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Abstract

A recent trend in computer vision is to replace convo-
lutions with transformers. However, the performance gain
of transformers is attained at a steep cost, requiring GPU
years and hundreds of millions of samples for training.
This excessive resource usage compensates for a misuse
of transformers: Transformers densely model relationships
between its inputs – ideal for late stages of a neural net-
work, when concepts are sparse and spatially-distant, but
extremely inefficient for early stages of a network, when
patterns are redundant and localized. To address these is-
sues, we leverage the respective strengths of both opera-
tions, building convolution-transformer hybrids. Critically,
in sharp contrast to pixel-space transformers, our Visual
Transformer (VT) operates in a semantic token space, judi-
ciously attending to different image parts based on context.
Our VTs significantly outperforms baselines: On ImageNet,
our VT-ResNets outperform convolution-only ResNet by 4.6
to 7 points and transformer-only ViT-B by 2.6 points with
2.5× fewer FLOPs, 2.1× fewer parameters. For seman-
tic segmentation on LIP and COCO-stuff, VT-based feature
pyramid networks (FPN) achieve 0.35 points higher mIoU
while reducing the FPN module’s FLOPs by 6.5x.

1. Introduction
In computer vision, visual information is captured as ar-

rays of pixels. These pixel arrays are then processed by
convolutions, the de facto deep learning operator for com-
puter vision. Although this convention has produced highly
successful vision models, there are critical challenges:

1) Not all pixels are created equal: Image classification
models should prioritize foreground objects over the back-
ground. Segmentation models should prioritize pedestrians
over disproportionately large swaths of sky, road, vegeta-
tion etc. Nevertheless, convolutions uniformly process all
image patches regardless of importance. This leads to spa-

tial inefficiency in both computation and representation.
2) Not all images have all concepts: Low-level features

such as corners and edges exist in all natural images, so ap-
plying low-level convolutional filters to all images is appro-
priate. However, high-level features such as ear shape exist
in specific images, so applying high-level filters to all im-
ages is computationally inefficient. For example, dog fea-
tures may not appear in images of flowers, vehicles, aquatic
animals etc. This results in rarely-used, inapplicable filters
expending a significant amount of compute.

3) Convolutions struggle to relate spatially-distant
concepts: Each convolutional filter is constrained to oper-
ate on a small region, but long-range interactions between
semantic concepts is vital. To relate spatially-distant con-
cepts, previous approaches increase kernel sizes, increase
model depth, or adopt new operations like dilated convolu-
tions, global pooling, and non-local attention layers. How-
ever, by working within the pixel-convolution paradigm,
these approaches at best mitigate the problem, compensat-
ing for the convolution by adding model complexity.

To overcome the above challenges, we address the root
cause and introduce the Visual Transformer (VT) (Figure
1) to represent and process high-level concepts in images.
Our intuition is that a sentence with a few words (or vi-
sual tokens) suffices to describe high-level concepts in a
late-stage feature map. This motivates a departure from
the fixed pixel-array representation later in the network; in-
stead, we use spatial attention to convert the feature map
into a compact set of semantic tokens. We then feed these
tokens to a self-attention module or transformer [39] to cap-
ture token interactions. The resulting visual tokens com-
puted can be directly used for image-level prediction tasks
(e.g., classification) or be spatially re-projected to the fea-
ture map for pixel-level prediction tasks (e.g., segmenta-
tion). Unlike late-stage convolutions, our VT addresses the
three challenges: 1) judiciously allocating computation by
attending to important regions, instead of treating all pixels
equally; 2) encoding semantic concepts in a few visual to-
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Figure 1: Diagram of a Visual Transformer (VT). For a given image, we first apply convolutional layers to extract low-level
features. The output feature map is then fed to VT: First, apply a tokenizer, grouping pixels into a small number of visual
tokens, each representing a semantic concept in the image. Second, apply transformers to model relationhips between tokens.
Third, visual tokens are directly used for image classification or projected back to the feature map for semantic segmentation.

kens relevant to the image, instead of modeling all concepts
across all images; and 3) relating spatially-distant concepts
through self-attention in token-space.

To validate the effectiveness of VT and understanding
its key components, we run controlled experiments by us-
ing VTs to replace convolutions in ResNet, a common test
bed for new building blocks for image classification. We
also use VTs to re-design feature-pyramid networks (FPN),
a strong baseline for semantic segmentation. Our experi-
ments show that VTs achieve higher accuracy with lower
computational cost in both tasks. For the ImageNet[11]
benchmark, we replace the last stage of ResNet[14] with
VTs, reducing FLOPs of the stage by 6.9x and improving
top-1 accuracy by 4.6 to 7 points. For semantic segmen-
tation on COCO-Stuff [2] and Look-Into-Person [25], VT-
based FPN achieves 0.35 points higher mIOU while reduc-
ing regular FPN module’s FLOPs by 6.4x.

2. Relationship to previous work

Transformers in vision models: A notable recent and
relevant trend is the adoption of transformers in vision mod-
els. Dosovitskiy et al. propose a Vision Transformer (ViT)
[12], dividing an image into 16 × 16 patches and feeding
these patches (i.e., tokens) into a standard transformer. Al-
though simple, this requires transformers to learn dense,
repeatable patterns (e.g., textures), which convolutions are
drastically more efficient at learning. The simplicity incurs
an extremely high computational price: ViT requires up to
7 GPU years and 300M JFT dataset images to outperform
competing convolutional variants. By contrast, we leverage
the respective strengths of each operation, using convolu-
tions for extracting low-level features and transformers for
relating high-level concepts. We further use spatial atten-
tion to focus on important regions, instead of treating each

image patch equally. Another relevant work, DETR[3],
adopts transformers to simplify the hand-crafted anchor
matching procedure in object detection training. This is an
orthogonal use case that is not comparable to, but can be
combined with, VT.

Graph convolutions in vision models: Our work is
also related to previous efforts such as GloRe [6], Latent-
GNN [51], and [26] that densely relate concepts in latent
space using graph convolutions. To augment convolutions,
[26, 6, 51] adopt a procedure similar to ours: (1) extract-
ing latent variables as graph nodes (analogous to our visual
tokens) (2) applying graph convolution to capture node in-
teractions (analogous to our transformer), and (3) project-
ing the nodes back to the feature map. Although these ap-
proaches avoid spatial redundancy, they are susceptible to
concept redundancy: the second limitation listed in the in-
troduction. In particular, by using fixed weights that are
not content-aware, the graph convolution expects a fixed
semantic concept in each node, regardless of whether the
concept exists in the image. By contrast, a transformer uses
content-aware weights, allowing visual tokens to represent
varying concepts. As a result, while graph convolutions
require hundreds of nodes (128 nodes in [4], 340 in [25],
150 in [52]) to encode potential semantic concepts, our VT
uses just 16 visual tokens and attains higher accuracy. Fur-
thermore, while [26, 6, 51] augment convolutions in a pre-
trained network, VTs replace convolutional layers to save
FLOPs and parameters, and support training from scratch.

Attention in vision models: Attention is also widely
used in different computer vision models [21, 20, 43, 46,
48, 42, 28, 18, 19, 1, 53, 30, 49]. Attention was first com-
puted from the input and multiplied with the feature map
[43, 21, 20, 46]. Later work [48, 34, 41] interprets this as
a way to make convolutions spatially adaptive and content-
aware. In [42], Wang et al. introduced non-local operators,
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equivalent to self-attention, to video understanding to cap-
ture long-range interactions. However, self-attention is ex-
pensive, so [1] use self-attention in convolutions with small
channel sizes and [30, 28, 7, 53, 19] restrict the receptive
field of self-attention. Starting from [30], self-attention is
used as a stand-alone building block for vision models. Our
work is different from all above since we propose a novel
token-transformer paradigm to replace the inefficient pixel-
convolution paradigm and achieve superior performance.

Efficient vision models: Many works achieve better per-
formance with lower computational cost. Early work in this
direction includes [23, 31, 13, 17, 32, 16, 52, 27, 45]. Re-
cent works use neural architecture search [44, 10, 40, 9, 37,
36] to automatically arrange existing convolution operators,
which we show can be inefficient when used exclusively.

3. Visual Transformer
We illustrate the overall diagram of a Visual Transformer

(VT) based model in Figure 1. First, process the input im-
age with several convolution blocks, then feed the output
feature map to VTs. Our insight is to leverage the strengths
of both convolutions and VTs: (1) early in the network, use
convolutions to learn densely-distributed, low-level patterns
and (2) later in the network, use VTs to learn and relate
more sparsely-distributed, higher-order semantic concepts.
Use visual tokens for image-level prediction tasks and use
the augmented feature map for pixel-level prediction tasks.

A VT module involves three steps: First, group pixels
into semantic concepts, to produce a compact set of visual
tokens. Second, to model relationships between semantic
concepts, apply a transformer [39] to these visual tokens.
Third, project these visual tokens back to pixel-space to ob-
tain an augmented feature map. With only 16 visual tokens,
our VT outperforms previous methods [6, 51, 26] which use
hundreds of semantic concepts (“nodes”).

3.1. Tokenizer
Our intuition is that an image can be summarized by a

few handfuls of words, or visual tokens. This contrasts con-
volutions, which use hundreds of filters, and graph convo-
lutions, which use hundreds of “latent nodes” to detect all
possible concepts regardless of image content. To leverage
this intuition, we introduce a tokenizer module to convert
feature maps into compact sets of visual tokens. Formally,
we denote the input feature map by X ∈ RHW×C (height
H , width W , channels C) and visual tokens by T ∈ RL×C

s.t. L # HW (L represents the number of tokens).

3.1.1 Filter-based Tokenizer

A filter-based tokenizer, also adopted by [51, 6, 26], utilizes
convolutions to extract visual tokens. For feature map X,
we map each pixel Xp ∈ RC to one of L semantic groups

using point-wise convolutions. Then, within each group, we
spatially pool pixels to obtain tokens T. Formally,

T = SOFTMAXHW (XWA)︸ ︷︷ ︸
A∈RHW×L

TX
(1)

Here, WA ∈ RC×L forms semantic groups from X, and
SOFTMAXHW (·) translates these activations into a spatial
attention. Finally, A multiplies with X and computes
weighted averages of pixels in X to make L visual tokens.

However, many high-level semantic concepts are sparse
and may each appear in only a few images. As a result, the
fixed set of learned weights WA potentially wastes com-
putation by modeling all such high-level concepts at once.
We call this a “filter-based” tokenizer, since it uses convo-
lutional filters WA to extract visual tokens.
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Figure 2: Filter-based tokenizer that use convolution to
group pixels using a fixed convolution filter.

3.1.2 Recurrent Tokenizer

To remedy the limitation of filter-based tokenizers, we pro-
pose a recurrent tokenizer with weights that are dependent
on previous layer’s visual tokens. The intuition is to let
the previous layer’s tokens Tin guide the extraction of new
tokens for the current layer. The name of “recurrent tok-
enizer” comes from that current tokens are computed de-
pendent on previous ones. Formally, we define

WR = TinWT→R,

T = SOFTMAXHW (XWR)
T X,

(2)

where WT→R ∈ RC×C . This way VT can incrementally
refine the set of tokens conditioned on previously-processed
concepts. We apply recurrent tokenizers starting from the
second VT, since it requires tokens from a previous VT.

3.2. Transformer
After tokenization, we then need to model interactions

between these visual tokens. Previous works [6, 51, 26] use
graph convolutions to relate concepts. However, these op-
erations use fixed weights during inference, meaning each
token (or “node”) is bound to a specific concept, there-
fore graph convolutions waste computation by modeling all
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Figure 3: Recurrent tokenizer that uses previous tokens to
guide the token extraction in the current VT module.

high-level concepts, even those that only appear in few im-
ages. To address this, we adopt transformers [39], which
use input-dependent weights by design. Due to this, trans-
formers support visual tokens with variable meaning, cov-
ering more possible concepts with fewer tokens.

We employ a standard transformer with minor changes:

T′
out = Tin + SOFTMAXL

(
(TinK)(TinQ)T

)
Tin, (3)

Tout = T′
out + σ(T′

outF1)F2, (4)

where Tin,T′
out,Tout ∈ RL×C are the visual tokens. Dif-

ferent from graph convolution, in a transformer, weights be-
tween tokens are input-dependent and computed as a key-
query product: (TinK)(TinQ)T ∈ RL×L. This allows
us to use as few as 16 visual tokens, in contrast to hun-
dreds of analogous nodes for graph-convolution approaches
[6, 51, 26]. After the self-attention, we use a non-linearity
and two pointwise convolutions in Equation (4), where
F1,F2 ∈ RC×C are weights, σ(·) is the ReLU function.

3.3. Projector
Many vision tasks require pixel-level details, but such

details are not preserved in visual tokens. Therefore, we
fuse the transformer’s output with the feature map to refine
the feature map’s pixel-array representation as

Xout = Xin + SOFTMAXL

(
(XinWQ)(TWK)T

)
T,

(5)
where Xin,Xout ∈ RHW×C are the input and output fea-
ture map. (XinWQ) ∈ RHW×C is the query computed
from the input feature map Xin. (XinWQ)p ∈ RC en-
codes the information pixel-p requires from the visual to-
kens. (TWK) ∈ RL×C is the key computed from the to-
ken T. (TWK)l ∈ RC represents the information the l-th
token encodes. The key-query product determines how to
project information encoded in visual tokens T to the orig-
inal feature map. WQ ∈ RC×C ,WK ∈ RC×C are learn-
able weights used to compute queries and keys.

4. Using VT in vision models
In this section, we discuss how to use VTs as building

blocks in vision models. We define three hyper-parameters

for each VT: channel size of the feature map; channel size
of the visual tokens; and the number of visual tokens.

Image classification model: Following convention in
image classification, we use ResNet backbones [14] to build
visual-transformer-ResNets (VT-ResNets) by replacing the
last stage of convolutions with VTs. First, we replace
ResNet-{18, 34, 50, 101}’s 2 basic blocks, 3 basic blocks,
3 bottleneck blocks, and 3 bottleneck blocks, respectively,
with the same number of VT modules. Second, since
ResNet-{18, 34, 50, 101} outputs 142 × 256, 142 × 256,
142 × 1024, 142 × 1024 feature maps after stage-4 (before
stage-5 max pooling), we set VT’s channel size to 256, 256,
1024, 1024. We use 16 visual tokens for all modules. The
tokens are directly fed to the classification head – a stan-
dard average pool and fully-connected layer. Each model is
exhaustively described in Appendix A. We reduce the last
stage’s FLOPs by up to 6.9x (Table 1).

R18 R34 R50 R101

FLOPs Total 1.14x 1.16x 1.20x 1.09x
Stage-5 2.4x 5.0x 6.1x 6.9x

Params Total 0.91x 1.21x 1.19x 1.19x
Stage-5 0.9x 1.5x 1.26x 1.26x

Table 1: FLOPs and parameter size reduction of VTs on
ResNets by replacing the last stage of convolution modules
with VT modules.

Semantic segmentation: With convolutions, a) compu-
tational complexity grows with resolution and b) long-range
spatial interactions are difficult to capture. However, VTs a)
operate on a minimal set of visual tokens regardless of reso-
lution and b) can capture long-range spatial interactions eas-
ily in latent space. We integrate VTs with the commonly-
used panoptic feature pyramid networks (FPN) [24]. Panop-
tic FPNs extract ResNet feature maps at multiple stages and
resolutions, which are then fused to produce multi-scale,
detail-preserving feature maps (Figure 4 left). However,
they rely on convolutions with large channel sizes operating
on high resolution feature maps. We replace FPN convolu-
tions with VT modules, producing VT-FPN (Figure 4 right).
From each resolution, we extract 8 visual tokens with 1024
channels each, then relate tokens with a transformer before
re-projecting back to the feature maps for pixel-level pre-
dictions. VT-FPN uses 6.4x fewer FLOPs than FPN with
the same or better accuracy (Table 9 & 10).

5. Experiments
We conduct experiments with VTs on image classifica-

tion and semantic segmentation to (a) understand the key
components of VTs and (b) validate their effectiveness.

5.1. VT for Classification and Ablations
We experiment on ImageNet [11], which features 1.3

million training images and 50 thousand validating images.
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Figure 4: Feature Pyramid Networks (FPN) (left) vs visual-transformer-FPN (VT-FPN) (right) for semantic segmentation.
FPN uses convolution and interpolation to merge feature maps with different resolutions. VT-FPN extraxt visual tokens from
all feature maps, merge them with one transformer, and project back to the original feature maps.

Top-1
Acc (%)

(Val)

Top-1
Acc (%)
(Train)

FLOPs
(M)

Params
(M)

R18 69.9 68.6 1814 11.7
VT-R18 72.0 76.5 1579 11.6
R34 73.3 73.9 3664 21.8
VT-R34 74.8 80.8 3299 21.8

Table 2: VT-ResNet vs. baseline ResNets on the ImageNet
dataset. By replacing the last stage of ResNets, VT-ResNet
uses 224M, 384M fewer FLOPs than the baseline ResNets
while achieving 1.7 points and 2.2 points higher validation
accuracy. Note the training accuracy of VT-ResNets are
much higher. This indicates VT-ResNets have higher model
capacity and require stronger regularization (e.g., data aug-
mentation) to fully utilize the model. See Table 8.

We implement VT models in PyTorch [29]. We use SGD
with momentum [35]–an initial learning rate 0.1 decayed
by 10x every 30 epochs, momentum 0.9, weight decay 4e-
5, batch size 256, and 90 epochs. We use 8 V100 GPUs.

VT vs. ResNet with default training recipe: In Ta-
ble 2, we compare VT-ResNets and vanilla ResNets un-
der the same training recipe. VT-ResNets replace the last
stage with a string of VT modules, using a filter-based tok-
enizer for the first module and recurrent tokenizers for sub-
sequent modules. VT-ResNets outperform baselines by up
to 2.1 points despite using fewer FLOPs–244M fewer (VT-
R18) and 384M fewer (VT-R34). Furthermore, VT-ResNets
overfit more heavily, with 7.9 (VT-R18) and 6.9 (VT-R34)
points higher training accuracy. We hypothesize this is be-
cause VT-ResNets have much larger capacity and we need
stronger regularization (e.g., data augmentation). We ad-
dress this in Section 5.2 and Table 8.

Tokenizer ablation: We replace the first VT module’s
tokenizer with simpler baselines: First, we consider a naive
pooling-based tokenizer, which simply bilinearly interpo-
lates a feature map spatially, to reduce from HW = 196
to L = 16. Second, we consider a clustering-based tok-
enizer (Appendix C), which clusters pixels using k-means
to form tokens. Per Table 3, the naive pooling-based tok-
enizer underperforms by a significant margin, validating the
efficacy of “smarter” pixel grouping. However, filter-based

Top-1
Acc (%)

FLOPs
(M)

Params
(M)

R18
Pooling-based 70.6 1550 11.0
Clustering-based 71.5 1580 11.6
Filter-based 72.0 1579 11.6

R34
Pooling-based 73.5 3246 20.6
Clustering-based 75.1 3230 21.8
Filter-based 74.8 3299 21.8

Table 3: VT-ResNets using with different types of tokeniz-
ers. Pooling-based tokenizers spatially downsample a fea-
ture map to obtain visual tokens. Clustering-based tokenizer
(Appendix C) groups pixels in the semantic space. Filter-
based tokenizers (3.1.1) use convolution filters to group pix-
els. Both filter-based and cluster-based tokenizers work
much better than pooling-based tokenizers, validating the
importance of grouping pixels by their semantics.

Top-1
Acc (%)

FLOPs
(M)

Params
(M)

R18 w/ RT 72.0 1579 11.6
w/o RT 71.4 1564 11.1

R34 w/ RT 74.8 3299 21.8
w/o RT 74.5 3369 20.7

Table 4: VT-ResNets that use recurrent tokenizers achieve
better performance, since recurrent tokenizers are content-
aware. RT denotes recurrent tokenizer.

and clustering-based tokenizers perform similarly, with op-
posite rankings between VT-R18 and VT-R34. We hypoth-
esize this is due to complementary drawbacks: Filter-based
tokenizers are limited by fixed convolutional filters with
non-content-aware weights, and clustering-based tokenizers
extracts concepts that may not be critical for downstream
classification performance. In Table 4, we validate the re-
current tokenizer’s effectiveness.

Modeling token relationships: In Table 5, we compare
different methods of capturing token relationships. Both (a)
the baseline without computing token interactions and (b)
graph convolutions graph convolutions [6, 26, 51] under-
perform VTs, validating the need for both token interaction
and for content-aware token extraction.

Token efficiency ablation: In Table 6, we test varying
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Top-1
Acc (%)

FLOPs
(M)

Params
(M)

R18
None 68.8 1528 8.5
GraphConv 69.2 1528 8.5
Transformer 72.0 1579 11.6

R34
None 73.4 3222 17.1
GraphConv 73.6 3223 17.1
Transformer 74.8 3299 21.8

Table 5: VT-ResNets using different modules to model to-
ken relationships. Models using transformers perform bet-
ter than graph-convolution or no token-space operations.
This validates that it is important to model relationships
between visual token (semantic concepts) and transformer
work better than graph convolution in relating tokens.

No.
Tokens

Top-1
Acc (%)

FLOPs
(M)

Params
(M)

R18
16 72.0 1579 11.6
32 71.7 1711 11.6
64 72.0 1979 11.6

R34
16 74.8 3299 21.8
32 75.1 3514 21.8
64 75.0 3951 21.8

Table 6: Using more visual tokens do not improve the ac-
curacy of VT by significant margins, which agrees with our
hypothesis that images can be described by a compact set of
visual tokens.

Top-1
Acc (%)

FLOPs
(M)

Params
(M)

R18 w/ projector 72.0 1579 11.7
w/o projector 70.9 1497 9.3

R34 w/ projector 74.8 3299 21.8
w/o projector 74.1 3158 17.3

Table 7: VTs that projects tokens back to feature maps per-
form better. This may be because feature maps still encode
important spatial information.

numbers of visual tokens, only to find negligible or no in-
crease in accuracy. This suggests VTs are already cover the
space of possible, high-level concepts.

Projection ablation: In Table 7, we show re-projecting
visual tokens to the feature map is critical for performance.
This is because pixel-level semantics are very important in
vision understanding, which visual tokens lack entirely.

5.2. Training VT with Advanced Recipe
In Table 2, we show that under the regular training

recipe, the VT-ResNets experience serious overfitting, with
higher validation accuracy but even larger train-val accu-
racy gap than the baseline. We thus hypothesize VT-based
models have much higher model capacity. To maximize
this, we retrain with advanced training recipes, using more
training epochs, stronger data augmentation, stronger regu-

larization, and distillation. Specifically, we use 400 epochs,
RMSProp, initial learning rate 0.01, 5 warmup epochs in-
creasing learning rate to 0.16, then a learning rate reduc-
tion of 0.9875 per epoch, synchronized batch normaliza-
tion, distributed training with batch size 2048, label smooth-
ing, AutoAugment [8], stochastic depth survival probabil-
ity [22] 0.9, dropout ratio 0.2, exponential moving average
(EMA)with 0.99985 decay, and knowledge distillation [15]
with FBNetV3-G [9] as teacher. The final loss weights the
distillation term by 0.8 and cross entropy term by 0.2.

Our results are reported in Table 8. Compared with
the baseline ResNet models, VT-ResNet models achieve
4.6 to 7 points higher accuracy. Our VT-ResNets fur-
thermore outperform other ResNet-based attention variants
[21, 43, 1, 5, 19, 30, 53, 6]. This validates that our advanced
training recipe better utilizes the VT-ResNet’s model capac-
ity. We also compare with concurrent work that adopt trans-
formers in vision models [12, 38, 50, 33] though our work
is earlier than these papers. Our models outperform com-
petitors despite using far fewer FLOPs and parameters.

Each of the included baselines utilizes their own training
recipes, in addition to their architectural changes; to under-
stand the source of our accuracy gain, we train ResNet18
and ResNet34 with the same advanced training recipe.
Despite this, the accuracy gap between VT-ResNet and
ResNets increases from 1.7 and 2.2 points to 2.2 and 3.0
points, respectively, despite using fewer FLOPs and param-
eters. This further validates that a stronger training recipe
can better utilize VT model capacity. For this last stage, we
observe FLOP reductions of up to 6.9x (Table 1).

5.3. Visual Transformer for Semantic Segmentation

We conduct experiments to test the effectiveness of VT
for semantic segmentation on the COCO-stuff [2] and LIP
[25] datasets. The COCO-stuff dataset contains annotations
for 91 stuff classes with 118K training images and 5K val-
idation images. LIP dataset is human image dataset with
challenging poses and views. For the COCO-stuff dataset,
we train a VT-FPN model with ResNet-{50, 101} back-
bones. Our implementation is based on Detectron2 [47].
Our training recipe is based on the semantic segmentation
FPN recipe with 1x training steps, except that we use syn-
chronized batch normalization in the VT-FPN, change the
batch size to 32, and use a base learning rate of 0.04. For
the LIP dataset, we also use synchronized batch normaliza-
tion with a batch size of 96. We train the model with SGD
using weight decay of 0.0005 and learning rate of 0.01.

As we can see in Table 9 and 10, after replacing FPN
with VT-FPN, both ResNet-50 and ResNet-101 based mod-
els achieve slightly higher mIoU, but VT-FPN requires 6.5x
fewer FLOPs than a FPN module.
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Models Top-1
Acc (%)

FLOPs
(G)

Params
(M)

R18[14] 69.8 1.814 11.7
R18+SE[21, 43] 70.6 1.814 11.8
R18+CBAM[43] 70.7 1.815 11.8

LR-R18[19] 74.6 2.5 14.4
R18[14](ours) 73.8 1.814 11.7
VT-R18(ours) 76.8 1.569 11.7

R34[14] 73.3 3.664 21.8
R34+SE[21, 43] 73.9 3.664 22.0
R34+CBAM[43] 74.0 3.664 22.9

AA-R34[1] 74.7 3.55 20.7
R34[14](ours) 77.7 3.664 21.8
VT-R34(ours) 79.9 3.236 19.2

R50[14] 76.0 4.089 25.5
R50+SE[21, 43] 76.9 3.860* 28.1
R50+CBAM[43] 77.3 3.864* 28.1

LR-R50[19] 77.3 4.3 23.3
Stand-Alone[30] 77.6 3.6 18.0

AA-R50[1] 77.7 4.1 25.6
A2-R50[5] 77.0 - -

SAN19[53] 78.2 3.3 20.5
GloRe-R50[6] 78.4 5.2 30.5
VT-R50(ours) 80.6 3.412 21.4

R101[14] 77.4 7.802 44.4
R101+SE [21, 43] 77.7 7.575* 49.3
R101+CBAM[43] 78.5 7.581* 49.3

LR-R101[19] 78.5 7.79 42.0
AA-R101[1] 78.7 8.05 45.4

GloRe-R200[6] 79.9 16.9 70.6
VT-R101(ours) 82.3 7.129 41.5

ViT-B/16-224 [12] † 79.7 17.6‡ 86.4
DeiT-B/16-224 [38] 81.8 17.6‡ 86
T2T-ViTt-224 [50] 82.2 13.2 64.1
BoTNet-S1-59 [33] 81.7 7.3 33.5

Table 8: Comparing VT-ResNets with other attention-
augmented ResNets on ImageNet. *The baseline ResNet
FLOPs reported in [43] is lower than our baseline. † We
are citing the accuracy of training from scratch at a reso-
lution of 224 from [50]. ‡ FLOP estimation is cited from
[50]. Figure 9 in the Appendix shows a plot of accuracy vs.
parameters and FLOPs for models above.

mIoU
(%)

Total
FLOPs (G)

FPN
FLOPs (G)

R-50 FPN 40.78 159 55.1
VT-FPN 41.00 113 (1.41x) 8.5 (6.48x)

R-101 FPN 41.51 231 55.1
VT-FPN 41.50 185 (1.25x) 8.5 (6.48x)

Table 9: Semantic segmentation results on the COCO-stuff
validation. FLOPs are calculated with 800×1216 input.

6. Analyses
Why not use transformers at early stages? One promi-
nent concurrent work, ViT [12] replaces convolutions at all
stages of the network with transformers. However, we find
using transformers early in a network is extremely ineffi-
cient, suffering from accuracy loss when compared with

mIoU
(%)

Total
FLOPs (G)

FPN
FLOPs (G)

R50 FPN 47.04 37.1 12.8
VT-FPN 47.39 26.4 (1.41x) 2.0 (6.40x)

R101 FPN 47.35 54.4 12.8
VT-FPN 47.58 43.6 (1.25x) 2.0 (6.40x)

Table 10: Semantic segmentation results on the Look Into
Person validation set. The FLOPs are calculated with a typ-
ical input resolution of 473×473.
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Figure 5: The upper image presents the percentage of local
attention over the all attention values at different layers. The
solid line is the mean of all the heads and the boundaries
denote the standard deviations. The bottom row are self-
attention patterns in a pretrained ViT-B/16 model.

baselines with similar resource constraints (Table 8). To
study why, we analyze a pre-trained ViT-B/16 and find its
self-attention patterns in early layers are highly-localized
(Fig. 5, Row 2), with each token focusing on only neighbor-
ing patches (as shown by the diagonal lines). Self-attention
spreads to non-local regions only in later layers. To quan-
tify this observation, we compute the how “localized” each
attention map is, as the ratio between (a) attention given
to local pixels and (b) attention given to all pixels. For-
mally, given layer ", its attention map A! and pixel (i, j),
we sum attention weights in a 3 × 3 patch centered on
(i, j): P!,ij =

∑
xy A!,xy : x ∈ {i − 1, , i, i + 1}, y ∈

{j − 1, j, j + 1}. We also compute the sum of all atten-
tion values T!,ij =

∑
xy A!,xy . We average over all pixels

and images, R! =
1

n!ninj

∑
!,ij P!,ij/T!,ij and plot this ra-

tio R! (Fig. 5). This confirms that ViT-B/16 transformers
early in a network are highly-localized, only using global
attention at later layers. This is reminiscent of convolu-
tions: transformers early in the network mimic a convolu-
tion’s highly-localized and sparse attention, at a far greater
computational cost. This thus motivates our design pattern:
use convolutions when localized attention is needed (early
in a network), and use transformers when global attention is
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Figure 6: Visualization of the spatial attention generated by a filter-based tokenizer on images from the LIP dataset. Red
denotes higher attention values and color blue denotes lower. Without any supervision, visual tokens automatically focus on
different areas of the image that correspond to different semantic concepts, such as sheep, ground, clothes, woods. Row 1
shows pixels contributions to each token, and Row 2 shows how different pixels interact with the same token. Note in Row 2
that pixels may be from disparate, spatially-distant portions of the image, indicating VT can capture long-range interactions.

needed (later in a network).
What do the tokens learn? We show that extracted VT to-
kens correspond to different semantic image regions, by vi-
sualizing the spatial attention A ∈ RHW×L for filter-based
tokenizers in Figure 6, Row 1. Attention maps A:,l ∈ RHW

reflect each pixel’s contribution to token-l, showing how
each token represents different semantic parts of the scene.
We also find VT trained on LIP assigns 28.3% higher at-
tention to foreground pixels (annotated parts) than to back-
ground pixels. See more visual cases in Appendix B.
Does VT treat each pixel equally? We find, as hypoth-
esized, VT assigns computation non-uniformly spatially.
This is verified by the non-uniform attention distribution
across the image, as shown in Figure 6, Row 1. We also
quantify this by computing the visualized attention map A’s
entropy E = −

∑
i,j Ai,j log(Ai,j). For a convolution,

∀i, j,Ai,j = 1/(HW ). We use 473 × 473 for LIP im-
ages, making the baseline entropy Econv = 12.318. For
VT, the attention is A ∈ RHW×L (Section 3.1.1), making
VT entropy Evt = 0.941. This is 13x smaller than Econv ,
verifying VT does not treat each pixel equally.
Does VT capture long-range interactions? We design VT
hoping it can capture long-range interactions and overcome
the limitation of convolutions. We verify this by analyzing
which pixels are interacting with each token. Formally, for
token-l with attention map Ai,j,l, its interaction with other
tokens are captured by the self-attention weight Wl,l′ com-
puted in Equation (3). We analyze which pixels interacted
with token-l by computing Âi,j,l =

∑
l′ Wl,l′ × Ai,j,l′ .

We visualize Âi,j,l in Fig. 6 Row 2. Same as A, Â attends
globally to the entire image. The focus regions of Â can
be disparate, spatially distant portions of the image than A,
indicating VTs capture long-range interactions.

7. Conclusion
A recent trend in computer vision replaces convolutions

with transformers. However, this ignores the motivation
for a convolution: convolutions are efficient for process-
ing highly-redundant, highly-localized patterns like edges
and corners, which occur early in a network. In lieu of this,
we design convolution-transformer hybrids that leverage the
strengths of both operations. We propose Visual Trans-
formers (VTs), learning and relating sparsely-distributed,
high-level concepts far more efficiently: Instead of pixel
arrays, VTs represent just the high-level concepts in an
image using visual tokens. Instead of convolutions, VTs
apply transformers to directly relate semantic concepts in
token-space. To evaluate this idea, we replace convolu-
tional modules with VTs, obtaining significant accuracy im-
provements across tasks and datasets. Using an advanced
training recipe, our VT improves ResNet accuracy on Im-
ageNet by 4.6 to 7 points. For semantic segmentation on
LIP and COCO-stuff, VT-based feature pyramid networks
(FPN) achieve 0.35 points higher mIoU despite 6.5x fewer
FLOPs than convolutional FPN modules. This paradigm
can furthermore be compounded with other contempora-
neous tricks beyond the scope of this paper, including ex-
tra training data and neural architecture search. However,
instead of presenting a mosh pit of deep learning tricks,
our goal is to show that the pixel-convolution paradigm is
fraught with redundancies, which can be mitigated by tack-
ling the root cause – addressing redundancy in the pixel-
convolution convention by adopting the token-transformer
paradigm, instead of exacerbating compute demands.

606



References
[1] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,

and Quoc V Le. Attention augmented convolutional net-
works. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3286–3295, 2019.

[2] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Computer vision
and pattern recognition (CVPR), 2018 IEEE conference on.
IEEE, 2018.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. arXiv preprint
arXiv:2005.12872, 2020.

[4] Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu, and
Alan L Yuille. Attention to scale: Scale-aware semantic im-
age segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3640–3649,
2016.

[5] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. Aˆ 2-nets: Double attention net-
works. In Advances in Neural Information Processing Sys-
tems, pages 352–361, 2018.

[6] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan
Shuicheng, Jiashi Feng, and Yannis Kalantidis. Graph-based
global reasoning networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
433–442, 2019.

[7] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin
Jaggi. On the relationship between self-attention and con-
volutional layers. arXiv preprint arXiv:1911.03584, 2019.

[8] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 113–123,
2019.

[9] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-
jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew
Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe
search using neural acquisition function. arXiv preprint
arXiv:2006.02049, 2020.

[10] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei
Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming
Wu, Yangqing Jia, et al. Chamnet: Towards efficient network
design through platform-aware model adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 11398–11407, 2019.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[13] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,
Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.
Squeezenext: Hardware-aware neural network design. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops, pages 1638–1647,
2018.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[16] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1314–1324, 2019.

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[18] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3588–3597, 2018.

[19] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Lo-
cal relation networks for image recognition. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3464–3473, 2019.

[20] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea
Vedaldi. Gather-excite: Exploiting feature context in convo-
lutional neural networks. In Advances in Neural Information
Processing Systems, pages 9401–9411, 2018.

[21] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018.

[22] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European conference on computer vision, pages 646–661.
Springer, 2016.

[23] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[24] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6399–6408, 2019.

[25] Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin.
Look into person: Joint body parsing & pose estimation net-
work and a new benchmark. IEEE transactions on pattern
analysis and machine intelligence, 41(4):871–885, 2018.

[26] Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, and
Eric P Xing. Symbolic graph reasoning meets convolu-

607



tions. In Advances in Neural Information Processing Sys-
tems, pages 1853–1863, 2018.

[27] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 116–131, 2018.

[28] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. arXiv preprint arXiv:1802.05751, 2018.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
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