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Abstract

Casual photography is often performed in uncontrolled
lighting that can result in low quality images and degrade
the performance of downstream processing. We consider
the problem of estimating surface normal and reflectance
maps of scenes depicting people despite these conditions
by supplementing the available visible illumination with a
single near infrared (NIR) light source and camera, a so-
called “dark flash image”. Our method takes as input a
single color image captured under arbitrary visible light-
ing and a single dark flash image captured under controlled
front-lit NIR lighting at the same viewpoint, and computes
a normal map, a diffuse albedo map, and a specular inten-
sity map of the scene. Since ground truth normal and re-
flectance maps of faces are difficult to capture, we propose
a novel training technique that combines information from
two readily available and complementary sources: a stereo
depth signal and photometric shading cues. We evaluate
our method over a range of subjects and lighting conditions
and describe two applications: optimizing stereo geometry
and filling the shadows in an image.

1. Introduction
In casual mobile photography, images are often cap-

tured under poor lighting conditions. Controlling the visible
lighting or supplementing it with a flash is often too diffi-
cult or too disruptive to be practical. On the other hand, the
near infrared (NIR) lighting in a scene can be much more
easily controlled and is invisible to the user. In this paper,
we demonstrate how a single “dark flash” NIR image and a
single visible image taken under uncontrolled lighting can
be used to recover high quality maps of the surface nor-
mals, diffuse albedos, and specular intensities in the scene.
We collectively refer to the albedo and specular intensity
estimates as a “reflectance map”. Exposing these signals
within a photography pipeline opens up a range of appli-
cations from refining independent depth estimates to digi-
tally manipulating the lighting in the scene. Although our
method is applicable to many types of objects, we focus on

*Work done while Zhihao Xia was an intern at Google.

RGB Input NIR Input Normal Map

Figure 1: Estimating surface geometry from a single RGB
image is challenging. We augment this input with a sin-
gle NIR “dark flash” image captured at the same time, and
present a network that can estimate high quality normal
maps and reflectance maps (not shown) under a wide range
of visible lighting conditions.

faces - the most common photography subject at the short
ranges over which active illumination is effective.

Our use of controlled NIR lighting provides a number
of benefits. First, the ambient NIR light in a scene is usu-
ally weak or completely absent in indoor environments and
is significantly attenuated by atmospheric absorption out-
doors, which means it is often practical to control this as-
pect of a scene. Second, it results in a more tractable es-
timation problem in contrast to single-image “shape from
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shading” and intrinsic image decomposition techniques that
must simultaneously reason about shape, material proper-
ties, and lighting. Third, it provides a stable source of in-
formation about the shape and appearance of the scene even
under very challenging visible lighting. By locating the NIR
light source near the camera, this setup minimizes shadows
in the scene while producing specular highlights along sur-
faces that are nearly perpendicular to the viewing direction,
giving a useful cue for determining surface orientations.

We present a deep neural network that takes as input one
RGB image captured under uncontrolled visible lighting
and one monochrome NIR image captured from the same
viewpoint, but under controlled lighting provided by a sin-
gle source located near the camera. The network generates
a surface normal and reflectance estimate (diffuse albedo
+ specular intensity) at each pixel. We train this network
by combining two imperfect but complementary cues: a
stereo depth map that provides a reliable estimate of the
low-frequency components of the scene’s 3d shape along
with photometric cues that convey higher-frequency geo-
metric details. These measurements are far easier to obtain
than ground truth geometry and appearance measurements.
We explicitly model the specular reflectance of human skin
in a photometric loss term that guides our training along
with a prior on the albedo map that favors piecewise con-
stant variation [3].

We compare our technique to a baseline learning ap-
proach that uses only a single RGB image as input and state-
of-the-art methods for single image intrinsic image decom-
position [27] and relighting [21]. We are able to produce
overall more stable and more accurate outputs even in very
challenging visible light conditions. We also present two
applications of integrating our technique in a mobile pho-
tography pipeline. In all, this paper makes the following
contributions:

• A new network architecture for estimating dense nor-
mal and reflectance maps from a single RGB+NIR im-
age pair.

• A new training strategy that combines two independent
and complementary signals: one from stereo triangula-
tion and the other from photometric cues in RGB and
NIR, along with a hardware setup for collecting this
data. Notably, our training is guided by a physically-
based image formation model that reproduces both dif-
fuse and surface reflectance.

• We demonstrate two applications of our method in a
modern photography pipeline: optimizing depths com-
puted by an independent stereo technique and reducing
shadows in an image post-capture.

2. Related Work
Intrinsic imaging and shape from shading. Decom-
posing a single image into its underlying shape and re-
flectance is a classical under-constrained problem in com-
puter vision [4, 15]. One class of methods employ hand-
designed priors, learned from relatively small datasets [1, 3]
or NIR imagery [11], to disambiguate these components.
Learning-based methods have been proposed more recently
that train convolutional neural networks to perform this
task using rendered datasets [28, 18], sparse human annota-
tions [6], or multi-view images under different lighting con-
ditions [40]. Whereas some learning approaches function as
“black boxes” [28], others incorporate a physically-based
image formation model [5, 27, 18, 31]. Similiar to ours,
other approaches explore network inputs beyond a single
RGB image, including an additional visible flash image and
a depth map [24] or a single NIR image [39].

A number of methods are specifically designed to work
on images of faces. This includes 3D morphable models [7],
which are commonly used as a prior on reflectance and ge-
ometry in learning-based approaches [32, 29, 27]. Sanyal et
al. [26] estimate the shape of a face within a single image in
the form of blending weights over a parametric face model.
Similar to our approach, other techniques estimate dense
normal or displacement maps [41] including for faces par-
tially hidden by occluders [33, 13]. However these methods
do not attempt to disentangle reflectance data from shading.

In contrast to these prior techniques, we propose a neural
network that takes a single front-lit NIR image in addition
to a color input image, enabling our technique to perform
well even in very challenging visible light conditions. Our
training process is also novel in the way that it combines
two independent and complimentary signals.

Fusing depth and normals. Depth estimated from
methods like stereo triangulation and normals estimated
from shading cues are complementary measurements for
shape recovery. Nehab et al. [20] describe a technique that
seeks to combine the more accurate low-frequency infor-
mation provided by direct depth measurement techniques
with the higher-frequency geometric details provided by
photometric measurements. We use their technique to
evaluate how our approach could be used to improve a
stereo pipeline (Section 5.2). More recent work poses this
as an optimization problem that seeks a surface that best
agrees with these different signals [2, 12, 38, 9, 19]. While
our method does not use any depth information at inference
time, our training method is similar to these approaches in
that we also combine a stereo and photometric loss term.

Face relighting. Most single image face relighting meth-
ods include some representation of shape and reflectance
as intermediate components. Our network architecture
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NIR Input Segmentation Map NIR Light 1 NIR Light 2 NIR Light 3 NIR Light 4

RGB Input Stereo Depth Map Visible Light 1 Visible Light 2 Visible Light 3 Visible Light 4

Figure 2: Our network learns to estimate shape and reflectance from a single front-lit NIR image, a single RGB image under
arbitrary lighting, and a semantic segmentation map computed from the RGB image (inputs are enclosed by the red line).
During training we also use a stereo depth map and replace the RGB image under arbitrary lighting with 4 RGB+NIR image
pairs captured under calibrated point lights (the training inputs are inside the blue dashed line).

(Section 3) is similar to the one proposed by Nestmeyer
et al. [21] for simulating lighting changes in a single
image assumed to have been captured under a single
directional light. Zhou et al. [42] present a dataset of relit
portrait images generated using single-image normal and
illumination estimates and a Lambertian reflectance model.
Although surface geometry is fundamental to relighting,
it is also possible to train an end-to-end network that
does not explicitly reason about shape [30]. We similarly
use multiple images of a scene captured under varying
controlled lighting to train our network in order to enable a
much simpler set of inputs for inference.

Combining infrared and color imagery. A NIR (and/or
ultraviolet) dark flash image can be used to denoise a color
image captured in low visible light conditions [17], or serve
as a guide for correcting motion blur [37]. Techniques have
also been developed that employ controlled NIR lighting
to simulate better visible lighting in real-time video com-
munication systems [34, 14]. We see these as compelling
potential applications of this work.

3. Network Design and Training
Our goal is to estimate a normal map and a reflectance

map from a single RGB image and a front-lit “dark flash”
NIR image. We train a deep neural network to perform
this task. As an auxiliary input, we use a 6-class semantic

segmentation map computed from the RGB image (back-
ground, head, hair, body, upper arm and lower arm) [10].
We found this segmentation map was a useful cue for help-
ing the network reason about shape and reflectance. An ex-
ample set of inputs are shown in Figure 2 (red line).

Our training procedure is driven in part by a physically-
based image formation model that connects the outputs of
our network to images of a scene taken under known point
lighting. This image formation model combines a standard
Lambertian diffuse term with the Blinn-Phong BRDF [8],
which has been used to model the specular reflectance of
human skin [35]. Specifically, we introduce a reflectance
function f that gives the ratio of reflected light to incident
light for a particular unit-length light vector l, view vector
v, surface normal n, four-channel (RGB+NIR) albedo ααα,
scalar specular intensity ρ, and specular exponent m:

f(l,v,n) = ααα+ ρ
m+ 2

2π
(n · h)m, (1)

where h = (n + l)/‖n+ l‖. The observed intensity at a
pixel due to a point light is given by

I(·) = f(l,v,n)(n · l)L, (2)

the product of the reflectance, cosine term, and light in-
tensity L. We do not observe the reflected intensity from
enough unique light directions at each pixel to estimate all
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Figure 3: Illustration of our network and training strategy. We estimate network weights that minimize a photometric loss,
computed between images rendered from our network outputs and ground truth images captured under known lighting, and
a stereo loss, driven by differences between the output normals and those estimated using an independent stereo technique.

of the parameters in Equation 1. We therefore fix the spec-
ular exponent to m = 30 based on prior measurements of
human skin [35] and our own observations, and estimate
only n, ααα, and ρ. The geometric quantities l and v, and
light intensity L are determined by the calibration proce-
dures described in Section 4.

Illustrated in Figure 3, we use a standard UNet with skip
connections [25]. The encoder and decoder each consist of
5 blocks with 3 convolutional layers per block. The bot-
tleneck has 256 channels. The output of this UNet is for-
warded to two separate networks: a geometry branch that
predicts a normal map ñ, and a reflectance branch that pre-
dicts an albedo map α̃αα and log-scale specular intensity map,
log(ρ̃). Both branches have 3 convolutional layers with 32
channels and one final output layer.

We do not rely on ground truth normals or reflectance
data to supervise training. Instead we combine a stereo loss
and a photometric loss derived from data that is far eas-
ier to obtain: four one-light-at-a-time (OLAT) images in
both RGB and NIR of the same subject, in the same exact
pose, illuminated by a set of calibrated lights activated indi-
vidually in rapid succession, and a stereo depth map (blue
dashed line in Figure 2). These images are only used at
training time.

A stereo loss encourages our estimated normals ñ to
agree with the gradients of the stereo depth map ns. The
gradients are computed by applying a 5x5 Prewitt operator
on stereo depth maps that are smoothed with RGB-guided
bilateral filtering. Similar to [39], our stereo loss combines

a L1 vector loss and angular loss:

Ls(ñ) = ‖ñ− ns‖1 − (ñ · ns). (3)

A photometric loss is computed between each of the
OLAT images and an image rendered according to Equa-
tion 2 and our network outputs for the corresponding light-
ing condition:

Lj
p(ñ, α̃αα, ρ̃) =

∥∥∥∥Sj �
(
I(lj ,v, ñ, α̃αα, ρ̃)− Îj

)∥∥∥∥
1

, (4)

where Îj is the per-pixel color observed in the jth OLAT
image, and Sj is a binary shadow map, computed by ray-
casting using the stereo depth and calibrated light position
(Section 4). We also apply a prior to the albedo map that
encourages piecewise constant variation [3]:

Lc(α̃αα) =
∑
i

∑
j∈N (i)

‖α̃ααi − α̃ααj‖1, (5)

where N (i) is the 5 × 5 neighborhood centered at pixel i.
We apply this prior only to clothing pixels, those labeled as
either body or arms in the segmentation mask. We found
that other regions in the scene did not benefit from this reg-
ularization.

Our total loss function is a weighted sum of these terms:

L(ñ, α̃αα, ρ̃) =

Ls(ñ) + λp
∑
j

Lj
p(ñ, α̃αα, ρ̃) + λcLc(α̃αα). (6)

We set the weight λp to 10 and λc to 50 based on the vali-
dation dataset.
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Data Augmentation and Training. To improve the ro-
bustness of our network, we apply a series of data aug-
mentations to our captured OLATs to simulate a variety of
different visible light conditions. Specifically, our training
uses a combination of: evenly-lit RGB inputs obtained by
adding together all of the OLAT images; inputs with strong
shadows by selecting exactly one of the OLAT images; a
mixture of two lights with different temperatures by apply-
ing randomly chosen color vectors to two randomly chosen
OLAT images; low-light environments by adding Gaussian
noise to a single OLAT; and saturated exposures by scaling
and clipping a single OLAT. We sample evenly from these 5
lighting conditions during training. Further details on how
these lighting conditions are simulated are provided in the
supplementary material.

We train the network using the Adam optimizer [16] for
30K iterations, with a learning rate of 10−3 and a batch size
of 8. Training takes 12 hours with 4 Tesla V100 GPUs.

4. Hardware Setup and Data Collection
Shown in Figure 4, our setup combines a 7.0MP RGB

camera that operates at 66.67 fps with a stereo pair of
2.8MP NIR cameras that operate at 150 fps. The RGB cam-
era and one of the NIR cameras are co-located using a plate
beamsplitter and a light trap. The RGB and NIR cameras
have a linear photometric response and we downsample all
of the images by a factor of 2 in each dimension and take a
central crop that covers the face at a resolution of 960×768.

Visible spectrum lighting is provided by 4 wide-angle
LED spotlights placed at the corners of a roughly 1.5m ×
0.8m (width x height) rectangle surrounding the cameras
located approximately 1.1m from the subject. NIR light-
ing is provided by 5 NIR spotlights, one adjacent to each
of the visible lights, and a flash LED light located near
the reference NIR camera to produce the “dark flash” in-
put. These NIR light sources are temporally interleaved
with projectors that emit NIR dot speckle patterns to as-
sist stereo matching [22]. A microcontroller orchestrates
triggering the lights and cameras to ensure that at any time
only one visible light source and one NIR light source is
active. All light sources are calibrated for position and in-
tensity and treated geometrically as point light sources. The
light intensity term L in Equation 2 accounts for these cal-
ibrated colors. Note that the NIR and visible light sources
are not colocated and so slightly different values of l are
used in Equation 2 between those two conditions.

The image acquisition rate is limited by the RGB cam-
era’s framerate and the total light output, but is fast enough
for us to record video sequences of people who are gestur-
ing and moving slowly. We compute optical flow [36] be-
tween consecutive frames captured under the same lighting
condition to correct for the small amount of scene motion
that occurs within a single round of exposures. Since the

 Camera Unit

NIR Light

VIS Light

NIR Dot Pattern 
Projector

Main NIR 
camera

RGB camera

Beamsplitter

Second NIR 
camera (for 
stereo)

NIR Flash LED

Figure 4: Our hardware setup consists of controllable NIR
and visible spectrum light sources, an RGB camera, a stereo
pair of NIR cameras, and two NIR dot projectors. One of
the NIR cameras and the RGB camera are aligned with a
beamsplitter and all of these components are triggered elec-
tronically to record the types of images shown in Figure 2.

RGB and reference stereo NIR camera are co-located, we
can generate pixel-aligned RGB, NIR, and depth images us-
ing scene-independent precomputed image warps.

Each recording in our dataset is 10 seconds long and con-
tains 166 sets of frames. We recorded 9 unique subjects,
with between 5 and 10 sessions per subject, for a total of
61 recordings. We used recordings of 6 of the subjects for
training and tested on recordings of the other 3.

5. Evaluation

To the best of our knowledge, our method is the first
technique for estimating surface normals and RGB albe-
dos from an RGB+NIR image. We demonstrate the value
of utilizing NIR inputs by comparing our method to two
state-of-the-art RGB-only face normal estimation methods
[27, 21] as well as an RGB-only variant of our own method.
We also perform several other ablation studies to measure
the impact of key design decisions. To illustrate the per-
formance of our method in lighting conditions that do not
lie in the span of our captured OLAT images, we also show
qualitative results (Figure 1) on a real sequence captured
while casually moving a handheld light source around the
scene. Note that ground-truth normal maps are not avail-
able for this sequence. Finally, we present two applica-
tions of our technique. All results are expanded to ani-
mated image sequences and can be viewed on our project
page at darkflashnormalpaper.github.io. None of the sub-
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Well lit Shadows Mixed colors Overexposure Low light
SfSNet [27] 14.10 18.32 - - -

Nestmeyer et al.[21] 14.82 17.52 15.87 21.85 25.56
Ours (No Stereo Loss) 12.80 12.78 12.78 12.82 12.81

Ours (No NIR Photometric Loss) 12.64 12.66 12.64 12.69 12.75
Ours (No Photometric Loss) 12.77 12.77 12.81 12.79 12.77

Ours (No Specular Component) 12.44 12.43 12.44 12.51 12.47
Ours (No RGB Input) 12.54 12.54 12.54 12.54 12.54
Ours (No NIR Input) 13.13 15.19 16.43 19.82 19.39

Ours 12.08 12.06 12.06 12.14 12.10

Table 1: Mean absolute angular error in degrees of normal maps computed with modified versions of our full network.
Results are reported for the five lighting conditions described in Section 5.

RGB Input Shading Shading Albedos Albedos
(w/o Photometric Loss) (w/ Photometric Loss) (w/o Blinn-Phong) (w/ Blinn-Phong)

Figure 5: Impact of the photometric loss term in our training procedure and the Blinn-Phong BRDF in our image formation
model, respectively. When trained without photometric loss, our network learns to output the stereo normals, which lack
fine-scale details. This has a fairly small effect on the error measures in Table 1, but is perceptually significant as seen in
these “n dot l” shading renderings. Our full image formation model, which includes a Blinn-Phong specular term, produces
more accurate albedos across the face than using a Lambertian model alone.

jects shown in our results are in our training set.

5.1. Comparisons and Ablation Studies

In our evaluations we consider five different visible light-
ing conditions: harsh lighting that produces strong cast
shadows; a mixture of lights with different color temper-
atures; saturated/overexposed intensities; low-light condi-
tions that produce noisy inputs; and a “well lit” condition
that achieves largely shadow-free and well exposed inputs.
Our process for synthesizing these different lighting con-
ditions from the OLAT training images is detailed in our
supplemental document. In lieu of ground truth geometry
for quantitative assessments, we construct a baseline using
the technique of Nehab et al. [20] to refine our stereo depth
maps according to normals computed by applying Lamber-
tian photometric stereo to the RGB OLAT training images.

Table 1 reports the mean absolute angular errors in
normal maps computed by two state-of-the-art RGB-based
face normal estimation methods [27, 21] along with several
variants of our network with different loss terms, image
formation models, and inputs. Figures 5 and 6 show

examples of the perceptual impact of some of these design
decisions.

Comparisons to SfSNet [27] and Nestmeyer et al [21].
Details on how we adapt and retrain SfSNet [27] and Nest-
meyer et al [21] on our captured dataset, along with qualita-
tive image comparisons, can be found in our supplemental
document. As shown in Table 1, our method outperforms
both techniques even in the well lit condition and without
using the NIR input, which we attribute to our novel train-
ing strategy that combines shape information from comple-
mentary stereo and photometric signals. More importantly,
in challenging lighting conditions, the benefit of our method
becomes far more significant as the additional information
provided by the NIR input is crucial in these circumstances.
Note that SfSNet [27] uses a self-reconstruction loss that
we found could not handle inputs with mixed color casts,
saturated intensities, or a significant amount of noise and so
it fails to produce plausible outputs in these cases (omitted
from Table 1).
Loss terms. As expected, using both stereo and pho-
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RGB Input Normals Albedos NIR Input Normals Albedos
(RGB Only) (RGB Only) (Ours) (Ours)

Figure 6: Comparison of our network to a modified version that takes only a single RGB image (“RGB Only”) as input.
Example results for three common challenging lighting conditions. Top to bottom: low light / noisy inputs; mixed light
colors; harsh directional lighting with saturated intensities. The “RGB only” network struggles to produce stable normal and
reflectance estimates from these inputs in contrast to our method.

tometric loss terms during training outperforms using
either one alone. We consider two types of photometric
loss - one computed on only the RGB training images
(“No NIR Photometric Loss” in Table 1) and the second
computed on both the NIR and RGB training images (“Full
Method”). As illustrated in the shading images in Figure 5,
including the photometric loss enables estimating fine geo-
metric details that are not captured in the stereo depth maps.

Image formation model. Including the Blinn-Phong
BRDF in our image formation model improves the accu-
racy of the normals and diffuse albedo maps. It results in a
modest improvement in the quantitative errors in Table 1,
and it produces more uniform diffuse albedo maps with
fewer artifacts (Figure 5). We attribute this to the fact that
this richer image formation model is better able to explain
the observed intensities. We also found that including
this BRDF in our model enables reconstructing the glossy
appearance of skin (Section 5.3).

Network inputs. Including the NIR input image improves
accuracy across the board, especially in poor visible light-
ing conditions (Table 1). The benefit of the RGB input is
comparatively smaller, but making it available to the net-
work enables estimating visible spectrum reflectance data,
which is a requirement for many downstream applications
such as lighting adjustment (Section 5.3). Figure 6 illus-
trates the perceptual impact of including the NIR input in
different lighting conditions. For these comparisons we
modified our network to take only a single RGB image as
input (“RGB Only”). The network architecture was other-
wise unchanged, and we applied the same training proce-
dure described in Section 3. Note how the performance of
this “RGB Only” network significantly degrades in chal-
lenging conditions, while our method is far more robust
to these conditions due to the more stable NIR input. It’s
particularly noteworthy how well our method is able to re-
construct plausible diffuse albedos even for highly saturated
RGB input images (bottom row of Figure 6).
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Smoothed Stereo Refined Stereo (Ours)

Figure 7: Stereo methods often struggle to recover fine-
scale surface details. Left: Applying a guided bilateral fil-
ter to raw stereo depths yields a smoother surface but with
distorted features (e.g. the nose is reduced and skin wrin-
kles are missing). Right: We use the method of Nehab et
al. [20] to compute a refined surface according to normals
estimated with our method. Note how details are better pre-
served around the eyes, nose, and mouth, along with fine
wrinkles and creases.

5.2. Application: Stereo Refinement

Stereo methods excel at measuring coarse geometry, but
often struggle to recover fine-scale surface details. This
can be overcome by refining stereo depths according to ac-
curate high-resolution normals typically estimated with a
photometric approach [20]. We evaluate using the normals
produced by our method to refine depth measurements pro-
duced by an NIR space-time stereo algorithm [22] (Fig-
ure 7). In comparison to using a standard bilateral filter
to smooth the stereo depths, refining them using our nor-
mals gives much higher quality reconstructions, most no-
tably around the mouth, nose, and eyes and better recovery
of fine wrinkles and creases in the skin. As our method
works with a single NIR image it would be straightforward
to integrate it into many existing stereo pipelines.

5.3. Application: Lighting Adjustment

We also explored using our approach to digitally improve
the lighting in a portrait. Specifically, we evaluated adding
a virtual fill light to brighten shadowed parts of the face
(Figure 8). We used normal and reflectance maps estimated
by our method to render the contribution of a virtual point

RGB Input Relit Ground Truth

Figure 8: Our method can be used to simulate adding lights
to a scene to fill in shadows.

light located within view of the shadowed region, and then
combined this with the original RGB image. Our model en-
ables a convincing effect, even producing realistic specular
highlights along the nasolabial folds and the tip of the nose.

6. Conclusion

We have presented a dark flash normal camera that is
capable of estimating high-quality normal and reflectance
maps from a single RGB+NIR input image that can be
recorded in a single exposure without distracting the sub-
ject. A key benefit of our method over prior work is its
robustness. It performs well even in challenging lighting
conditions that are commonly encountered in casual pho-
tography such as harsh shadows, saturated pixels, and in
very low light environments.

Our approach assumes a single light located near the
camera is the only source of NIR light in the scene. Al-
though this is a safe assumption in many indoor environ-
ments, it is not always true, especially outdoors. It may be
possible to suppress some ambient light through the use of
a flash/no-flash image pairs [23].

Our method could be integrated into existing smartphone
camera hardware designs and software pipelines to enable
a range of applications from boosting the performance of
an auxiliary depth camera to enabling face relighting in still
images and streaming video. Future work also includes im-
proving our method’s performance on hair and clothing and
its temporal stability, potentially by allowing the network to
consider consecutive frames.
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