement of object features. Based on each element
of RPN output P , we calculate the soft-attention of the condi-
tional prototypes A to generate enhanced features. Each element
of the enhanced features is a combination of conditional proto-
types, which retains the semantic information of P .

find the enhanced operations (Eq. (6) and (7)) are beneficial
for FSOD, which further indicates the learned prototypes
contain object-level information.

3.3. Two-stage Fine-tuning Approach

Many semi-supervised learning methods [2, 1] rely on a
consistency loss to enforce that the model output remains
unchanged when the input is perturbed. Inspired by this
idea, to learn invariant object characteristics, we compute
the consistency loss between the prediction y from orig-
inal features (see Eq. (5)) and the prediction yenh from
enhanced features. Particularly, the KL-Divergence loss is
employed to enforce consistent predictions, i.e., Lcon =
H(y, yenh). The joint training loss is defined as follows:

L = Lrpn + Lcls + Lloc + γLcon, (8)

where Lrpn is the loss of the RPN to distinguish foreground
from background and refine bounding-box anchors. Lcls

and Lloc separately indicate classification loss and box re-
gression loss. And γ is a hyper-parameter.

During training, we employ a two-stage fine-tuning ap-
proach (as shown in Fig. 4) to optimize FSODup model.
Concretely, in the base training stage, we employ the joint
loss L to optimize the entire model based on the data-
abundant base classes. After the base training stage, only
the last fully-connected layer (for classification) of the de-
tection head is replaced. The new classification layer is
randomly initialized. Besides, during few-shot fine-tuning
stage, different from the work [33], none of the network lay-
ers is frozen. And we still employ the loss L to fine-tune the
entire model based on a balanced training set consisting of
both the few base and novel categories.

3.4. Discussion

In this section, we further discuss universal prototypes
for few-shot object detection.

Though prototypes have been demonstrated to be effec-
tive for few-shot image classification [28, 31], it is unclear
how to build prototypes for FSOD [16]. (1) If we follow
few-shot image classification and construct prototypes for
each category, the computational costs increase for the case
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Figure 4. Illustration of two-stage fine-tuning approach for FSODup. In the base training stage, the entire detector, including the feature
extractor, the module for learning of universal prototypes, and the module for enhancement based on conditional prototypes, are jointly
trained on the data-abundant base categories. In the few-shot fine-tuning stage, the entire detector is fine-tuned on a balanced training set
consisting of both the few base and novel categories.

of a large number of object categories. Meanwhile, due
to the unbalanced object categories, the constructed proto-
types may not accurately reflect category information. (2)
Related to the above, detectors for certain object category
can be affected by co-appearing objects in one image, and
thus the quality of the constructed prototype for such cat-
egory may be burdened. (3) More importantly, since the
number of object categories in the stage of the base training
is different from that of the few-shot fine-tuning, construct-
ing a prototype for each object category makes it impossi-
ble to align the prototypes between the base training and
the few-shot fine-tuning. That is to say, the prototypes pre-
trained on base categories cannot be directly utilized in the
fine-tuning stage. Therefore, for fine-tuning based methods,
it is difficult to build a prototype for each category.

To solve FSOD, we propose to learn universal prototypes
from all object categories. The universal prototypes are not
specific to certain object categories and can be effectively
adapted to novel categories via fine-tuning. In the experi-
ments, we find that the universal prototypes are helpful for
characterizing the regional information of different object
categories. Meanwhile, with the help of universal-prototype
enhancement, the performance of few-shot detection can be
significantly improved.

4. Experiments
We first evaluate our method on PASCAL VOC [7, 6]

and MS COCO [19]. For a fair comparison, we use the
settings in [16, 38] to construct few-shot detection datasets.
Concretely, for PASCAL VOC, the 20 classes are randomly
divided into 5 novel classes and 15 base classes. Here,
we follow the work [16] to use the same three class splits,
where only K object instances are available for each novel
category and K is set to 1, 2, 3, 5, 10. For MS COCO, the
20 categories overlapped with PASCAL VOC are used as
novel categories with K = 10, 30. And the remaining 60
categories are taken as the base categories.

Implementation Details. Faster R-CNN [26] is used as
the base detector. Our backbone is Resnet-101 [15] with
the RoI Align [14] layer. We use the weights pre-trained on

ImageNet [27] in initialization. For FSOD, the number of
universal prototypes (see Eq. (1)) is set to 24. All these pro-
totypes are randomly initialized. Next, the model is trained
with a batchsize of 2 on 2 GPUs, 1 image per GPU. Mean-
while, to alleviate the impact of the scale issue, we employ
the positive sample refinement [36]. The hyper-parameter γ
(see Eq. (8)) is set to 1.0. All models are trained using SGD
optimizer with a momentum of 0.9 and a weight decay of
0.0001. Finally, during inference, we take the output y of
Eq. (5) as the classification result.

4.1. Performance Analysis of Few-Shot Detection

We compare FSODup with two baseline methods, i.e.,
TFA [33] and MPSR [36]. These two approaches all use the
two-stage fine-tuning method to solve FSOD.

Results on PASCAL VOC. Table 1 shows the results
of PASCAL VOC. As the number of novel categories de-
creases, the performance degrades significantly. This in-
dicates that addressing the few-shot problem is crucial
to improve the generalization of detectors. We can see
that the proposed FSODup method consistently outper-
forms the two baseline methods. This shows that employ-
ing universal-prototype enhancement is helpful for learn-
ing invariant object characteristics and thus improves per-
formance. Meanwhile, this also indicates that focusing on
invariance plays a key role in solving FSOD.

In Fig. 5, we show the detection results of MPSR [36]
and our method. ‘bird’ and ‘bus’ belong to the novel cate-
gories. We can see that our method can successfully detect
objects existing in images. This further shows that the pro-
posed universal-prototype enhancement is helpful for cap-
turing invariant object characteristics, which improves the
accuracy of detection.

Results on MS COCO. Table 2 shows the few-shot
detection performance on MS COCO dataset. Compared
with two baseline methods, i.e., TFA [33] and MPSR [36],
our method consistently outperforms their performance.
This further demonstrates the effectiveness of the proposed
universal-prototype enhancement. Besides, FSOD-VE [37]
is a recently proposed meta-learning based method, which
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Novel Set 1 Novel Set 2 Novel Set 3

Method / Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Meta R-CNN [38] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
RepMet [17] 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2
FSOD-VE [37] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

TFA w/fc [33] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/cos [33] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
TFA] w/fc [37, 33] 22.9 34.5 40.4 46.7 52.0 16.9 26.4 30.5 34.6 39.7 15.7 27.2 34.7 40.8 44.6
TFA] w/cos [37, 33] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
MPSR] [36] 40.7 41.2 48.9 53.6 60.3 24.4 29.3 39.2 39.9 47.8 32.9 34.4 42.3 48.0 49.2

Ours (FSODup) 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5

Table 1. Few-shot detection performance (mAP (%)) on PASCAL VOC dataset. We evaluate the performance on three different sets of
novel categories. Resnet-101 [15] is used as the backbone. ‘]’ indicates that we directly run the released code to obtain the results.

Figure 5. Detection results based on the 5-shot case. The first row
shows the results of MPSR [36]. The second row is our detection
results. Our method detects the objects accurately.

combines FSOD with a few-shot viewpoint estimation and
follows Meta R-CNN [38] to optimize detectors. Though
FSOD-VE’s performance of the 10-shot case is higher than
our method, our method outperforms FSOD-VE on the
small objects. Meanwhile, compared with FSOD-VE, the
training of our method is much easier. And we do not use
the viewpoint information. These results further demon-
strate that exploiting universal-prototype enhancement is
helpful for improving detectors’ generalization.

4.2. Ablation Analysis

In this section, based on the Novel Set 1 of PASCAL
VOC, we make an ablation analysis of our method.

Conditional prototypes. In order to sufficiently repre-
sent object-level information, based on the universal proto-
types C (see Eq. (1)), we make an affine transformation
to obtain conditional prototypes A (see Eq. (3)). Next, we
make an ablation analysis of conditional prototypes.

Table 3 shows the comparison results. We can see that
utilizing the conditional operation improves detection per-

Shots Method AP AP75 APS APM APL

10

Meta R-CNN [38] 8.7 6.6 2.3 7.7 14.0
FSOD-VE [37] 12.5 9.8 2.5 13.8 19.9

TFA w/fc [33] 10.0 9.2 – – –
TFA w/cos [33] 10.0 9.3 – – –
TFA] w/fc [37, 33] 9.1 8.5 – – –
TFA] w/cos [37, 33] 9.1 8.8 – – –
MPSR] [36] 9.5 9.5 3.3 8.2 15.9

Ours (FSODup) 11.0 10.7 4.5 11.2 17.3

30

Meta R-CNN [38] 12.4 10.8 2.8 11.6 19.0
FSOD-VE [37] 14.7 12.2 3.2 15.2 23.8

TFA w/fc [33] 13.4 13.2 – – –
TFA w/cos [33] 13.7 13.4 – – –
TFA] w/fc [37, 33] 12.0 11.8 – – –
TFA] w/cos [37, 33] 12.1 12.0 – – –
MPSR] [36] 13.8 13.5 4.0 12.9 22.9

Ours (FSODup) 15.6 15.7 4.7 15.1 25.1

Table 2. Few-shot detection performance (%) on MS COCO
dataset. Here, APS, APM, and APL separately indicate the mAP
performance of the small, medium, and large objects.

method/shot 1 2 3 5 10

No Condition 38.1 43.8 48.9 55.6 60.6

New Prototype 42.1 44.6 48.8 56.1 60.1

Ours 43.8 47.8 50.3 55.4 61.7

Table 3. Analysis of conditional prototypes. Here, ‘No Condition’
indicates we do not use conditional operation in Eq. (3) and di-
rectly use the universal prototypes C to make enhancement. ‘New
Prototype’ indicates we define a new set of prototypes to replace
the conditional prototypes.

formance significantly. Particularly, for the 2-shot case, our
method separately outperforms ‘No Condition’ and ‘New
Prototype’ by 4.0% and 3.2%. This shows that based on
the universal prototypes, the conditional prototypes repre-
sent object-level information effectively, which improves
the performance of detection.

The number of universal prototypes. For our method,
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Figure 6. The t-SNE plot of prototypes. We analyze the impact of employing different shots. Here, the number of prototypes is 24. •
and F separately denote the universal prototypes (see Eq. (1)) and conditional prototypes (see Eq. (3)). For novel categories, using a
different number of samples affects the distribution of the universal and conditional prototypes. As the number of novel objects increases,
the universal prototypes become more scattered, whereas the conditional ones become more concentrated.

number/shot 1 2 3 5 10

16 41.2 42.7 48.3 54.2 60.1
20 42.5 44.1 50.1 56.0 60.5
24 43.8 47.8 50.3 55.4 61.7
28 42.6 44.6 49.6 56.7 60.6
32 41.4 42.1 49.6 53.9 60.0

Table 4. The impact of the number of universal prototypes. Here,
we only utilize a different number of prototypes and keep other
components unchanged.

Novel Classes Mean

Shot Method bird bus cow mbike sofa Novel Base

2 MPSR] [36] 36.8 24.8 56.9 59.1 28.4 41.2 65.4
Ours (FSODup) 40.7 41.3 58.9 62.2 35.9 47.8 66.3

5 MPSR] [36] 44.1 60.7 54.3 66.8 42.1 53.6 69.5
Ours (FSODup) 47.0 60.5 57.3 66.4 46.1 55.4 69.7

Table 5. AP (%) of each novel category on the 2-/5-shot case. We
also present mAP (%) of novel and base categories.

the number of universal prototypes (see Eq. (1)) is an im-
portant hyper-parameter. If the number is small, these pro-
totypes could not represent invariant object characteristics
sufficiently. On the contrary, a large number of prototypes
may increase parameters and computational costs.

Table 4 shows the performance of employing a differ-
ent number of prototypes. We can see that the performance
of utilizing 24 prototypes is the best. When the number is
larger or fewer than 24, the performance degrades signifi-
cantly. This shows the number of prototypes affects FSOD
performance. In general, for the case of a large-scale dataset
with a large number of categories, employing more proto-
types could capture object-level characteristics sufficiently,
which is helpful for improving detectors’ generalization on
novel object categories.

Visualization analysis of prototype distribution. In
Fig. 6, based on different shots, we analyze the distribution
of prototypes. Concretely, as the number of novel objects
increases, in order to improve the detection performance,
the universal prototypes (see Eq. (1)) will become more

Figure 7. Assignment of image regions to universal prototypes
based on the 5-shot case. The highlight regions in each image
are assigned to one same prototype, respectively.

scattered to capture more image-level information. After
RPN, the conditional prototypes are calculated to repre-
sent object-level information. And the features calculated
based on the conditional prototypes are used for classifica-
tion. Thus, as the number of novel objects increases, the
distribution of the conditional prototypes will become more
concentrated to focus on specific categories, which could
improve the accuracy of detection. These analyses further
show universal prototypes are capable of enhancing feature
representations, which is beneficial for FSOD.

Visualization of assignment maps. In Fig. 7, we vi-
sualize the assignment maps of universal prototypes, i.e.,
the soft-assignment eIj,i∑D

i=1 eIj,i
in Eq. (1). For each im-

age, we can see that different object regions are assigned
to one same universal prototype. Particularly, for the sec-
ond image of the second row, the object regions of ‘sofa’
and ‘table’ are all assigned to one same prototype. This in-
dicates the universal prototypes are not specific to certain
object categories. Moreover, the universal prototypes are
helpful for characterizing the region information of differ-
ent objects and could be effectively adapted to novel cate-
gories via fine-tuning.
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(a) 1-shot (b) 2-shot (c) 3-shot (d) 5-shot (e) 10-shot
Figure 8. Visualization of the feature map used for RPN based on different shots. The second and third row separately indicate F and the
output of Ψ (see Eq. (2)). For each feature map, the channels corresponding to the maximum value are selected for visualization.

setting/shot 1 2 3 5 10

1.4 43.2 43.5 49.0 54.8 61.0
1.2 41.1 42.1 50.2 54.3 60.7
1.0 43.8 47.8 50.3 55.4 61.7
0.8 39.7 42.5 49.0 56.0 60.5
0.6 40.8 43.3 50.1 56.9 60.6

Table 6. Ablation analysis of the hyper-parameter γ.

The performance of base categories. Table 5 shows the
performance of each novel and base categories. We can see
that our method outperforms MPSR [36] on novel and base
categories. Particularly, for the ‘bus’ and ‘sofa’ category of
the 2-shot case, our method outperforms MPSR by 16.5%
and 7.5%. This indicates our method could improve the
generalization performance of the detector.

Analysis of Hyper-Parameter γ. For the joint training
loss L (see Eq. (8))), we use a hyper-parameter γ to balance
the consistency lossLcon. Table 6 shows the results. We can
see that different settings of the hyper-parameter γ affect the
performance of FSOD. For our method, when γ is set to 1.0,
the performance is the best.

Analysis of the output descriptors. In Eq. (2) and (5),
the output descriptors are fused as the input of the RPN and
classifier. Next, we analyze the impact of the descriptors.
Concretely, for Eq. (2), we only take F as the input of
RPN and keep other components unchanged. For the 1-
shot and 5-shot case, fusing the descriptors improves the
performance by 2.7% and 1.8%. For Eq. (5), we only take
Ψc(P ) as the input of classifier and keep other components
unchanged. For the 1-shot and 5-shot case, fusing the de-

scriptors improves the performance by 2.1% and 1.2%. This
shows fusing descriptors into the current features is helpful
for improving the representation ability of the features.

In Fig. 8, based on different shots, we show visualiza-
tion results of F and the output of Ψ (see Eq. (2)). Here,
we separately take F and the output of Ψ as the input of
RPN. We can see that for the base and novel categories,
compared with F , the output of Ψ contains more object-
related information. Taking the 5-shot result as an example,
the output of our method (the fourth image of the third row)
contains more information about ‘Person’ category. This
further indicates fusing descriptors is helpful for enhancing
the object-level information.

5. Conclusion

To solve FSOD, we propose to learn universal prototypes
from all object categories. Meanwhile, we develop an ap-
proach of few-shot object detection with universal proto-
types (FSODup). Concretely, after obtaining the univer-
sal and conditional prototypes, the enhanced object fea-
tures are computed based on the conditional prototypes.
Next, through a consistency loss, FSODup enhances the
invariance and generalization. Experimental results on two
datasets show the effectiveness of the proposed method.
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